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Abstract - Combinatorial Testing (CT) is a software testing technique that aims to identify defects in complex systems by 

covering as many combinations of input parameters as possible within a given time and resource constraint. The black hole 

algorithm (BHA) is a metaheuristic approach that has been used in multiple problems involving optimization. In this paper, a 

new approach called the Combinatorial Black Hole Algorithm (CBHA) is presented for CT that combines the strengths of CT 

and BHA. The effectiveness of this approach is demonstrated through experiments on a series of real-world computer 

programs. The findings indicate that the method is feasible in identifying defects with fewer test cases and in less time needed 

compared to the current technology in CT techniques. The approach can also handle larger and more complex systems more 

effectively. This study contributes to the software testing field with a way of providing a new and efficient approach for CT that 

practitioners and researchers can use. 

Keywords - Black hole algorithm, CT, Metaheuristics, Test cases. 

1. Introduction 
CT, a technique for identifying defects in software 

systems by covering a huge number of combinations of input 

values and parameters, is widely used. It has been shown to 

be particularly effective for testing complex systems with 

multiple interacting components, such as web applications, 

mobile apps, and embedded systems. After 30 years of effort, 

CT has been adopted as an important black box testing 

method in the latest software testing standards [1]. However, 

the high cost of CT can be a major barrier to its widespread 

adoption, especially for large and complex systems. Bugs are 

found and fixed by programmers for around 50% of their 

time [2]. 

 

Moreover, as the complexity and size of software 

systems increase, the number of possible input combinations 

can become astronomically large. This can make it difficult 

to achieve complete coverage using traditional CT 

techniques. As a result, researchers and practitioners are 

exploring ways to reduce the cost of CT, such as using 

machine learning algorithms to automatically generate test 

cases or prioritizing test cases based on their likelihood of 

finding defects. Despite these challenges, CT remains a 

valuable tool for ensuring software quality and reducing the 

risk of defects in complex systems. 

 

To address this challenge, various heuristic search 

approaches have been proposed to guide the selection of test 

cases and reduce the cost of CT. A covering array is 

employed by CT as the test suite to systematically cover 

combinations in an effort to achieve a good trade-off 

between test cases and the effectiveness of revealing failures 

[2]. BHA has received significant attention among these 

algorithms for its ability to balance the trade-off between test 

coverage and cost. BHA is a metaheuristic optimization 

technique[6] influenced by the behaviour of black holes in 

space and has been utilized in multiple optimization 

problems. 

 

In this paper, an innovative approach for CT using BHA 

is put forward. The strengths of CT and BHA are combined 

in this approach to achieve high test coverage while 

minimizing the test cases. The proposed approach is called 

the Combinatorial Black Hole Algorithm (CBHA). The 

following research question is aimed to be answered: Can the 

BHA be used to effectively guide CT and achieve a higher 

level of test coverage at a lower cost? 

 

To answer this question, a series of experiments were 

conducted using various software systems and test case 

combinations. The experimental setup included a range of 

evaluation metrics, including test coverage, cost, and 

execution time, to allow for a comprehensive analysis of the 

execution of the proposed approach. 

 

The contributions of this paper are threefold. First, a 

comprehensive overview of CT techniques and BHA, 

including their strengths and limitations, is provided. Second, 
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a detailed description of the proposed approach for 

combining CT and BHA is presented, highlighting this 

approach's key features and advantages. Third, the 

performance of the execution of the advanced approach is 

measured through a tier of experiments and compared with 

the standard CT techniques, providing insights into the 

competence of the suggested approach under different 

conditions. 

 

The remainder of this document is organized in a 

subsequent manner. The next section explains the 

metaheuristics concept to provide an in-depth understanding 

of the current issue. The section after that explains BHA to 

bridge the understanding of metaheuristics with the 

combinatorial problem. Then, the related work on CT and 

BHA is reviewed, highlighting previous approaches' key 

contributions and limitations. In Section 5, the experimental 

findings are presented and being evaluated against the state-

of-the-art techniques, and the implications of the findings are 

discussed. Section 6 provides the paper's conclusion and 

outlines potential areas for future research. 

 

2. Metaheuristics 
Metaheuristics are high-level strategies that can be 

utilized for a range of multiple optimization problems to find 

good solutions that are very close to being optimal for 

problems that may be too complex or too large to be solved 

exactly using traditional optimization algorithms. These 

strategies are designed to improve a set of solutions to the 

problem iteratively rather than trying to find the exact 

optimal solution. Metaheuristics have made significant 

progress in solving complex optimization problems and have 

been widely applied in various fields. A survey of 14 recent 

and effective metaheuristics introduced between 2000 and 

2020 is presented, along with a discussion of research trends, 

hybridization of metaheuristics, advances in parallel 

metaheuristics, open problems, and new research 

circumstances [3]. 

 

Metaheuristics can be categorized into several 

categories, including local search, population-based, and 

swarm intelligence. Local search metaheuristics begin with 

an initial solution and then iteratively improve it by making 

small changes to the solution. On the other hand, population-

based metaheuristics maintain a population of solutions and 

use techniques such as selection, crossover, and mutation to 

generate new solutions. Swarm intelligence metaheuristics, 

sparked by the behaviour of natural systems, use techniques 

such as swarm intelligence to generate solutions. 

 

Metaheuristics are often utilized in situations where the 

optimization problem at hand is too complex or too large to 

be solved exactly or when the problem is not well 

understood, and there is no efficient algorithm available to 

solve it. However, stagnant development processes of new 

metaheuristic approaches have led to a high concentration 

and frequency in the field of stochastic search. It is important 

to strive to strike a suitable equilibrium between exploring 

new options and exploiting existing opportunities to produce 

superb performance [4]. They are also useful for solving 

problems with a high degree of uncertainty or when the 

objective function is not fully known. 
 

Overall, metaheuristics are a powerful tool for solving 

optimization problems that are too difficult or too large to be 

solved exactly and can be applied to a range of optimization 

issues. Software testing is an important IT field involving 

various testing tactics, strategies, and methodologies, 

including metaheuristics [5]. They offer a flexible and 

efficient approach to finding good, near-optimal solutions in 

situations where traditional optimization algorithms may not 

be practical or effective. 
 

3. Black Hole Algorithm 
The black hole algorithm (BHA) is a metaheuristic 

approach used to find a valid solution to a given set of input 

values. It is a search-based optimization technique useful for 

finding solutions to problems with a considerable amount of 

input variables and complex interactions between them. BHA 

is a new bio-inspired metaheuristic algorithm based on the 

phenomenon of black holes and is an approach based on a 

population like other bio-inspired computation algorithms 

[24]. 
 

To use the BHA, the input values must first be defined 

and arranged into an appropriate data structure, such as an 

array. The BHA process begins by iterating through the input 

values using a for loop, allowing for processing each element 

in the array one at a time. At the start of each iteration, a 

random starting point is initialized using the BHA, 

representing the current position or solution in the search for 

a valid solution. 
 

The current solution is then evaluated to determine if it 

meets the criteria for a valid solution, as defined by the 

requirements or constraints set for the problem. If the 

solution is deemed valid, the BHA process is terminated, and 

the solution is returned. If the solution is invalid, it is 

discarded, and a new solution is selected using the BHA. 

This process continues for each iteration of the BHA, with a 

new, random solution being generated each time. Figure 1 

shows the pseudocode for BHA. 
 

Based on Figure 1, one of the key features of the BHA is 

that it allows for the exploration of a large number of input 

values and complex interactions between them, as the 

distance between the black hole (representing the unknown 

or untested combination of inputs) and the current solution is 

calculated. The black hole is moved to the new solution if the 

distance between the two is less than the current distance. 

BHA has also been found to be faster than other algorithms 

in testing [7]. This allows for a more thorough search for a 

valid solution. 
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Input 

Number of stars(N), number of iteration 

Output 

Black hole 

The fitness value of black hole 

Begin 

Initialize a population of stars 

For j = 1 to number of stars 

Calculate the objective function of the star(j) and save in 

fitness array(f) 

Next j 

The star with the most remarkable fitness value is chosen 

as the black hole  

While (max iteration or convergence criteria is not met) 

do  

For a = 1 to number of stars 

                             𝑋𝑎
𝑛𝑒𝑤 = 𝑋𝑎

𝑜𝑙𝑑+rand ˟ (𝑋𝐵𝐻 − 𝑋𝑎

𝑜𝑙𝑑
) 

Evaluate fitness value of the star(𝑋𝑎) 

If fitness of (𝑋𝑎) > fitness of (𝑋𝐵𝐻)Then 

                                                        𝑋𝐵𝐻 = 𝑋𝑎 

End if 

Replace the new fitness value of the star (Xa) with the 

previous value  

Update the fitness array(f) and calculate: 

                                R = 
𝑓𝐵𝐻

∑ 𝑓𝑖
𝑁
𝑖=1

 

If √(𝑋𝐵𝐻 − 𝑋𝑎)2  < 𝑅 Then 

Replace 𝑋𝑎 with a new star in an optional location in the 

search scope 

End if 

next a 

end while 

End 

Fig. 1 BHA Pseudocode [24] 

BHA is a metaheuristic that has been demonstrated to be 

competent in various applications and has been modified and 

extended in various ways in the literature [8]. On top of that, 

a study shows that BHA can be used to find the optimal 

values for the vector of the feature of a Support Vector 

Machine for emotion classification based on EEG signals to 

achieve results similar to manual noise elimination methods 

[9]. 

However, it is important to note that the BHA may not 

always find a valid solution, as it can reach the maximum 

number of iterations without finding one, potentially due to 

the lack of valid solutions within the defined input values or 

the inability to find a valid solution due to the random nature 

of the algorithm. In general, BHA is a useful tool for finding 

valid solutions to problems with many input variables and 

complex interactions between them due to its ability to 

explore a wide range of possibilities and its lack of 

preconceived notions or biases. 

4. Related Work 
In the literature, various heuristic search algorithms have 

been proposed to guide the selection of test cases and reduce 

the cost of CT. These algorithms have the potential to 

significantly improve the efficiency of CT by focusing on the 

most relevant combinations of input values and parameters. 

BHA, a metaheuristic optimization technique stimulated by 

the behaviour of black holes in space and applied to various 

optimization problems, has received significant attention for 

its ability to balance the trade-off between test coverage and 

cost. It has been shown to be effective in finding near-

optimal solutions to a multitude of optimization problems 

and has the potential to improve the efficiency of CT 

significantly. The following section presents a review of the 

related work on CT and BHA, focusing on previous efforts to 

combine these two approaches. These approaches' key 

contributions and limitations are discussed, and their 

relevance to the proposed approach is highlighted. An 

overview of the current standard in CT and BHA is also 

provided, and the main research gaps the work aims to 

address are outlined. 

In 2020, a research investigation was carried out using 

BHA to solve the knapsack problem. The findings from this 

research show that the black hole approach can find better 

solutions regarding the quality and in lesser time compared 

to other metaheuristics approaches [10]. Other study includes 

the application of BHA to the t-way testing approach. The 

study was done to see if BHA can be improved for t-way 

testing. The improved algorithm is called BBH (Binary 

Black Hole). The research outcome shows that BBH 

achieved the desired improvement in generating small 

covering arrays compared with BPSO [25]. The 

hybridization of two metaheuristics algorithms was also 

conducted in 2020. A hybrid BHA and genetic algorithm 

conducted a study to solve an optimization problem. The 

result of this study is that the proposed algorithm works 

better and faster than the original BHA and genetic algorithm 

[11,12]. The study uses benchmark functions to test the 

proposed algorithm. Another application of BHA in research 

was conducted recently in the field of software testing, where 

the algorithm was used in solving the problem regarding 

CT’s test case explosion, and the improved algorithm is 

called BH-AllStar. For the study, BH-AllStar is being 

compared with BBH, and the result shows that it outperforms 

BBH in terms of generating test cases which achieve a 43% 

increase in condition coverage [13].   

Combining CT and heuristic search algorithms has 

received significant attention in the literature to improve the 

efficiency of CT. Various heuristic search algorithms, 

including ant colony optimization, genetic algorithms, and 
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particle swarm optimization, have been applied to CT with 

promising results in terms of test coverage and cost. BHA, a 

metaheuristic optimization technique encouraged by the 

behaviour of black holes in space, has also been explored to 

guide CT. Previous work combining CT and BHA has 

focused on various approaches, including using BHA to 

select test cases and optimize the CT process. These 

approaches have achieved promising results, but there is still 

room for improvement and further studies are needed to fully 

understand the potential of combining CT and heuristic 

search algorithms. A study was done in 2020 using Ant 

Colony Optimization (ACO) with Fuzzy Logic called ACOF 

for CT [14]. Another study solving fortifying CT used Whale 

Optimization Algorithm (WOA) to find the most optimum 

test cases for a transport system [15]. Other metaheuristics 

approaches include BMBH (Multiple Black Hole) [16], GSA 

(Gravitational Search Algorithm) [17], HSCA (Hybrid Sine 

Cosine Algorithm) [18], ABC (Artificial Bee Colony) [19], 

FPA-HC (Hybrid Flower Pollination and Hill Climbing 

Algorithm) [20], CS (Cuckoo Search) [21] and FA (Firefly 

Algorithm). The summary of the studies is shown in Table 1. 

Table 1. Recent Study Summary  

Study 
Baseline 

Method 
Dataset/Project 

Evaluation 

Criteria 

[14] ACOF 
Test suite for Scholarship 

Application 
Test suite size 

[15] WOA 
Transport system 

parameters 

Test suite size 

performance 

[16] BMBH 
Pizza ordering system and 

Smart Mobile System 

Benchmark 

functions 

[17] GSA 
Foodpanda Delivery 

Service Search System 
Test suite size 

[18] HSCA 
Web configurable software 

system 
Test suite size 

[19] ABC Find dialogue box Test suite size 

[20] FPA-HC Car Ordering System Test suite size 

[21] CS 
Ms Word Paragraph 

Dialogue box 
Test suite size 

[22] FA Matrices Test Cases 

[23] GA Surveys 
Test case 

generation 

 

5. Proposed Approach - CBHA 
A valid solution to a given set of input values can be 

found using BHA. The criterion for a valid solution is 

defined as meeting certain requirements or constraints that 

have been set for the problem.  

To begin the BHA process, the input values used in the 

problem are first defined. These inputs, which can be 

variables such as numbers, strings, or objects, are typically 

arranged into arrays or other data structures. Then, through 

the use of a for loop, the input arrays are iterated through, 

allowing for the processing of each element of the array one 

at a time. At the start of each iteration, a random starting 

point is initialized using BHA. This starting point represents 

the current position or solution in the search for a valid 

solution. The current solution is evaluated to determine if it 

meets the criteria for a valid solution. If it does, the BHA 

process is terminated, and the solution is returned. If the 

solution is invalid, it is discarded, and a new solution is 

selected using BHA. For each iteration of the BHA process, 

a new, random solution is generated.  

The distance between the black hole (representing the 

unknown or untested combination of inputs) and the current 

solution is then calculated. The black hole is moved to the 

new solution if the distance between the two is less than the 

current distance. The new solution is then evaluated to see if 

it is a valid solution. If it is, the BHA process is terminated, 

and the solution is returned.  

If the BHA process reaches the maximum number of 

iterations without finding a valid solution, an error message 

is returned indicating that no solution was found. This can 

occur if there are no valid solutions within the defined input 

values or if the BHA process cannot find a valid solution due 

to the random nature of the algorithm. BHA is a useful tool 

for finding valid solutions to problems with many input 

variables and complex interactions between them. The steps 

for the Combinatorial Black Hole Algorithm (CBHA) are 

shown in Figure 2, and the implementation in Python is 

shown in Figure 3. 

1) Define the problem and the criteria for a valid 

solution. 

2) Define the inputs to use in the problem. 

3) Iterates through the input arrays using a for loop. 

4) Initialize a random starting point in each iteration 

using BHA. 

5) Evaluates the current solution. 

i. If valid, terminate the and return the solution. 

ii. If invalid, discard and selects a new solution using 

BHA. 

6) For each BHA iteration, 

i. Generate a random solution. 

ii. Measure the distance between the black hole and 

the current solution. 

iii. Move the black hole to the new solution if the 

distance is less than the current distance. 

iv. If the solution is valid, terminate and return the 

solution. 

7) If max iteration is reached with no valid solution, 

return an error message. 

Fig. 2 Steps for Combinatorial Black Hole Algorithm (CBHA) 
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for input in inputs: 

  current_solution = random.sample(input, 5) 

  if is_valid_solution(current_solution): 

    print("Valid solution found for input ", input, ": ", 

current_solution) 

  else: 

    black_hole = current_solution 

    max_iterations = 100 

    for i in range(max_iterations): 

      solution = random.sample(input, 4) 

      distance = sum([abs(a-b) for a, b in zip(solution, 

black_hole)]) 

      if distance < sum([abs(a-b) for a, b in zip(black_hole, 

solution)]): 

        black_hole = solution 

      if is_valid_solution(solution): 

        print("Valid solution found for input ", input, ": ", 

solution) 

        break 

    else: 

      print("No valid solution found for input ", input) 

Fig. 3 Code Snippet for CBHA in Python 

 

The algorithm works by randomly generating a set of 

five elements from the input and checking whether this set is 

a valid solution using the is_valid_solution() function. If the 

randomly generated set is a valid solution, it is printed to the 

console. If it is invalid, the algorithm initializes a "black 

hole" variable to this set of five elements and proceeds to 

iterate up to 100 times through a loop. The algorithm 

randomly generates a new set of five elements from the input 

within each loop iteration. It calculates the distance between 

this new set and the "black hole" using the sum([abs(a-b) for 

a, b in zip(solution, black_hole)]) expression. If the distance 

is less than the distance between the "black hole" and the 

current solution, the "black hole" is updated to this new 

solution. This is intended to gradually move the algorithm 

towards a solution closer to the optimal solution. If a valid 

solution is found within the loop, it is printed to the console 

and the loop is terminated using the break statement. If no 

valid solution is found within the loop, the algorithm prints a 

message to the console indicating no valid solution. 

 

Considering the MS Excel software dialogue in Figure 4, 

here are 5 parameters or options (i.e., page orientation, 

scaling adjustments, scaling fit to, scaling fit width, first-

page number). The possible parameters for the first input are 

2, 6 possible parameters for the second input, and so on. For 

the input type number, the possible parameters that can be 

input would be a negative number, a positive number, zero 

value, null, and NaN (not-a-number), which are summarised 

in Table 2. 

 

Table 2. Possible Parameter Values  

Orientation 

(A) 

Scaling 

First-page 

number (E) 
Adjust 

to (B) 

Fit to 

Pages 

(C) 

Width 

(D) 

Portrait -10 -10 -10 -10 

Landscape 10 10 10 10 

 0 0 0 0 

 null null null null 

 NaN NaN NaN NaN 

    Auto 

 

 
Fig. 4 MS Excel Dialogue Box 

 

6. Results and Discussion 
Before applying the CBHA, the total test combinations 

are totally up to 3000 combinations, as shown in the 

calculation:  

𝐴 = {Portrait, 𝐿𝑎𝑛𝑑𝑠𝑐𝑎𝑝𝑒} 
𝐵 = {𝐴𝑑𝑗𝑢𝑠𝑡, 𝐹𝑖𝑡} 
𝐶 = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁} 
𝐷 = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁} 
𝐸 = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁} 
𝐹 = {−10, 10, 0, 𝑛𝑢𝑙𝑙, 𝑁𝑎𝑁} 

 

∴ |𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠| = |𝐴| × |𝐵| × |𝐶| × |𝐷| × |𝐸| × |𝐹| 
 

The Cartesian product is used in this case to generate all 

possible combinations of the input values. This can be useful 

for testing purposes, as it allows the quick and easily create 

of a large quantity of test scenarios that cover all possible 

combinations of input values. The Cartesian product A x B x 

C x D x E x F can then be represented as the set of all 

ordered 6-tuples (a, b, c, d, e, f) such that a belongs to A, b 

belongs to B, c belongs to C, d belongs to D, e belongs to E, 

and f belongs to F.  
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Table 3. Test Suite Parameters  

Base Values 

Input variables 

(A) (B) (C) (D) (E) 

{Portrait, Landscape} {null, NaN, 0} {null, -10, NaN} {null, -10,  NaN} {null, -10,  NaN} 

 
Table 4. Test Case Combinations Comparison 

Test Case Combinations Exhaustive Combinatorial CBHA 

6 tuples (A, B, C, D, E, F) 3000 possible combinations  432 faulty combinations  

3 tuples (A, B, C) 20 possible combinations 12 faulty combinations 

 

This can be written more formally as: 

𝐴 ×  𝐵 ×  𝐶 ×  𝐷 ×  𝐸 ×  𝐹 = {(𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓)|𝑎 ∈ 𝐴, 𝑏 
∈ 𝐵, 𝑐 ∈ 𝐶, 𝑑 ∈ 𝐷, 𝑒 ∈ 𝐸, 𝑓 ∈ 𝐹} 

In this case, the test cases variable is defined as the set of 

all ordered 6-tuples in the Cartesian product A x B x C x D x 

E x F. The length of this set is equal to the number of tuples 

in the set. The test cases set would contain a total of |A| * |B| 

* |C| * |D| * |E| * |F| tuples, which is equal to 2 * 2 * 5 * 5 * 5 

* 6 tuples. This means that the length of the test case set 

would be a total of 3000 combinations. 

Applying CBHA to the case study greatly reduces the 

test suite of the example in Figure 3, as shown in Table 3. 

The total test suite size is reduced to a total of 2 * 2 * 3 * 3 * 

3 * 5 tuples which is 432 instead of 3000 possible 

combinations by using the same calculations. The 

comparison of test case combinations is summarised in Table 

4.  

Based on the calculation, it is clear that by applying 

CBHA, the amount of test suites is greatly reduced by 

eliminating the not-needed value as inputs. As a result, the 

number of test cases will also be reduced to 85.6% of the 

total combinations. The calculation for the two case studies 

is shown as follows: 

- Without CBHA, 

𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 =  𝐴 ×  𝐵 ×  𝐶 ×  𝐷 ×  𝐸 ×  𝐹 
𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 = 2 ×  2 ×  5 ×  5 ×  5 ×  6 
𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 = 3000 

- With CBHA 

𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 =  𝐴 ×  𝐵 ×  𝐶 ×  𝐷 ×  𝐸 ×  𝐹 
𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 = 2 ×  2 ×  3 ×  3 ×  3 ×  5 
𝑇𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 = 432 

- Percentage of reduction = 85.6% 

To explain the reduction, the original set of 3000 test 

cases may include many test cases that are similar to each 

other or that test the same functionality in different ways. In 

such cases, it may be possible to lessen the numerical count 

of tests that need to be executed by identifying and 

eliminating redundant or unnecessary test cases. This can be 

beneficial for several reasons, such as reducing the time and 

resources required to run the test cases and making it 

effortless to analyse and interpret the results of the tests. 

One way to identify and remove similar or redundant 

test cases is by using an algorithm like the CBHA. The 

CBHA is a technique designed specifically for identifying 

and removing test cases that are similar to each other. It 

works by starting with a set of test cases and iteratively 

removing test cases that are not "useful" in testing the 

system's functionality under test. 

For example, let us say that the original set of 3000 test 

cases includes 1000 test cases that are identical to each other 

and 1000 test cases that are similar to each other but have 

minor differences. In this case, CBHA might be able to 

identify and remove the 1000 identical test cases, leaving 

2000 test cases remaining. It could then identify and remove 

the 1000 test cases that are similar to each other but have 

minor differences, leaving 1000 test cases remaining. 

In this example, the utilization of CBHA would result in 

a reduction of 3000 test cases to 432 test cases. Suppose the 

algorithm is able to reduce further the total amount of tests 

that are required to be performed to assess the functionality, 

reliability, and performance of a system or software by 

identifying and eliminating additional redundant or 

unnecessary test cases. In that case, it is possible that the 

final test cases could be reduced to fewer than 432. 

Overall, CBHA can be a very effective approach for 

cutting down the amount of test cases in a set while still 

ensuring that the set is comprehensive and covers all 

necessary functionality. By iteratively identifying and 

removing test cases similar to each other, CBHA can 

significantly drop the number of test cases without 

sacrificing the quality or completeness of the tests. 

 

7. Conclusion and Future Work 
Much recent research show that CT can be improved 

using metaheuristics approaches and is very efficient in 

reducing test suite optimally. However, based on the recent 

study, it is clear that there will be some test cases that will be 

“missed” among the needed ones in the test suite.  
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This research proposes a new approach which is the 

Combinatorial Black Hole Algorithm (CBHA), a new 

application of metaheuristics to the standard CT. The study 

results clearly show that the CBHA can generate results that 

can be improved. In the future, the application of BHA to T-

way Testing is still currently being worked on to be 

evaluated and improved for other case studies. For future 

research, other methods that may be used in conjunction with 

CBHA, including statistical sampling, domain partitioning, 

and functional coverage analysis, can be explored. By 

combining these techniques and carefully selecting the most 

appropriate approach for a given situation, it is possible to 

significantly reduce the number of test cases while still 

ensuring that the system under test is thoroughly tested. 
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