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Abstract - The application of Deep Learnings (DLs) is thriving in the domain of Visual Place Recognitions (VPRs) that serves 

an indispensable role in visual Simultaneous Localization and Mapping (vSLAM) applications. The usage of Convolutional 

Neural Networks (CNNs) attains superior performance compared to handcrafted feature descriptors. However, still, VPR is a 

difficult task because of the two major issues they are perceptual variability and perceptual aliasing. This study develops an 

Intelligent Visual Place Recognition using Sparrow Search Algorithm with Deep Transfer Learning (IVPR-SSADTL) model. 

The presented IVPR-SSADTL technique recognizes the visual places effectively and accurately. It involves a three-phase 

process: feature extraction, hyperparameter tuning, and place recognition. At the initial phase, the IVPR-SSADTL technique 

employs the MixNet model as a feature extractor with the sparrow search algorithm (SSA) as a hyperparameter optimizer. 

Next, in the later phase, the IVPR-SSADTL technique applies Manhattan distance-based similarity measurement to recognize 

the places promptly. To exhibit the higher performance of the IVPR-SSADTL system, an extensive range of simulations were 

performed. A wide range of comparison studies stated the improved achievement of the IVPR-SSADTL algorithm over other 

models. 

Keywords - Visual places recognition, Transfer learning, Deep learning, MixNet model, Feature extraction, Sparrow search 

algorithm. 

1. Introduction  
Autonomous systems functioning in dynamic, 

unstructured, and challenging atmospheres need excessive 

localization capabilities demonstrating robustness to 

accumulative odometry faults [1]. A general way to raise 

such robustness is by using a place recognition engine which 

is a mechanism that employs the recognition of revisited 

scenes for recovering the position of robots in localization 

failure scenarios or rectifying the estimated odometry [2]. A 

place detection engine depends on visual sensing methods, 

usually classified as Visual Place Recognition (VPR). VPR 

techniques should display environmental differences to 

achieve augmented robustness, invariance over lighting, and 

viewpoint [3]. Especially, long trajectory situations, with 

extreme appearance variations because of different year 

seasons (winter and summer) or day periods (night and day), 

have fostered VPR into one of the difficult errands in robotic 

vision [5]. Visual cues related to VPR were usually not 

uniformly dispersed across an image; thus, concentrating on 

significant areas, as opposed to confusion or irrelevant 

regions, was key to enhancing the VPR performance [6]. For 

instance, while detecting a street scene, utilizing features 

derived from time-varying objects, like moving cars or 

pedestrians, as opposed to those derived from static 

structures, like road signs or buildings, could present 

misleading data in place detection [8]. 

Inspired by such achievements, several researchers were 

conducted to investigate the Convolutional Neural Networks 

(CNNs) efficiency of features implemented to the VPR issue 

[9]. The authors gained attributes from various layers of a 

specific CNN method and compared them in contrast to 

several existing sequence-related VPR methods. They 

display that the CNNs middle layer outpaces any other 

algorithm or layer, even in the event of single image matching 

[10]. Long-term VPR imposes a vital challenge in robot 

navigation due to the reason that a single place undergoes 

substantial appearance variations because of illumination and 

seasonal or weather changes. In recent times, the success of 

deep learning (DL) in computer vision (CV) has activated a 

range of inspections into how to generate a feature 

representation from CNN that is robust to such variations 

[11]. To further enhance CNN's performance, the CV 

community put forth efforts not just towards constructing 

more complicated and deeper network structures but even 

towards a better insight into how their Daedalian framework 

performs in distinct stimuli and occasions [12]. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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  This study develops an Intelligent Visual Place 

Recognition using Sparrow Search Algorithm with Deep 

Transfer Learning (IVPR-SSADTL) model. The presented 

IVPR-SSADTL technique recognizes the visual places 

effectively and accurately. It involves a three-phase process: 

feature extraction, hyperparameter tuning, and place 

recognition. At the initial phase, the IVPR-SSADTL 

technique employs the MixNet model as a feature extractor 

with the sparrow search algorithm (SSA) as a hyperparameter 

optimizer. Next, in the later phase, the IVPR-SSADTL 

technique applies Manhattan distance-based similarity 

measurement to recognize the places promptly. To exhibit the 

higher performance of the IVPR-SSADTL system, an 

extensive range of simulations were performed.   

2. Literature Review 
In [13], a novel deep distance learning structure for VPR 

was introduced. With in-depth research of several restrictions 

of the distancing connection from the VPR issues, the 

multiconstraint loss function has been predicted to optimize 

the distancing restriction connections from the Euclidean 

space. A novel infrastructure assists different types of CNN, 

such as VGGNet, AlexNet, and other user-defined 

networking, to derive further individual aspects. In [14], deep 

metric learning that combined optimization extracting feature 

and similarity metric was employed to train end-to-end 

networking in detail for place identification tasks to handle 

the occurrence altering over time. A self-adaptively improved 

similarity metric was planned to strengthen the 

discrimination capability and compute the similarity betwixt 

descriptors of image pairs that can be extracted in a CNN.  

 

Park et al. [15] project a lightweight CNN technique for 

VPR. The presented system specifically targets the 

embedding method. To reduce the computational difficulty 

of the networks, the author’s proposal is an FCN structure 

with some filters and layers. The presented network directly 

learns a vector space, whereas their distance is equivalent for 

placing similarity with metric learning. Mao et al. [17] 

introduce a new technique for building a multi-scale feature 

pyramid and project 2 techniques for utilizing the pyramid for 

augmenting the place recognition ability. A primary method 

fuses the pyramid for obtaining novel mapping features that 

is attention to either local or semi-global presence. In the 

secondary system, learn an attention method in the feature 

pyramid for weighting the spatial grid on novel mapping 

features. Both techniques integrate the multiscale features 

from the pyramid to suppress the confusing local feature but 

address the problems from 2 distinct approaches. 

 

Zhu et al. [19] introduce a novel technique dependent 

upon CNN, with place image as to the pre-training network 

system for obtaining automatically learned image descriptor, 

and with several functions of binarization, pooling, and 

fusion for optimizing them, afterward, the resemblance 

outcome of location recognitions are projected with 

Hamming distance of place sequences. Pei et al. [20] examine 

a rapid and dependable technique utilizing BoW of structural 

lines demonstrated by Extended Line Band Descriptors, 

including Pose estimate ability termed ELBDP. Additionally, 

the robust system that only utilizes one set of vanishing points 

and a single structural line for estimating the comparative 

posing betwixt imaging sets was presented. 

3. The Proposed Model 
In this research, an automated IVPR-SSADTL technique 

has been developed to recognise visual places. The presented 

IVPR-SSADTL technique automatically recognizes the 

visual places effectively and accurately. It involves a three-

phase process: feature extraction, hyperparameter tuning, and 

place recognition.  

3.1. Feature Extraction: MixNet Model 

At the beginning stage, the IVPR-SSADTL technique 

employs the MixNet model as a feature extractor. A CNN 

architecture built by the classical complex function is hard to 

operate for mobile terminals as a consequence of excessive 

parameters and complex computation [22]. A set of 

lightweight convolutional operators was introduced to 

guarantee the model accuracy and enhance the efficiency of 

the mobile terminal. In particular, the depthwise separable 

convolution layer was more commonly used, and they split 

the convolutions into pointwise and depthwise convolutions. 

At first, it convolves a single channel consecutively using 3 

convolution kernels. Next, it applies the feature maps with a 

kernel size of 1 × 1 convolution layer. Consider that N 

𝐷𝑘 × 𝐷𝑘  feature view and 1 convolution sliding steps were 

exploited to convolve factor maps with 𝐷𝐹 × 𝐷𝐹 × 𝑀 

dimension, along with the output feature maps 𝐷𝐹 × 𝐷𝐹 × 𝑁 

dimension, and it is given in the following expression: 

 

𝐷𝑘 × 𝐷𝑘 × 𝑀 × 𝑁                                              (1) 

 

The parameter included in the depthwise convolution 

function can be given as follows: 

 

𝐷𝑘 × 𝐷𝑘 × 𝑀 + 1 × 1 × 𝑀 × 𝑁                     (2) 

 

The calculation included in the convolutional function is 

shown below: 

 

𝐷𝑘 × 𝐷𝑘 × 𝑀 × 𝑁 × 𝐷𝐹 × 𝐷𝐹                        (3) 

 

The calculation included in the depthwise convolution 

function is shown in the following expression: 

 

𝐷𝑘 × 𝐷𝑘 × 𝑀 × 𝐷𝐹 × 𝐷𝐹 × 𝑀 × 𝑁 × 𝐷𝐹 × 𝐷𝐹        (4) 

 

The ratio of two functions is determined by: 
𝐷𝑘 × 𝐷𝑘 × 𝑀 × 𝐷𝐹 × 𝐷𝐹 × 𝑀 × 𝑁 × 𝐷𝐹 × 𝐷𝐹

𝐷𝑘 × 𝐷𝑘 × 𝑀 × 𝑁 × 𝐷𝐹 × 𝐷𝐹

        (5) 
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Fig. 1 Structure of MixNet system 

The depthwise separable convolution function uses a 

similar kernel size of 3 × 3 convolution layer in the 

computation model. However, a network with a huge 

complexity kernel of 5 × 5 or 7 × 7 determines that a huge 

complexity kernel enhances the accuracy and efficacy of the 

algorithm. On the other hand, the study demonstrates that it 

is an uncommon case that the bigger the complexity kernels 

are, the better since larger complexity kernels minimize the 

model precision. Now, the MDConv divides input channels 

with M size into C ensembles and later convolutes every 

ensemble with dissimilar kernel magnitudes. Fig. 1 illustrates 

the architecture of the MixNet method. 

 

3.2. Hyperparameter Tuning: SSA Technique 

In this study, the SSA is used as a hyperparameter 

optimizer. SSA is a novel nature‐inspired technique based on 

the behaviors of sparrows [23]. Many animals search for food 

and avoid predators with the swarm intelligence in nature. 

They are classified into 2 classes based on their suitability 

and are defined by the unique posture of every sparrow. The 

individual who has the best ft will belong to the producer. The 

residual sparrows are onlookers. In the entire populace, 

distinct individuals have dissimilar eating behaviors. 

 

Furthermore, some sparrows are answerable to avoid 

predators during the foraging processes amongst the 

population. They decide to fly closer or farther to another 

sparrow to face this danger. The sparrow colony finds more 

low‐risk food by continually updating its location. SSA is 

recommended by mimicking the sparrow's anti‐hunting 

group and search behavior. This approach has faster 

performance, fewer parameters, and a robust search 

capability. The major phases of SSA are discussed in the 

following: Step 1, initialize and create the solution. Here, 

determine the ratio of sparrows in intensive care (PV), the 

magnitude of the populace, the maximal amount of 

reproduces, and the Producer Ratio (PD). The first location 

of the sparrow population has been demonstrated as follows. 

They are randomly generated: 

𝑋 = [

𝑥1,1 𝑥1,2 𝑥1,𝑑

𝑥2,1 𝑥2,2 𝑥2,𝑑

⋮ ⋮ ⋮
𝑥𝑛,1 𝑥𝑛,2 𝑥𝑛,𝑑

]                                               (6) 

In Eq. (6), 𝑛 denotes the count of sparrows, and 𝑑 

indicates the dimension of chosen parameters. Every person’s 

fitness for the subsequent process is defined below. Every 

row value in FX signifies every individual’s ft. 
 

𝐹𝑋 =

[
 
 
 
𝑓[𝑥1,1 𝑥1,2 𝑥1,𝑑]

𝑓[𝑥2,1 𝑥2,2 𝑥2,𝑑]

⋮ ⋮ ⋮
𝑓[𝑥𝑛,1 𝑥𝑛,2 𝑥𝑛,𝑑]]

 
 
 

                                              (7) 

 

Step2: In this phase, producers with the highest 

suitability value have prioritized over those who produce 

cuisine. Since the producer is responsible for searching for 

cuisine and directing the movements of the whole population, 

the producer could find cuisine in a wider range than the 

explorer location. Based on steps (1) and (2), in all the 

iterations, the manufacturer updates the status using the 

following equation: 
 

𝑋𝑖𝑗
𝑡+1 = {

𝑋𝑖,𝑖
𝑡 ×  exp (

−𝑖

𝛼 × 𝑖𝑡𝑒𝑟𝑚𝑎𝑥

) 𝑖𝑓 𝑅2 < 𝑆𝑇

𝑋𝑖𝑗
𝑡 + 𝑄 × 𝐿 𝑖𝑓 𝑅2 ≥ 𝑆𝑇

               (8) 

 

Let, 𝑖𝑡𝑒𝑟 max  be the constant with the maximum iteration 

amount. 𝑡 denotes the existing iteration, and 𝑗 = 1,2, …, 𝑑, 
𝑋𝑖𝑗

𝑡  characterize the resulting value of 𝑗-𝑡ℎ sparrows at 𝑡 

iteration. 𝛼 indicates a random integer between zero and one. 

𝑅2 (Alert value) is a value within [0,1], and Safe Threshold 

(ST) was a number ranging from 0.5 to 1.0. 𝑄 denotes a 

uniformly distributed arbitrary integer. 𝐿 signifies 𝑎1 × 𝑑 

matrix where every component is 1. Once it is 𝑅2 ≥ 𝑆𝑇, few 

sparrows have found the hunter, and each sparrow needs to 

fly rapidly to another safe area. If 𝑅2 < 𝑆𝑇, then no hunting 

individual is around, and the manufacturing individual 

arrives in the wide searching phase. 
 

For explorers, Rules 4 and 5 should be followed. From 

the abovementioned, some explorer keeps a tab on the most 

manufacturer. They leave their present position to contend for 

food once they learn that producers have recognized delicious 

food. Once they win, they could eat immediately; or else Rule 

5 will be applied.  

Updating location for the explorer can be determined 

based on the following equation. 𝑥𝑝 does either manufacturer 

occupies the optimum location. 𝑋𝑤𝑜𝑟𝑠𝑡 signifies the worst 

location. 𝐴 implies a 1 × 𝑑 matrixes that are arbitrarily 

allocated 1 or‐l to all the elements inside 𝐴+ = 𝐴𝑇(𝐴𝐴𝑇)−1. 

When 𝑖 >
𝑛

2
 then it specifies that 𝑖-𝑡ℎ probes with worst ft 

values are highly possible to be hungry. 
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𝑋𝑖,𝑖
𝑡+1 = {

𝑄 × exp (
𝑋𝑤𝑜𝑟𝑠𝑡

𝑡 − 𝑋𝑖𝑗
𝑡

𝑖2
) 𝑖𝑓 >

𝑛

2

𝑋𝑃
𝑡+1 + |𝑋𝑖,𝑗

𝑡 − 𝑋𝑃
𝑡+1| × 𝐴+ × 𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

     (9) 

 

Step 3 Afterward, position updating of the entire 

population, many sparrows are chosen as scouts (exploration) 

accountable for warning and identification. Usually, they 

make up 10 to 20% of the overall population. Position 

updating can be determined based on Rule 6 as follows: 

 

𝑋𝑖𝑗
𝑡+1 = {

𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝛽 × |𝑋𝑡 . −𝑋𝑏𝑒𝑠𝑡

𝑡 |𝑓𝑖 > 𝑓𝑔

𝑋𝑖𝑗
𝑡 + 𝐾 × (

|𝑥𝑖𝑗
𝑖 𝑓−𝑋𝑤𝑜𝑟𝑠𝑡

𝑡 |

(𝑓𝑖 − 𝑓𝑤) + 𝜀
)𝑓𝑖 = 𝑓𝑔

            (10) 

 

Now, 𝑋𝑏𝑒𝑠𝑡  indicates the present global optimum 

location. 𝜀 denotes a smaller constant for the avoidance of 

zero‐division error. 𝛽 denotes a control variable for step size 

and uniformly distributed random integer within [0, 1]. 𝑓𝑔 and 

𝑓𝑤 denotes the present best and worst fitness value, 

correspondingly. 𝐾 refers to a random integer ranging from 1 

to -1. 𝑓𝑖 indicates the present value of the sparrow. 𝑓𝑖 = 𝑓𝑔 

shows that sparrows among the populace are conscious of 

risk and must be approached by the rest. When 𝑓𝑖 > 𝑓𝑔 the 

individual is at the edge of the group. 𝑋𝑏𝑒𝑠𝑡  shows the central 

position of the population and was safer around it. 𝐾 signifies 

the direction in which the individual moves and the step size 

controlling aspect. 
 

Step 4: every individual’s present location is associated 

with the latter recurrence. The updating process can be 

completed when the novel location is more efficient than the 

preceding one and save the better location. The existence of 

a few sparrows might enhance the final two stages 

afterwards. 
 

Step 5 when the number of recurrences is lesser than the 

maximum number, go to step2. Or else the process ends, and 

a better solution is attained. Fig. 2 demonstrates the steps 

involved in SSA. 

3.3. Similarity Measurement: Manhattan Distance 

In the last phase, the IVPR-SSADTL technique applied 

the Manhattan distance based on resemblance measurement 

to recognize the places promptly. To provide QI, the factor 

vectors will be compared and extracted with all factor vectors 

in the IFD [24]. For Manhattan distance measuring and every 

factor vector, the adjacent 𝑁 candidate images were 

supplemented to the histogram of locations. Once the total 

querying vectors are considered, the output histogram is 

leveraged in deriving a list of 𝑁 high-ranking candidate 

images. The Manhattan distancing can be defined as the 

count of absolute variances among 2 vectors. In 2D space, the 

Manhattan distancing is defined as: 

 

𝑑 = |𝑝1 − 𝑞1| + |𝑝2 − 𝑞2|                                    (11) 

 

In order to n-dimensional space, the Manhattan 

distancing for 2 data points 𝑝𝑖  and 𝑞𝑖  is denoted in Eq. (11): 

Algorithm 1: Pseudocode of SSA 

Input: 

𝐺: Maximal amount of iterations 

𝑃𝐷: The count of producers 

𝑆𝐷: The agent counts (sparrows) warned of the danger 

R2: the alarming value 

𝑛: The count of agents 

Generate a populace of 𝑛 agents and define the crucial 

parameter. 

Output: Xbest, 𝑓𝑔.  

 While (𝑡 < 𝐺) 

 Ranking of the fitness value to define the present worst 

and finest individuals.  

 𝑅2 = 𝑟𝑎𝑛𝑑𝑜𝑚(1) 

 For 𝑖 in (1, 𝑃𝐷) 

 Upgrade the agent location based on Eq. (8); 

 Out of For 

 For 𝑖 in ((𝑃𝐷 + 1), 𝑛) 

 Upgrade the location of the agent based on Eq. (9); 

 Out of For 

 For 𝑇 in (1, 𝑆𝐷) 

 Upgrade the location of the agent based on Eq. (10); 

 Out of For 

 Acquire the new location; 

 if the novel location is more efficient than the previous 

one, then upgrade;  

 𝑡 = 𝑡 + 1 

 End While 

Return Xbest, 𝑓𝑔. 
 

 
Fig. 2 Steps involved in SSA 
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Fig. 3 Sample Image 

 

4. Results and Discussion 
The experimental validation of the IVPR-SSADTL 

algorithm is investigated under distinct performance 

measures. Fig. 3 depicts a few trial imageries. 

Table 1. Precision-recall investigation of IVPR-SSADTL system with 

current approaches under four datasets 

Recall (%) 

Precision (%) 

IVPR- 

SSADTL 
CoHOG 

AMOS 

Net 

Hybrid 

Net 

Dense 

VLAD 

Nordland Dataset 

0 100.00 100.00 100.00 100.00 100.00 

10 98.33 98.25 96.55 96.92 95.00 

20 98.33 98.25 96.55 93.85 95.00 

30 98.33 98.25 94.83 90.77 93.33 

40 96.67 96.25 87.93 90.77 91.67 

50 96.67 96.49 77.59 84.62 81.67 

60 91.67 94.74 63.79 75.38 66.67 

70 70.00 69.47 48.28 60.00 53.33 

80 46.67 33.68 32.76 40.00 36.67 

90 23.33 22.11 15.52 20.00 18.33 

100 0.00 0.00 0.00 0.00 0.00 

SPEDTest Dataset 

0 100.00 100.00 100.00 100.00 100.00 

10 98.28 98.25 98.28 96.92 96.67 

20 98.28 96.49 98.28 92.31 93.33 

30 96.49 94.83 94.83 89.23 91.67 

40 94.74 93.10 93.10 87.69 90.00 

50 94.74 82.76 82.76 81.54 80.00 

60 89.47 72.41 72.41 72.31 65.00 

70 82.46 53.45 53.45 55.38 50.00 

80 61.40 36.21 36.21 36.92 35.00 

90 31.58 17.24 17.24 18.46 18.33 

100 0.00 0.00 0.00 0.00 0.00 
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Synthia Night to Fall Dataset 

0 98.33 100.00 100.00 100.00 100.00 

10 98.33 98.25 98.28 96.55 96.67 

20 98.33 98.25 98.28 96.55 93.33 

30 98.33 98.25 94.83 94.83 91.67 

40 98.33 96.49 93.10 87.93 88.33 

50 98.33 94.74 82.76 81.03 78.33 

60 98.33 92.98 72.41 70.69 63.33 

70 96.67 85.96 53.45 53.45 48.33 

80 96.67 70.18 36.21 36.21 31.67 

90 91.67 36.84 17.24 17.24 15.00 

100 0.00 0.00 0.00 0.00 100.00 

Living Room Dataset 

0 100.00 100.00 100.00 100.00 100.00 

10 98.33 98.25 98.25 98.46 98.33 

20 98.33 98.25 96.49 98.46 98.33 

30 98.33 98.25 96.49 95.38 96.67 

40 98.33 96.49 91.23 90.77 90.00 

50 98.33 94.74 89.47 81.54 65.00 

60 96.67 92.98 78.95 66.15 50.00 

70 85.96 80.00 59.65 50.77 33.33 

80 70.18 53.33 40.35 32.31 16.67 

90 36.84 26.67 21.05 16.92 8.00 

100 0.00 0.00 0.00 0.00 0.00 

Table 1 and Fig. 4 report an overall precision-recall 

examination of the IVPR-SSADTL model with compared 

methods [25].  

The experimental outcomes inferred that the IVPR-

SSADTL technique had depicted improved results.  

For instance, with 𝑟𝑒𝑐𝑎𝑙 of 10%, the IVPR-SSADTL 

approach has given a higher 𝑝𝑟𝑒𝑐𝑛 of 98.33%, while the 

CoHOG, AMOSNet, HybridNet, and DenseVLAD models 

have attained lower 𝑝𝑟𝑒𝑐𝑛 of 98.25%, 96.55%, 96.92%, and 

95% respectively.  

Eventually, with 𝑟𝑒𝑐𝑎𝑙 of 40%, the IVPR-SSADTL 

technique has offered a higher 𝑝𝑟𝑒𝑐𝑛 of 96.67%, while the 

CoHOG, AMOSNet, HybridNet, and DenseVLAD 

techniques have acquired lower 𝑝𝑟𝑒𝑐𝑛 of 96.25%, 87.93%, 

90.77%, and 91.67% respectively.  

Meanwhile, with 𝑟𝑒𝑐𝑎𝑙  of 90%, the IVPR-SSADTL 

technique has presented a higher 𝑝𝑟𝑒𝑐𝑛 of 23.33%, while the 

CoHOG, AMOSNet, HybridNet, and DenseVLAD 

techniques have attained lower 𝑝𝑟𝑒𝑐𝑛 of 22.11%, 15.52%, 

20%, and 18.33% correspondingly. 

 
Fig. 4 Precision-recall analysis of IVPR-SSADTL system (a) Nordland Dataset, (b) SPEDTest Dataset, (c) Synthia Night to Fall Dataset, and (d) 

Living Room Dataset 
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Table 2. Recall rate analysis of IVPR-SSADTL system with existing 

approaches under four datasets 

N 

(steps) 

Recall Rate(%) 

IVPR-

SSADTL 

CoHO

G 

AMOS

Net 

Hybrid

Net 

DenseVL

AD 

Nordland Dataset 

0 0.00 0.00 0.00 61.54 0.00 

2 1.67 43.86 72.41 63.08 55.00 

4 91.67 70.18 77.59 78.46 63.33 

6 91.67 75.44 84.48 84.62 66.67 

8 95.00 78.95 87.93 87.69 73.33 

10 95.00 85.96 89.66 89.23 75.00 

12 96.67 87.72 94.83 92.31 75.00 

14 96.67 91.23 94.83 93.54 86.67 

16 98.33 92.98 96.55 95.38 91.67 

18 98.33 98.25 98.28 98.46 93.33 

20 100.00 100.00 100.00 100.00 95.00 

SPEDTest Dataset 

0 0.00 0.00 0.00 0.00 0.00 

2 1.67 52.63 72.41 23.08 41.67 

4 90.00 64.91 74.14 63.08 58.33 

6 91.67 68.42 79.31 80.00 71.67 

8 91.67 82.46 84.48 81.54 81.67 

10 93.33 87.72 87.93 86.15 83.33 

12 96.67 89.47 93.10 89.23 90.00 

14 96.67 92.98 94.83 90.77 91.67 

16 98.33 94.74 98.28 95.38 95.00 

18 100.00 98.25 98.28 98.46 96.67 

20 100.00 100.00 100.00 100.00 100.00 

Synthia Night to Fall Dataset 

0 0.00 0.00 0.00 0.00 0.00 

2 80.00 56.14 67.24 29.23 51.67 

4 86.67 66.67 72.41 56.92 68.33 

6 90.00 73.68 81.03 69.23 76.67 

8 91.67 77.19 82.76 75.38 80.00 

10 93.33 80.70 89.66 81.54 88.33 

12 95.00 84.21 93.10 86.15 90.00 

14 96.67 89.47 94.83 90.77 91.67 

16 98.33 92.98 96.55 93.85 95.00 

18 100.00 96.49 98.28 96.92 98.33 

20 100.00 100.00 100.00 100.00 100.00 

Living Room Dataset 

0 0.00 0.00 0.00 0.00 0.00 

2 93.33 52.63 1.72 16.92 65.00 

4 93.33 71.93 89.66 64.62 85.00 

6 95.00 87.72 89.66 80.00 86.67 

8 95.00 89.47 94.83 83.08 90.00 

10 96.67 91.23 94.83 87.69 93.33 

12 96.67 94.74 96.55 93.85 95.00 

14 98.33 96.49 96.55 95.38 96.67 

16 98.33 98.25 98.28 96.92 98.23 

18 100.00 98.36 98.28 98.46 98.23 

20 100.00 100.00 100.00 100.00 100.00 

 
Fig. 5 Recall rate analysis of IVPR-SSADTL system (a) Nordland Dataset, (b) SPEDTest Dataset, (c) Synthia Night to Fall Dataset, and (d) Living 

Room Dataset 
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Table 2 and Fig. 5 provide a comprehensive RR of the 

IVPR-SSADTL approach with recent models. The results 

signified that the IVPR-SSADTL model has resulted in 

increased values of RR. With the Norland dataset and 4 steps, 

the IVPR-SSADTL model has gained an improved RR value 

of 91.67% while the CoHOG, AMOSNet, HybridNet, and 

DenseVLAD models have obtained decreased RR values of 

70.18%, 77.59%, 78.46%, and 63.33% respectively. 

Concurrently, with the Norland dataset and 16 steps, the 

IVPR-SSADTL technique has achieved an improved RR 

value of 98.33%. At the same time, the CoHOG, AMOSNet, 

HybridNet, and DenseVLAD models have gained decreased 

RR values of 92.98%, 96.55%, 95.38%, and 91.67%, 

correspondingly.  Simultaneously, with the SPEDTest dataset 

and 4 steps, the IVPR-SSADTL techniques have gained an 

improved RR value of 90% while the CoHOG, AMOSNet, 

HybridNet, and DenseVLAD technique has gained decreased 

RR values of 64.91%, 74.41%, 23.08%, and 41.67% 

correspondingly.  Along with that, with the SPEDTest dataset 

and 10 steps, the IVPR-SSADTL technique has gained an 

improved RR value of 93.33%. In contrast, the CoHOG, 

AMOSNet, HybridNet, and DenseVLAD methods have 

gained decreased RR values of 87.72%, 87.93%, 86.15%, and 

83.33%, respectively. Finally, with the SPEDTest dataset and 

16 steps, the IVPR-SSADTL model has obtained an 

enhanced RR value of 98.33% while the CoHOG, 

AMOSNet, HybridNet, and DenseVLAD techniques have 

gained decreased RR values of 94.74%, 98.28%, 95.38%, and 

95% correspondingly.   

 

Fig. 6 exhibits a comparison study of the IVPR-SSADTL 

model with existing models on SPEDTest and Norldland 

datasets. On the SPEDTest dataset, the IVPR-SSADTL 

model has reached increased 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 94.48%, while the 

CoHOG, AMOSNet, HybridNet, and DenseVLAD models 

have resulted in reduced 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 47.90%, 91.41%, 

90.29%, and 84.83% respectively. Besides, on the Nordland 

dataset, the IVPR-SSADTL method has reached increased 

𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 76.42%, while the CoHOG, AMOSNet, 

HybridNet, and DenseVLAD techniques have resulted in 

reduced 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒  of 8.46%, 29.99%, 17.37%, and 12.96% 

correspondingly. 

Fig. 7 exhibits relative research of the IVPR-SSADTL 

approach with prevailing models on Living Room and 

Synthia datasets. On the Living Room dataset, the IVPR-

SSADTL approach has reached increased 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 

99.46%, while the CoHOG, AMOSNet, HybridNet, and 

DenseVLAD techniques have resulted in reduced 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 

of 85.27%, 99.90%, 96.97%, and 99.24% respectively.  

Similarly, on the Synthia dataset, the IVPR-SSADTL 

method has reached increased 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 99.19%, while the 

CoHOG, AMOSNet, HybridNet, and DenseVLAD 

techniques have resulted in reduced 𝐴𝑈𝐶𝑠𝑐𝑜𝑟𝑒 of 79.40%, 

88.93%, 91.35%, and 98.78% correspondingly. 

 
Fig. 6 𝐀𝐔𝐂𝐬𝐜𝐨𝐫𝐞 analysis of the IVPR-SSADTL system under SPEDTest 

and Norldland datasets 

 

 
Fig. 7 𝐀𝐔𝐂𝐬𝐜𝐨𝐫𝐞 analysis of IVPR-SSADTL system under Living Room 

and Synthia datasets 

5.Conclusion 
In this study, an automated IVPR-SSADTL technique is 

developed to recognise visual places. The presented IVPR-

SSADTL technique automatically recognizes the visual 

places effectively and accurately. It involves a three-phase 

process: feature extraction, hyperparameter tuning, and place 

recognition. At the beginning stage, the IVPR-SSADTL 

technique employs the MixNet model as a feature extractor 

with the SSA as a hyperparameter optimizer. At the same 

time, the IVPR-SSADTL technique applied the Manhattan 

distance-based resemblance measurement to identify the 

locations promptly. A wide range of simulations was 

performed to exhibit the enhanced performance of the IVPR-

SSADTL algorithm. A large-scale comparison study stated 

the improved accomplishment of the IVPR-SSADTL 

algorithm over other models. As a part of the future scope, 

the outcomes of the IVPR-SSADTL technique can be 

extended to hybrid DL models. 
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