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Abstract - Wireless Capsule Endoscopy (WCE) is one of the effective ways of investigating Gastrointestinal Tract (GI) diseases 

and implementing painless intestine imaging. Regardless, numerous concerns make its adaptation and extensive applicability 

challenges as tolerance, efficiency, performance, and safety. In addition, automatic investigation of the WCE information is 

more important for abnormality detection. Imaging a patient’s gastrointestinal tract through WCE generates large data that 

necessitates a special skill set from a medical practitioner and a substantial amount of time for analysis. Numerous vision and 

computer-aided -based solutions were introduced to overcome these challenges, yet, they do not offer the desired level of 

accuracy and further enhancement is still required. Therefore, this article presents an Automated Wireless Capsule Endoscopy 

Image Classification using Reptile Search Optimization with Deep Learning (WCEIC-RSADL) algorithm. The presented 

WCEIC-RSADL approach examines the WCE images using DL and hyperparameter tuning techniques. To achieve this, the 

presented WCEIC-RSADL technique involves bilateral filtering (BF) technique employed for the noise elimination process. 

Moreover, the presented WCEIC-RSADL technique enables the Inception v2 model for feature extraction purposes with RSA-

based hyperparameter tuning purposes. Furthermore, the extreme learning machine (ELM) method can be exploited for WCE 

image classification. In order to exhibit the enhanced achievement of the WCEIC-RSADL approach, an extensive range of 

simulations were executed on the WCE image dataset. The results pointed out that the WCEIC-RSADL algorithm reaches 

promising performance over other approaches. 

Keywords - Wireless capsule endoscopy, Deep learning, Image classification, Hyperparameter tuning, Reptile search algorithm. 

1. Introduction  
Wireless Capsule Endoscopy (WCE) may be denoted as 

a non-invasive approach leveraged for identifying 

irregularities in the GI tract [1]. It looks like a capsule having 

a length of 26 mm by 11 mm, containing a battery, illuminator, 

optical dome, RF transmitter, and image sensor [2]. In the 

evaluation, the patients swallowed WCE and transferred it 

over the diminutive intestine in a slow manner, and while 

moving, it considered images of the complete GI tract [3]. 

Decisively, such images were sent via a wireless technique to 

a data recording device for physicians to inspect the imageries 

later for detection.  Fifty thousand to sixty thousand images 

are captured while traveling over the GI tract [4]. The doctor 

should validate the 60,000 pictures to identify any 

abnormalities that exist in the GI tract; it reminded a dreary 

and time-utilizing technique [5]. Therefore, Computer-Aided 

Detection (CAD) techniques are modelled to overcome the 

recent practices.  

 

 

With the large quantity of images, it needs a considerable 

period for a doctor to scrutinize such images, which may be 

burdensome for the doctor and result in misdiagnosis of the 

infected area of the intestine [7]. Accordingly, detecting 

images with infected regions through several ML and 

statistical algorithms was an attractive research area in the last 

decade [8]. An automated detection mechanism executes 

analysis of the images on a large scale. It identifies the 

diseased frames, so it will be easier for the doctor to scrutinize 

only such frames that cover visual contents of the infected area 

and start suitable remedial action promptly [9]. ML 

approaches have shown important competence in doing 

automated tasks and hold the potential to make the medical 

field more accurate and advanced [10]. Several research 

scholar work on automated mechanisms for GI tract infection 

classification and GI infection detection utilizing artificial 

intelligence (AI) [11]. This study mainly focused on 

classifying GI tract infection (bleeding) images using the ML 

pattern. 
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This article presents an Automated Wireless Capsule 

Endoscopy Image Classification using Reptile Search 

Optimization with Deep Learning (WCEIC-RSADL) 

approach. The presented WCEIC-RSADL technique involves 

bilateral filtering (BF) technique employed for the noise 

elimination process. Moreover, the presented WCEIC-

RSADL technique enables the Inception v2 model for feature 

extraction purposes with RSA-based hyperparameter tuning 

purposes. Furthermore, the extreme learning machine (ELM) 

model was exploited for WCE image classification. In order 

to exhibit the enhanced achievement of the WCEIC-RSADL 

approach, an extensive range of simulations were executed on 

the WCE image dataset. 

2. Related Works 
Souaidi and El Ansari [12] presented a hybridized 

networking of an InceptionV4 structure-related Single-Shot 

Multibox Detector (Hyb-SSDNet) for finding smaller polyp 

areas in colonoscopy frames and WCE. Medical privacy 

concerns remain to be key blockades for acquiring WCE 

images. The author enlarged the trained data and inspected 

deep TL methods to fulfil the object recognition necessities. 

The Hyb-SSDNet structure adopted inception blocks to 

alleviate inherent limits of the convolution process for 

incorporating semantic information and contextual features 

into deep networks. The authors [14] presented the lesion 

attention-aware CNN method utilizing the self-attention 

system for the localization of the lesion sections in WCE 

imageries. The introduced novel lesion area estimating 

approach leverages ResNet-50 as a self-attention mechanism 

and convolutional stem that precisely incorporate spatial 

aspects in a global context for localising the lesion attention 

mappings in WCE imagery. In [15], a hybrid CNN was 

devised for abnormality recognition that derives a rich pool of 

useful attributes from WCE through various convolutional 

operations. A new meta-feature extracting system was 

presented in the third network for extracting paradigms from 

statistical data drawn over features produced from the second 

and first networks and their preceding layer. In [17], the author 

formulated CNN for independent recognition 

of colorectal polyps, and it is an enhanced version of ZF-Net 

that leverages integration of TL, data augmentation and 

preprocessing. The author further positioned CNN as a 

foundation for Faster RCNN for localizing locations of 

imagery comprising colorectal polyps.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Workflow of WCEIC-RSADL system 
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Biniaz et al. [18] introduced a new capsule video 

summarization structure for minimalizing WCE reviewing 

hours through factorizing investigation depending on sliding 

window Singular Value Decomposition (SVD). Adaptive 

sliding window SVD was employed for extracting the salient 

video frames. Souaidi and El Ansari [20] examine various 

structures of pre-trained CNN from scratch for the WCE polyp 

classifier task. The experimentations reliably prove that using 

a familiar DCNN structure called Inception V3 with suitable 

fine parameter tuning outperforms it. The last FC layer was 

linked to the SVM classifier to gain superior precision.  

3. The Proposed Model 
We have developed a WCEIC-RSADL method for WCE 

image categorization in this research. The introduced WCEIC-

RSADL approach mainly concentrated on categorising the 

WCE images using DL and hyperparameter tuning 

techniques. The WCEIC-RSADL technique comprises BF-

based preprocessing, Inception v2-based feature extraction, 

RSA-based parameter tuning, and ELM-based categorization. 

Fig. 1 determines the workflow of the WCEIC-RSADL 

model. 

3.1. Image Preprocessing 

Primarily, the introduced WCEIC-RSADL approach 

involves the BF technique employed for the noise elimination 

process. The BF changes the central pixels of every filter 

window with the weighted average of its neighboring colour 

pixel [21]. The weighted function has been intended to smooth 

the region of relating colors while keeping edges together with 

heavily weighted individual pixels that are either spatial close 

or photometrical compared with the central pixel. 

Demonstrated by || ⋅ ||2 the Euclidean norms and Fu the 

concerning central pixel. Then, the weighted 𝒲(Fu, Fv) 

corresponding to any pixels Fv as provided Fu states the 

product of two components, 1 spatial and 1 photometrical 

 

𝒲(Fu, Fv) = 𝒲𝑠(Fu, Fv)𝒲𝑝(Fu, Fv)                                     (1) 

 

but the spatial component 𝒲𝑠 (Fu, Fv) can be defined as 

follows: 

𝒲𝑠(Fu, Fv) = 𝑒
− 

||u−v||2
2

2𝜎𝒮
2

                                                (2) 

 

and the photometrical element 𝒲𝑝(Fu, Fv) is defined as 

follows: 

𝒲𝑝(Fu, Fv) = 𝑒
−

𝛥𝐸𝐿𝑎𝑏(Fu,Fv)2

2𝜎𝑝
2

                                             (3) 

 

where 𝛥𝐸𝐿𝑎𝑏 = [(𝛥𝐿∗)2 + (𝛥𝑎∗)2 + (𝛥𝑏∗)2]
1

2 determines 

perceptual colouring errors from 𝐿∗𝑎∗𝑏∗ colouring space, and 

𝜎𝑠, 𝜎𝑝 > 0. 

3.2. Inception-v2-based Feature Extraction 

In this study, the presented WCEIC-RSADL technique 

derived the Inception v2 model for feature extraction 

purposes. CNN was one approach of DL. The objective of the 

training model is to train the ANN to minimalize the error of 

predictive outcomes with the actual dataset [22]. The input 

layer was a vector of image datasets. The convolutional layer 

was a convolutional operation among two vectors. CNN 

comprises two phases. The initial phase is to group images 

through the feedforward method. The next phase leverages the 

BP technique. In this phase, before performing the classifier 

process, initially perform the cropping and wrapping 

approaches to concentrate on the object to be categorized. 

Next, training can be performed by using backpropagation and 

feedforward approaches. The CNN architecture is separated 

into two parts, the Fully-Connected and the Feature Extraction 

Layers. During Feature Extraction, the encoding process takes 

place, which converts the imagery into factors in the form of 

numbers. It comprises Pooling and Convolutional Layers. The 

convolution layer comprises neurons organized to form a filter 

with height (pixels) and length. A convolutional process is 

performed between the filter matrices and the input image 

matrix at this stage. Next, the convolution operation is 

performed, and the activation function is activated using the 

ReLU function.  
 

Inception is the expansion of the CNN technique. 

Inception was initially coined by Szegedy et al. in 2014 in the 

publication titled "Going Deeper with Convolutions". The 

inception model for the initial version was InceptionV1. 

InceptionV1 is used for analyzing the problem to be simpler 

such that it can be overcome or resolved. InceptionV2 is 

intended to overcome the deficiencies of InceptionV1. Hence 

the architecture of InceptionV2 is more efficient than before. 
 

Moreover, the inceptionV3 is much like the V2 inception 

to overcome the flaws of the prior inception. The InceptionV3 

architecture is a progression of GoogLeNet that has featured a 

7x7 convolutional layer and is separated into two or three, 

where layers 3x3 convolutional operation by increasing 

computation could receive images with 299x299 dimension. 

InceptionV2 and V3 have four components that are given in 

the following:  
 

• Change 5x5 to 3x3 convolutional layers.  

• Convolution factoring can be performed on the module.  

• The module is transformed to be broader so that 

convolution network complexity can decrease.  

• Minimized input size from 35x35 to 17x17. 

3.3. Hyperparameter Tuning 

The RSA technique is involved in this research for 

optimum parameter tuning procedure. RSA is a metaheuristic 

algorithm based on the natural hunting behavior of crocodiles 

[23]. The working of RSA consists of two stages: encircling 

and hunting phases. The RSA shift between various stages is 

executed by dividing the number of iterations into 4 parts and 

switching between the hunting search and encircling phases. 

The RSA initiates by the generation of a set of initial solution 
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candidates as: 

 

𝜒𝑗𝑘 = 𝑟𝑎𝑛𝑑 × (𝑈𝑏 − 𝐿𝑏) + 𝐿𝑏 𝑘 = 1,2, … 𝑛                      (4) 

 

Where 𝜒𝑗𝑘 =initialization matrix, 𝑗 = 1,2 ….P. 𝑛 

signifies dimensions (columns of the initial matrix) of the 

given optimization problem, and 𝑃 signifies population size 

(rows of initial matrix). 𝐿𝑏 , 𝑈𝑏, and rand represents the lower 

boundary, upper boundary, and random number. 

 

During this process, belly and high walking, which 

depends on crocodile movement, play a crucial role. This 

movement helps determine a wide search space but does not 

assist in catching the prey. 

 

𝜒𝑗𝑘(𝜏+1)=𝐵𝑒𝑠𝑡𝑘(𝜏) × (−𝜇(𝑗𝑘)(𝜏)) × 𝛽 − (𝑅(𝑗𝑘)(𝜏) × 𝑟𝑎𝑛𝑑), 𝜏

≤
𝑇

4
                                                               (5) 

 

𝑥𝑗𝑘(𝜏 + 1) = 𝐵𝑒𝑠𝑡𝑘(𝜏) × 𝜒(𝑟1,𝑘) × 𝐸𝑆(𝜏) ×  𝑟𝑎𝑛𝑑, 𝜏

≤ 2
𝑇

4
 𝑎𝑛𝑑 𝜏 >

𝑇

4
                                      (6) 

 

Where 𝐵𝑒𝑠𝑡𝑘(𝜏) denotes the best possible solution at 𝑘𝑡ℎ 

location, 𝑟𝑎𝑛𝑑 characterizes a random integer, 𝜏 indicates the 

existing number of iterations, and the maximal amount of 

iterations was characterized by T. 𝜇(𝑗,𝑘) represent the value of 

hunting operator of 𝑗𝑡ℎ solution at 𝑘𝑡ℎ location as: 

𝜇(𝑗,𝑘) = 𝐵𝑒𝑠𝑡𝑘(𝜏) × 𝑃(𝑗,𝑘)                                           (7) 

 

Where 𝛽 indicates a sensitivity parameter, which explains 

exploration accuracy. Another function called 𝑅(𝑗,𝑘), whose 

aim was to decrease search region, is evaluated by Eq. (8): 

𝑅(𝑗,𝑘) =
𝐵𝑒𝑠𝑡𝑘(𝜏) − 𝑃(𝑟2′𝑘)

𝐵𝑒𝑠𝑡𝑘(𝜏) + 𝑒
                                        (8) 

 

Where 𝑟1 indicates the value of the randomly generated 

number, which ranges from 1 to N. Now, 𝑁 signifies the 

overall amount of candidate solutions. 𝑧(𝑟1,𝑙) shows the 

randomly generated location for the 𝑘𝑡ℎ solution. Also, 𝑟2 

denotes a randomly generated value within [1, 𝑁], whereas 𝑒 

signifies a value of smaller magnitude. ES (𝜏), called 

Evolutionary Sense, was a probability-related ratio and is 

mathematically formulated by using Eq. (9): 

 

𝐸𝑆(𝜏) = 2 × 𝑟3 × (1 −
1

𝑇
)                                        (9) 

 

Where 𝑟3 signifies a random number. 𝑃(𝑗,𝑘) is evaluated by: 

 

𝑃(𝑗,𝑘) = 𝛼 +
𝜒(𝑗,𝑘)−𝑀(𝑥𝑗)

𝐵𝑒𝑠𝑡𝑘(𝜏)𝑥(𝑈𝑏(𝑘) − (𝐿𝑏(𝑘)) + 𝑒
             (10) 

 

In Eq. (10), 𝛼 denotes the sensitivity limit which controls 

the exploration accuracy 𝑀(𝜒𝑗) indicates the average position 

of 𝑗𝑡ℎ solution as: 

 

𝑀(𝜒
𝑗)=

1
𝑛

∑ 𝜒(𝑗,𝑘)

𝑛

𝑘=1

                                                  (11) 

The hunting stage, like the encircling stage, has two 

approaches, such as hunting cooperation and coordination. 

Also, based on the iteration hunting stage can be divided into 

2 portions. The hunting cooperation strategy is held from 𝜏 ≤

𝑇 and 𝜏 > 3
𝑇

4
, while the hunting coordination was held for 

iteration ranges from 𝜏 ≤ 3
𝑇

4
 and > 2

𝑇

4
. Stochastic coefficient 

is used to traverse the search space locally to produce the best 

possible solution. The exploitation stage can be given as 

follows: 

 

𝑥(𝑗, 𝑘)(𝜏 + 1) = 𝐵𝑒𝑠𝑡𝑘(𝜏) × (𝑃(𝑗,𝑘)(𝜏)) × 𝑟𝑎𝑛𝑑, 𝜏

≤ 3
𝑇

4
 𝑎𝑛𝑑 𝜏 > 2

𝑇

4
                                (12) 

 

𝑥(𝑗, 𝑘)(𝜏 + 1) = 𝐵𝑒𝑠𝑡𝑘(𝜏) − 𝜇(𝑗,𝑘)(𝜏) × 𝑒

− 𝑅(𝑗,𝑘)(𝜏) × 𝑟𝑎𝑛𝑑, 𝜏 ≤ 𝑇 𝑎𝑛𝑑 𝜏

> 3
𝑇

4
                 (13) 

 

Where 𝐵𝑒𝑠𝑡𝑘(𝜏) denotes the 𝑘𝑡ℎ location in the optimum 

solution at the present iteration. Likewise, 𝜇(𝑗,𝑘) characterizes 

the hunting operator that is evaluated using Eq. (7). 

 

The RSA system developed a Fitness Function (FF) for 

attaining greater categorizer outputs. It determined positive 

values for demonstrating the best candidate outcomes. In such 

a case, the minimized classifier error rate was treated that FF 

was expressed in Eq. (14).    

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔
∗ 100  (14) 

3.4. WCE Image Classification 

The ELM approach was utilised in the last phase of the 

WCE image classification process. ELM mapped input 

instances to their resultant labels with single feedforward 

hidden layer [24]. The input-weighted linking input and 

hidden nodes can be created arbitrarily and never upgraded. 

Fig. 2 showcases the infrastructure of ELM. The resultant 

weighted linking output and hidden nodes are commonly 

learned by resolving a linear least‐squares optimizer problem. 

Assume 𝑋 = [𝑥1; … ; 𝑥𝑖; … ; … 𝑥𝑚] ∈ ℜ𝑚×𝑛 be trained 

instance set and 𝑇𝜒 = [𝑡1
𝜒

; … ; 𝑡𝑖
𝜒

; … ; ×𝑚
𝜒

] ∈ ℜ𝔪×𝑑 be its 

labels with 𝑚 instances, whereas 𝑥𝑖 ∈ ℜ1×𝑛, 𝑡𝑖
𝜒

∈ ℜ1×𝑑. 

Provided testing instance set, 𝑦 = [𝑦1; … ; 𝑦𝑗; … ; 𝑦𝑠] ∈ ℜ𝑠×𝑛 
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with 𝑠 instances, the processes of ELM for predicting the 

desired labels, 𝑇𝑦 = [𝑡1
𝑦

; … ; 𝑡𝑗
𝑦

; … ; 𝑡𝑠
𝑦

] ∈ ℜ𝑠×𝑑 , are defined 

as: 
 

Step1: To provide a count of hidden layer nodes, 𝐿, input 

weighted, 𝑊 = [𝑤1, … , 𝑤1, … , 𝑤𝐿] ∈ ℜ𝑛×𝐿 whereas 𝑤1 ∈
ℜ𝑛×1, and the bias, 𝑏 = [𝑏1, … , 𝑏1, … , 𝑏𝐿] ∈ ℜ1×𝐿, are 

randomly generated.  

Step2: To give an activation function, 𝑔 (sigmoid activation 

function), conceded node matrices, 𝐻𝑟  was computed to train 

instances as: 

𝐻𝑟

= [
ℎ(𝑥1; 𝑤1, 𝑏1), ⋯ ℎ(𝑥1; 𝑤𝑙 , 𝑏𝑙) … ℎ(𝑥1; 𝑤𝐿 , 𝑏𝐿)

⋮ … ⋮ … ⋮
ℎ(𝑥𝔪; 𝑤1, 𝑏1), … ℎ(𝑥𝔪; 𝑤𝑙 , 𝑏𝑙) ⋯ ℎ(𝑥𝔪; 𝑤𝐿 , 𝑏𝐿)

]

∈ ℜ𝑚×𝐿                                                                                    (15) 

𝑤ℎ𝑒𝑟𝑒 ℎ(𝑥𝑖 ; 𝑤l, 𝑏l) = 𝑔(𝑥𝑖𝑤l + 𝑏𝑙  

 

Step3: If 𝐻𝑟  is non-singular, the resultant weighted matrix, 𝐵, 

was computed as 𝐵 = 𝐻𝑟
†𝑇𝜒, whereas 𝐻𝑟

† = (𝐻𝑟
𝑇𝐻𝑟)−1𝐻𝑟

𝑇  

refers to the Moore-Penrose generalizing inverse of 𝐻𝑟 . 
Step4: The hidden node matrix, 𝐻𝑒  was computed to test 

instances as: 

𝐻𝑒

= [
ℎ(𝑦1; 𝑤1, 𝑏1), ⋯ ℎ(𝑦1; 𝑤𝑙 , 𝑏𝑙) … ℎ(𝑦1; 𝑤𝐿 , 𝑏𝐿)

⋮ … ⋮ … ⋮
ℎ(𝑦𝔪; 𝑤1 , 𝑏1), … ℎ(𝑦𝔪; 𝑤𝑙 , 𝑏𝑙) ⋯ ℎ(𝑦𝔪; 𝑤𝐿 , 𝑏𝐿)

]

∈ ℜ𝑠×𝐿 ,                                                                                    (16) 

𝑤ℎ𝑒𝑟𝑒 ℎ(𝑦𝑗; 𝑤1, 𝑏1) = 𝑔(𝑦𝑗𝑤𝑙 + 𝑏𝑙) 

 

Step5: The desired matrix, 𝑇𝑦 was computed as 𝑇𝑦 = 𝐻𝑒𝐵. 

During this training procedure, ELM only computes the 

resultant weighted matrix, 𝐵, linking output and hidden nodes 

with a minimum‐squares approach. It proposes the benefits of 

rapid training speediness and better global searching 

capability. Additionally, the generalized efficiency of ELM 

was verified by Bartlett’s model. 

4. Results Analysis 
The experimental outcomes of the WCEIC-RSADL 

method can be investigated on the database, encompassing 

300 WCE images, as shown in Table 1. Fig. 3 depicts the trial 

imageries. 

Table 1. Details of dataset 

Class Name No. of Images 

Normal 150 

Infected 150 

Total Images 300 

 

The confusion matrix of the WCEIC-RSADL technique 

is given in Fig. 4. The outcomes identify that the WCEIC-

RSADL approach has correctly perceived the general and 

infected trials. For example, with 90% of TRP, the WCEIC-

RSADL approach has detected 130 normal instances and 135 

infected instances. In addition, with 10% of TSP, the WCEIC-

RSADL system has detected 16 normal instances and 13 

infected instances. Concurrently, with 80% of TSP, the 

WCEIC-RSADL method has detected 123 normal instances 

and 114 infected instances. Similarly, with 20% of TSP, the 

WCEIC-RSADL technique has detected 27 normal instances 

and 32 infected instances. 

Fig. 2 Structure of ELM 
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Fig. 3 Sample images  

 

Fig. 4 Confusion matrix of WCEIC-RSADL model (a-b) TRP/TSP of 

90:10 and (c-d) TRP/TSP of 80:20 

In Table 2, the outputs of the sWCEIC-RSADL model 

can be studied under 90:10 of TRP/TSP. Fig.5 depicts the 

categorization outcomes of the WCEIC-RSADL technique 

under 90% of TRP. The outcomes show that the WCEIC-

RSADL approach has precisely classified the normal and 

infected samples. In addition, it is noticed that the WCEIC-

RSADL technique obtains average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 98.14%, 𝑝𝑟𝑒𝑐𝑛 

of 98.18%, 𝑟𝑒𝑐𝑎𝑙 of 98.14%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.15%, and 𝐺𝑚𝑒𝑎𝑛  of 

98.13%. 

Fig. 6 depicts the categorization outcomes of the WCEIC-

RSADL approach under 10% of TSP. The results show that 

the WCEIC-RSADL method has accurately classified the 

normal and infected samples. In addition, it is noticed that the 

WCEIC-RSADL approach obtains average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 

96.43%, 𝑝𝑟𝑒𝑐𝑛 of 97.06%, 𝑟𝑒𝑐𝑎𝑙 of 96.43%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 

96.63%, and 𝐺𝑚𝑒𝑎𝑛  of 96.36%. 

In Table 3, the results of the WCEIC-RSADL technique 

can be studied under 80:20 of TRP/TSP. Fig. 7 denotes the 

categorization outcomes of the WCEIC-RSADL approach 

under 80% of TRP. The outputs show that the WCEIC-

RSADL model has accurately classified the normal and 

infected samples. Also, it is noted that the WCEIC-RSADL 

technique obtains average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 98.72%, 𝑝𝑟𝑒𝑐𝑛 of 

98.81%, 𝑟𝑒𝑐𝑎𝑙 of 98.72%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 98.75%, and 𝐺𝑚𝑒𝑎𝑛  of 

98.71%. 
 

Fig. 8 represents the classification outcomes of the 

WCEIC-RSADL system under 20% of TSP. The outputs show 

that the WCEIC-RSADL approach has classified the normal 

and infected samples precisely. Additionally, it is noted that 

the WCEIC-RSADL technique obtains average 𝑎𝑐𝑐𝑢𝑏𝑎𝑙 of 

98.48%, 𝑝𝑟𝑒𝑐𝑛 of 98.21%, 𝑟𝑒𝑐𝑎𝑙 of 98.48%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 

98.32%, and 𝐺𝑚𝑒𝑎𝑛  of 98.47%. 

Table 2. Classifier outcome of WCEIC-RSADL method on TRP/TSP of 

90:10 

Class 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏  𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 
G-

Mean 

Training Phase (90%) 

Normal 97.01 99.24 97.01 98.11 98.13 

Infected 99.26 97.12 99.26 98.18 98.13 

Average 98.14 98.18 98.14 98.15 98.13 

Testing Phase (10%) 

Normal 100.00 94.12 100.00 96.97 96.36 

Infected 92.86 100.00 92.86 96.30 96.36 

Average 96.43 97.06 96.43 96.63 96.36 

 

 
Fig. 5 Average outcome of the WCEIC-RSADL method on 90% of TRP  
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Fig. 6 Average outcome of WCEIC-RSADL approach on 10% of TSP  

Table 3. Classifier outcome of WCEIC-RSADL method on TRP/TSP of 

80:20 

Class 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏  𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 
G-

Mean 

Training Phase (80%) 

Normal 100.00 97.62 100.00 98.80 98.71 

Infected 97.44 100.00 97.44 98.70 98.71 

Average 98.72 98.81 98.72 98.75 98.71 

Testing Phase (20%) 

Normal 100.00 96.43 100.00 98.18 98.47 

Infected 96.97 100.00 96.97 98.46 98.47 

Average 98.48 98.21 98.48 98.32 98.47 

  

 

Fig. 7 Average outcome of WCEIC-RSADL approach on 80% of TRP  

 

Fig. 8 Average outcome of the WCEIC-RSADL method on 20% of TSP  

 
Fig. 9 TACY and VACY outcome of the WCEIC-RSADL method  

 

Fig. 10 TLOS and VLOS outcome of the WCEIC-RSADL method  

The TACY and VACY of the WCEIC-RSADL method 

are inspected on WCE achievement in Fig. 9. The outputs 

exhibited that the WCEIC-RSADL algorithm has enhanced 

achievement with improved TACY and VACY values. 

Notably, the WCEIC-RSADL approach has maximum TACY 

results. 
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Fig. 11 Precision-recall outcome of the WCEIC-RSADL method  

 

Fig. 12 ROC outcome of WCEIC-RSADL approach  

The TLOS and VLOS of the WCEIC-RSADL method are 

inspected on WCE achievement in Fig. 10. The outputs 

inferred that the WCEIC-RSADL algorithm had displayed 

superior accomplishment with minimal TLOS and VLOS 

values. Especially the WCEIC-RSADL approach has the least 

VLOS results. 

 

A clear precision-recall inspection of the WCEIC-

RSADL approach under the trial dataset is represented in Fig. 

11. The Fig. indicated that the WCEIC-RSADL approach has 

improved precision-recall values under each category 

labelling. 

 

A short ROC study of the WCEIC-RSADL algorithm 

under the trial dataset is shown in Fig. 12. The outputs selected 

by the WCEIC-RSADL approach have revealed their 

capability in categorizing discrete categories. 

 

Table 4 highlights the overall comparison study of the 

WCEIC-RSADL technique in terms of different measures. 

 

 

 

Table 4. Comparative analysis of the WCEIC-RSADL algorithm with 

other methods 

Methods 𝑨𝒄𝒄𝒖𝒃𝒂𝒍 𝑷𝒓𝒆𝒄𝒏  𝑹𝒆𝒄𝒂𝒍 𝑭𝒔𝒄𝒐𝒓𝒆 

WCEIC-RSADL 98.72 98.81 98.72 98.75 

RF 96.51 97.34 97.10 97.23 

ETC 93.36 93.72 93.46 92.80 

LR 87.46 90.50 88.49 88.36 

SVM 89.31 91.08 88.78 88.77 

DTC 90.60 92.57 91.62 91.06 

 

In Fig. 13, a relative results investigation of the WCEIC-

RSADL technique can be assessed in terms of 𝑎𝑐𝑐𝑢𝑦 and 

𝐹1𝑠𝑐𝑜𝑟𝑒 . The investigational values indicate that the WCEIC-

RSADL approach outcomes in an enhanced achievement over 

other approaches. For instance, based on 𝑎𝑐𝑐𝑢𝑦, the WCEIC-

RSADL technique gains increasing 𝑎𝑐𝑐𝑢𝑦 of 98.72%, 

whereas the SVM, LR, RF, ETC, and DTC approaches obtain 

reducing 𝑎𝑐𝑐𝑢𝑦 percentage of 96.51, 93.36, 87.46, 89.31, and 

90.60 subsequently.  

Meanwhile, depending on 𝐹1𝑠𝑐𝑜𝑟𝑒 , the WCEIC-RSADL 

technique gains increasing 𝐹1𝑠𝑐𝑜𝑟𝑒  of 98.75%, whereas the 

RF, ETC, LR, SVM, and DTC approaches obtain reducing 

𝐹1𝑠𝑐𝑜𝑟𝑒  of 97.23%, 92.80%, 88.36%, 88.77% and 91.06% 

appropriately. 

 

Fig. 13 𝑨𝒄𝒄𝒖𝒚 and 𝑭𝟏𝒔𝒄𝒐𝒓𝒆 analysis of the WCEIC-RSADL algorithm 

with other approaches 
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Fig. 14 𝑷𝒓𝒆𝒄𝒏 and 𝑹𝒆𝒄𝒂𝒍 analysis of the WCEIC-RSADL algorithm 

with other approaches 

 

In Fig. 14, a comparative results analysis of the WCEIC-

RSADL technique can be assessed in terms of 𝑝𝑟𝑒𝑐𝑛 and 

𝑟𝑒𝑐𝑎𝑙. The investigational values indicate that the WCEIC-

RSADL model's outcomes precipitated achievement over 

other models. For instance, based on 𝑝𝑟𝑒𝑐𝑛, the WCEIC-

RSADL technique gains increasing 𝑝𝑟𝑒𝑐𝑛 of 98.81%, whereas 

the RF, ETC, LR, SVM, and DTC approaches obtain reducing 

𝑝𝑟𝑒𝑐𝑛 of 97.34%, 93.72%, 90.50%, 91.08% and 92.57% 

respectively. 

In the meantime, based on 𝑟𝑒𝑐𝑎𝑙, the WCEIC-RSADL 

approach gains increasing 𝑟𝑒𝑐𝑎𝑙 of 98.72%, whereas the RF, 

ETC, LR, SVM, and DTC approaches obtain reducing 𝑟𝑒𝑐𝑎𝑙 

of 97.10%, 93.46%, 88.49%, 88.78% and 91.62% 

correspondingly. Such outcomes demonstrated the improved 

outcomes of the WCEIC-RSADL technique. 

5. Conclusion  
In this article, we have established a novel WCEIC-

RSADL approach for WCE image categorization. The 

introduced WCEIC-RSADL method mainly concentrated on 

categorising the WCE imageries using DL and 

hyperparameter tuning techniques. Primarily, the presented 

WCEIC-RSADL technique involves the BF technique 

employed for the noise elimination process. Moreover, the 

presented WCEIC-RSADL technique derived the Inception 

v2 model for feature extraction purposes with RSA-based 

hyperparameter tuning purposes. Furthermore, the ELM 

model is used for WCE image classification. In order to show 

the improved accomplishment of the WCEIC-RSADL 

approach, a series of duplications was achieved on the WCE 

image dataset. The simulation values highlighted that the 

WCEIC-RSADL method reaches promising performance over 

other models. In the future, the WCEIC-RSADL method's 

performance can be enhanced by hybrid metaheuristics. 
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