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 Abstract - Linear and geometrically nonlinear free and forced vibrations analysis by the multi-mode approach of 

continuous rectangular plates is performed by a semi-analytical method. The Rayleigh-Ritz method is used to calculate the 

linear frequency parameters and associated mode shapes. The line supports are modeled by distributions of translational 

springs contributing to the plate strain energy with a stiffness tending to infinity. The choice of the trial functions set presents 

the novelty of this work. Indeed, this set does not respect the intermediate lines but must only verify the plat boundary 

conditions. The linear results found are compared to those of previous work to verify the accuracy and reliability of the 

present formulation. On the other hand, Benamar's method is used to investigate the nonlinear vibrations of the studied 

plate. A code is performed for this work to use the lsqnonlin routine from Matlab software. This code solves the nonlinear 

algebraic system using the least squares method. The plotted backbone curves show that the hardening type of the studied 

plate admits a minimum function of the aspect ratio. The amplitude-dependent nonlinear mode shapes are plotted and 

discussed. The forced regime was investigated by concentrated and distributed harmonic excitation forces with several 

levels.    

Keywords - Rectangular plates, Intermediate lines, Nonlinear vibrations, Free and forced regime, Bending stress. 
 

1. Introduction 
 Buildings, bridges, airplanes, and marine engineering 

structures are examples of plates that can model with line 

supports, sometimes called continuous or multi-span plates. 

The analysis of the dynamic behavior of this type of plate 

aims to minimize the vibratory responses and optimize the 

distribution of stresses during external excitations due to 

machine movement,  vehicle circulations, etc. Moreover, in 

the absence of intermediate lines, the plates may undergo 

significant deformation resulting in structural failure. 

 

The linear vibrations of continuous plates were 

investigated by many theories since the early Holzer method 

of Veletsos and Newmark, [1] the semi-graphical approach 

treated by Ungar [2], the edge effect approach developed by 

Bolotin [3] and Moskalenko [4], the finite strip method used 

by Cheung [5], the modified Bolotin method employed by 

Elishakoff [6] and the receptance method studied by Azimi 

[7]. Moreover, the Rayleigh-Ritz method analyzed were 

used to analyze the linear vibration of the continuous plate 

by several researchers using different type of trial beam 

functions: Dickinson [8] used a set of one-dimensional 

orthogonal polynomial functions, Mizusawa [9] used the B-

spline functions, Wu and Cheung [10] used the multi-span 

vibrating beam functions, Liew and Lam [11] used a set of 

two-dimensional orthogonal polynomial functions, Kong 

and Cheung [12] combined this set of trial functions, 

Cheung and Kong [13] used the finite strip method and Zhou 

[14,15] proposed the single-span vibrating beam functions 

plus augmented polynomials as a set of beam functions. 

Several recent research pieces have investigated these 

plates' linear vibration with more complication. Zhou [16] 

treated the continuous Midline plates by the Rayleigh-Ritz 

method using static Timoshenko beam functions. Xiang 

[18] developed the discrete singular convolution method to 

analyze the plates with partial internal supports. C.F.Lü [19] 

studied the generally supported Kirchhoff plates by the 

state-space-based differential quadrature method. Rezaiguia 

[20,21] developed a new semi-analytical method to 

determine the natural frequencies and mode shapes of multi-

span bridge decks, and M. Huang [22] investigated the 

continuous plates with partial line support. Topal [23] 

optimized the frequency of laminated composite plates with 

different intermediate line supports. Tiangui and wang 

[24,50] used a modified Fourier solution for analyzed the 

vibrations of moderately thick laminated continuous plates. 

Rezaiguita et al. [26,27] analyzed continuous orthotropic 

bridge decks by a semi-analytic method. 

 

Despite a large amount of research already carried out 

on the continuous plates, it appears that the geometrically 

nonlinear vibration of continuous plates has not been 

investigated yet, to the best of the author's knowledge. 

 

On the other hand, Benamar's team has studied the 

nonlinear vibrations of plates, shells and beams numerically 

[29-39,51], using an iterative solution based on the Harwell 

NS01A library routine, which was programmed by the 

FORTRAN software. However, some works performed by 

this team [40-47] used approximate solutions for the 
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nonlinear vibration of structures. These approximate 

solutions, developed by El Kadiri and Benamar [30], are 

valid just for low amplitudes. 

 

The present work aims to study a three-span plate's 

geometrically nonlinear free and forced vibrations using a 

multi-mode approach without approximate solutions. First, 

the Rayleigh-Ritz method performed in the present work 

uses a new set of trial beam functions. In fact, these latter do 

not have to respect the intermediate lines; they have to verify 

the end conditions. These end conditions allow for finding a 

system of 4 equations and five unknowns. The nullity of the 

determinant of this system allows determining the beam 

frequency parameters to calculate and plot the trial beam 

functions. It should be mentioned that the chosen set of trial 

beam functions makes it easy to achieve a stable calculation 

and gives a rapid convergence for the vibration plate 

calculations. Secondly, the kinetic, the linear strain energy 

due to the bending, and the strain membrane energy due to 

the large amplitude are calculated, discretized, and derived. 

Hamilton's principle was applied to lead the nonlinear 

system governing the motion of the continuous plate. In this 

system, the contribution of the membrane energy is 

neglected for studying the linear vibrations. An accurate 

convergence study was carried out. The numerical results 

were obtained via eigenvalue, and the linear mode shapes 

were calculated and plotted. Thirdly, Benamar's method was 

applied to solve the nonlinear system. Residuals were 

calculated to verify the accuracy of the solution. The effect 

of the line supports and the aspect ratio on the fundamental 

nonlinear mode shapes was illustrated by the mode shapes 

and the backbone curves. In the forced nonlinear regime, 

both concentrated and distributed harmonic forces were 

treated end illustrated by nonlinear forced frequency 

response functions in the vicinity of the fundamental mode. 

The effects of the variation in excitation level and the aspect 

ratio of the studied plate were investigated and illustrated.  

 

2. General Formulation 
The three-span plate in one direction studied in the 

present work is shown in Figure 1. a, b  and H  are its 

length, width, and thickness, respectively. Its mechanical 

characteristics are Young's modulus E, Poisson's ratio ν (in 

all follows ν = 0.3), a mass density per unit area ρ, and a 

flexural rigidity D =
EH3

12(1−ν2)
. It is supported by two 

intermediate lines parallel to the y-direction at x1 =
a

4
 and 

x2 =
3a

4
.  

2.1. Trial Functions 

This work is based on the Rayleigh-Ritz in the linear 

vibration and Benamar's methods in the nonlinear case. The 

convergence and accuracy of these methods strongly depend 

on the good choice of the beam functions used. This section 

exposes the trial plate and beam functions used.    

As in the classical studies of plate vibrations, a current point 

M(x, y)  of the middle plane has a deflection W(x, y, t) 
dependent on space and time. This deflection is based on the 

assumptions of the separation of time and space and the 

harmonic motion:  

  

W(x, y, t) = w(x, y)sin(ωt)           (1) 

 

ω is the vibration frequency, and the space function w(x, y) 
is assumed to be expanded as a series of N basic functions 

wk(x, y) [29,30,51]:  

 

 w(x, y) = akwk(x, y)    k = 1. . N         (2) 

 

The repeat index indicates the usual summation 

convention ak is the basic function contribution coefficient 

of the kth trial plate function wk. This latter is assumed to 

be the product of the ith  beam function Xi(x)  in the x-

direction and the jth  beam function Yi(y)  in the y-

direction:  

 

wk(x, y) = Xi(x)Yj(y)     with     k = n(i − 1) + j  (3) 

 

In which Xi(x) and Yj(y) are the trial beam functions 

that have the same plate boundary conditions in the x-and y-

direction, respectively, they are expressed by [51]: 

 

Xi(x) = sin(ω̅x,ix) + Cx1 cos(ω̅x,ix) + Cx2 sinh(ω̅x,ix) + Cx3cosh(ω̅x,ix)    0 ≤ x ≤ a,    i = 1…m

Yj(y) = sin(ω̅y,jy) + Cy1cos(ω̅y,jy) + Cy2sinh(ω̅y,jy) + Cy3cosh(ω̅y,jy)    0 ≤ y ≤ b,    j = 1…n
              (4) 

 
Fig. 1 The three-span rectangular studied plate 
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Where ω̅x,i  and ω̅y,j  are the ith  and jth  the natural 

frequency of the beam in the x- and y-direction, 

respectively. They are determined using the end conditions 

by calculating the nullity of the determinant of the system 

due to the end conditions. This latter also makes it possible 

to calculate the integration constants  Cx1,Cx2, Cx3,Cy1, Cy2 

and Cy3. The novelty of the present work is that the beam 

functions should only verify the end conditions that are 

identical to the plate boundary conditions.  

 

Table 1. The first fourteen frequency parameters 𝝀 =
�̅�

𝝅
 of  S.S., SC and CC beams.   

 𝝀𝟏 𝝀𝟐 𝝀𝟑 𝝀𝟒 𝝀𝟓 𝝀𝟔 𝝀𝟕 𝝀𝟖 𝝀𝟗 𝝀𝟏𝟎 

SS 1.0000 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 

SC 1.2499 2.25 3.25 4.25 5.25 6.25 7.25 8.25 9.25 10.25 

CC 1.5056 2.50 3.50 4.50 5.50 6.50 7.50 8.50 9.50 10.50 
 

 

 

 

 
 

 
 

 

 

Fig. 2 The first six normalized mode shapes of S.S., SC and CC beam 
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The presence of line supports takes into account the 

energy calculation studied below. 

 

The number of the trial plate functions is N = n ×m, 

and m and n are the number of the beam functions in the 

x and y-direction, respectively. For illustration, the ten 

lowest frequency parameters λi =
ωi̅̅ ̅̅

π
  of S.S., SC and CC 

beam are listed in Table 1. Furthermore, the first six 

symmetrical and asymmetrical mode shapes of the same 

beams are plotted in Figure 2.    

 

Figure 2 shows that these beam functions do not consider 

any intermediate line inside the plate, and the slopes are zero 

at the clamped ends. The choice of beam functions, Xi(x) 
and Yj(y) It is quite easy since they do not have to verify 

the conditions imposed by the presence of intermediate lines 

but only to respect the appropriate end conditions. The zero 

deflection at the intermediate lines is guaranteed by the 

strain energy of the translational spring distributions, with 

the stiffness tending to infinity. 

 

2.2. Energies Study 

The plate kinetic energy 𝑇 is expressed as in [29-32,51]: 

 

 𝑇 =
1

2
𝜌𝐻 ∫

𝑆
(
∂𝑊

∂𝑡
)
2

𝑑𝑆                (5) 

 

The strain energy 𝑉𝑏 due to the bending is given by [51]:  

 

𝑉𝑏 =
𝐷

2
∫
𝑆
(
∂2𝑊

∂𝑥2
+

∂2𝑊

∂𝑦2
)
2

+ 2(1 − 𝜈) ((
∂2𝑊

∂𝑥 ∂𝑦
)
2

−

∂2𝑊

∂𝑥2

∂2𝑊

∂𝑦2
) 𝑑𝑆                           (6) 

 

 

The membrane strain energy 𝑉𝑚 , induced by the large 

vibration amplitudes is expressed: [51] 

 

 𝑉𝑚 =
3𝐷

2𝐻2
∫
𝑆
[(
∂𝑊

∂𝑥
)
2

+ (
∂𝑊

∂𝑦
)
2

]
2

𝑑𝑆        (7) 

 

The two-line supports are modeled by fictitious translational 

spring distributions with infinite rigidity 𝐾𝑦  in order to 

eliminate the transversal displacement at each point of these 

lines. Practically, the rigidity of the above spring 

distributions takes a very great value   (1010). Hence, the 

strain energy stored by the intermediate lines 𝑉𝐿  is 

expressed by:  

 𝑉𝐿 =
1

2
∑2𝑖=1 ∫

𝑏

0
𝐾𝑦(W(𝑥𝑖 , 𝑦))

2
𝑑𝑦      (8) 

 

The total plate strain energy 𝑉  is the sum of the above 

strain energies:  

 𝑉 = 𝑉𝑏 + 𝑉𝐿 + 𝑉𝑚                  (9) 

 

By replacing Equation 2 in Equations 5 to 8, the 

discretization of the above energies is found and expressed 

by:  

𝑇 =
1

2
𝜔2𝑎𝑖𝑎𝑗𝑚𝑖𝑗cos

2(𝜔𝑡)

𝑉𝑏 =
1

2
𝑎𝑖𝑎𝑗𝑘𝑖𝑗

𝑏 sin2(𝜔𝑡)

𝑉𝑚 =
1

2
𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏𝑖𝑗𝑘𝑙sin

4(𝜔𝑡)

𝑉𝐿 =
1

2
𝑎𝑖𝑎𝑗𝑘𝑖𝑗

𝐿 sin2(𝜔𝑡)

            (10) 

In which 𝑚𝑖𝑗  , 𝑘𝑖𝑗
𝑏 , 𝑏𝑖𝑗𝑘𝑙  are the general term of the 

mass, the linear rigidity and the nonlinear rigidity tensors, 

respectively. 𝑘𝑖𝑗
𝐿  is the general term of the rigidity tensor 

associated with the energy stored in the intermediate lines 

supposed to be elastic. These tensors are expressed by:  

 

𝑚𝑖𝑗 = 𝜌𝐻 ∫𝑆 𝑤𝑖𝑤𝑗𝑑𝑆

𝑘𝑖𝑗
𝑏 = 𝐷 ∫

𝑆
(
∂2𝑤𝑖

∂𝑥2
+

∂2𝑤𝑖

∂𝑦2
) (

∂2𝑤𝑗

∂𝑥2
+

∂2𝑤𝑗

∂𝑦2
) + 2(1 − 𝜈) (

∂2𝑤𝑖

∂𝑥 ∂𝑦

∂2𝑤𝑗

∂𝑥 ∂𝑦
−

∂2𝑤𝑖

∂𝑥2

∂2𝑤𝑗

∂𝑦2
) 𝑑𝑆

𝑏𝑖𝑗𝑘𝑙 =
3𝐷

𝐻2
∫
𝑆
(
∂𝑤𝑖

∂𝑥

∂𝑤𝑗

∂𝑥
+

∂𝑤𝑖

∂𝑦

∂𝑤𝑗

∂𝑦
) (

∂𝑤𝑘

∂𝑥

∂𝑤𝑙

∂𝑥
+

∂𝑤𝑘

∂𝑦

∂𝑤𝑙

∂𝑦
) 𝑑𝑆

𝑘𝑖𝑗
𝐿 = ∑2𝑖=1 ∫

𝑏

0
(𝐾𝑦𝑤𝑖𝑤𝑗)𝑥=𝑥𝑖

𝑑𝑦

  (11) 

 
 

one puts 𝑘𝑖𝑗  the general term of the plate linear rigidity 

tensor, which is the sum of the general terms of the rigidity 

tensor due to the bending and the tensor of the strain energy 

stored in the line supports:  
 

 𝑘𝑖𝑗 = 𝑘𝑖𝑗
𝑏 + 𝑘𝑖𝑗

𝐿                            (12) 

 

The vibration problem is governed by Hamilton's principle 

[51]:  

 𝛿 ∫
2𝜋

𝜔
0
(𝑉 − 𝑇)𝑑𝑡 = 0                 (13) 

 

As mentioned above, 𝑉 and 𝑇 are the total strain and 

kinetic energies of the studied plate. That leads to a 

nonlinear system, written in a matrix form as [29,30,51].  

2[𝐾]{𝐴} + 3[𝐵{𝐴}]{𝐴} − 2𝜔2[𝑀]{𝐴} = {0}     (14) 

 

Where {𝐴} = {𝑎1  𝑎2 . . . 𝑎𝑁}
𝑇 the column vector of the 

basic function contribution coefficients is[𝑀],[𝐾] [𝐵{𝐴}] 
are the matrices associated with the tensors defined above. 

Equation 14 depends implicitly on the geometrical and 

mechanical plate characteristics and leads to not very 

exploitable results. In order to make the results more 

general, a dimensionless formulation is necessary. To write 

Equation 14 in a dimensionless form, the above tensors and 

the other parameters of this study must be replaced by their 

corresponding dimensionless form denoted by * in the 

exponent and defined by: 
 

𝑥

𝑥∗
= 𝑎,        

𝑦

𝑦∗
= 𝑏,        

𝑤

ℎ∗
= 𝐻,                 

𝐾𝑦

𝐾𝑦
∗
=
𝐷

𝑎3
,     
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𝑚𝑖𝑗

𝑚𝑖𝑗
∗ = 𝑎𝑏𝜌ℎ

3 ,       
𝑘𝑖𝑗
𝑏

𝑘𝑖𝑗
∗𝑏 =

𝑏𝐻2𝐷

𝑎3
,         

𝑘𝑖𝑗
𝐿

𝑘𝑖𝑗
∗𝐿 =

𝑏𝐻2𝐷

𝑎3
,        

𝑏𝑖𝑗𝑘𝑙

𝑏𝑖𝑗𝑘𝑙
∗ =

𝑏𝐻2𝐷

𝑎3
                              (15) 

 

The dimensionless parameters defined in Equation 15 lead 

to the main parameter to be found in this study which is the 

dimensionless frequency parameter Ω such as:  

 

 Ω2 = 𝑎4
𝜌𝐻

𝐷
𝜔2                    (16) 

 

By replacing Equation 15 in Equation 14, one obtains the 

dimensionless motion equation of the transverse vibrations 

of the plate with line supports: 

  

2[𝐾∗]{𝐴} + 3[𝐵∗{𝐴}]{𝐴} − 2Ω2[𝑀∗]{𝐴} = {0} (17) 

 

[𝑀∗] is the dimensionless mass matrix, its general term is 

defined by: 

 

 𝑚𝑖𝑗
∗ = ∫

𝑆∗
𝑤𝑖
∗. 𝑤𝑗

∗𝑑𝑆∗              (18) 

 

in which 𝑆∗ = 𝑥∗ × 𝑦∗  is the dimensionless plate area 

[0,1] × [0,1], and 𝑑𝑆∗ = 𝑑𝑥∗ × 𝑑𝑦∗ is the dimensionless 

elementary area. 

 

[𝐾∗] = [𝐾∗]𝑏 + [𝐾∗]𝐿  is the dimensionless linear rigidity 

matrix, in which [𝐾∗]𝑏 is the dimensionless rigidity matrix 

due to the bending. Its general term is defined by: 

   

 

𝑘𝑖𝑗
∗𝑏 = ∫

𝑆∗
∂2𝑤𝑖

∗

∂𝑥∗2

∂2𝑤𝑗
∗

∂𝑥∗2
+ 𝛼2 (

∂2𝑤𝑖
∗

∂𝑥∗2

∂2𝑤𝑗
∗

∂𝑦∗2
+

∂2𝑤𝑖
∗

∂𝑦∗2

∂2𝑤𝑗
∗

∂𝑥∗2
) + 𝛼4

∂2𝑤𝑖
∗

∂𝑦∗2

∂2𝑤𝑗
∗

∂𝑦∗2
+ 2(1 − 𝜈)𝛼2 (

∂2𝑤𝑖
∗

∂𝑥∗ ∂𝑦∗

∂2𝑤𝑗
∗

∂𝑥∗ ∂𝑦∗
−

∂2𝑤𝑖
∗

∂𝑥∗2

∂2𝑤𝑗
∗

∂𝑦∗2
)𝑑𝑥∗𝑑𝑦∗ (19)

  

 

 

 
 

 

 

 
Fig. 3 Convergence study of a continuous CCSS studied plate: (a) studding the six lowest frequency parameters 𝛀𝐢 for 𝛂 = 𝟒, (b) studding the 

first frequency parameters for several values of the aspect ratio 𝛂 = 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟏, 𝟐, 𝟒. 
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where 𝛼 =
𝑎

𝑏
 is the plate aspect ratio and [𝐾∗]𝐿 is the 

dimensionless rigidity matrix associated with the strain 

energy stored in the fictitious translational spring 

distributions which model the line supports. Its general term 

is defined by:  

𝑘𝑖𝑗
∗𝐿 = ∫

1

0
𝐾𝑦
∗(𝑤𝑖

∗(𝑥1, 𝑦
∗)𝑤𝑗

∗(𝑥1, 𝑦
∗))𝑑𝑦∗ +

   ∫
1

0
𝐾𝑦
∗(𝑤𝑖

∗(𝑥2, 𝑦
∗)𝑤𝑗

∗(𝑥2, 𝑦
∗))𝑑𝑦∗      (20) 

 

Equation 17 presents the motion equation of the nonlinear 

vibration problem, which must be solved numerically. Its 

solution yields the frequency parameters Ω𝑘  expressed in 

Equation 16, as well as the mode shapes 𝑤𝑘  described in 

Equation 2 for 𝑘 = 1 to  𝑁. 

 

3. Results Validation for Linear Vibration 
In the linear analysis performed first, the fourth-order 

tensor [𝐵∗] Equation 17 is neglected; one gets the classical 

eigenvalue problem:  

 2[𝐾∗]{𝐴} − 2Ω2[𝑀∗]{𝐴} = {0}         (21) 

 

Equation 21 has been solved numerically using a 

Matlab software code performed for the present work. This 

code analyses the effects of the number and locations of the 

line supports as well as the aspect ratio 𝛼 =
𝑎

𝑏
 of the 

continuous plate on the frequency parameters and mode 

shapes. A clamped (C) and simply-supported (S) are the 

boundary conditions considered for the three-span 

rectangular studied plates.  

 

The boundary conditions of the plates in the present 

article are designed by four capital letters, the first two 

letters designate the edges 𝑥 = 0 and 𝑥 = 𝑎, and the last 

two letters designate the edges 𝑦 = 0  and 𝑦 = 𝑏 . The 

values of the linear frequency parameters Ω  for the six 

lowest vibration modes are calculated and compared to 

those available in the literature. 

 

3.1. Convergence study 

The convergence of the solution based on the proposed 

Rayleigh-Ritz formulation, expressed by Equation 21, is 

carried out for a three-span CCSS rectangular plate, having 

an aspect ratio 𝛼 = 4 and two intermediate lines at 𝑋1 =
0.25  and 𝑥2 = 0.75 . Considering the simply supported 

edges in the y-direction and for uniformity of computation 

with the results taken as reference, two trial beam functions 

are used in this direction. The relative differences, 

denoted Δ𝑖%, between the six lowest frequency parameters 

Ω𝑖 = 𝑏
2√

𝜌𝐻

𝐷
𝜔𝑖  found in the present work, and the six 

frequency parameters taken as references Ω𝑟𝑒𝑓𝑖 , are defined 

by:  

Δ𝑖% =
Ω𝑖−Ω𝑟𝑒𝑓𝑖

Ω𝑟𝑒𝑓𝑖

× 100    𝑖 =    1  𝑡𝑜  6       (22) 

It is well known that the Raileigh-Ritz method gives upper 

bounds to the exact results, so the frequency parameters 

given by Zhou [16] are taken as references Ω𝑟𝑒𝑓𝑖  because 

they are the small results in the bibliography found by the 

R.R.M.  

The convergence study of the six lowest frequency 

parameters is shown in Figure (3. a). This latter Figure gives 

the curves of the relative differences Δi  versus m the 

number of the trial beam functions in the x-direction varies 

from 7 to 20. From m = 13, some present results are lower 

than the reference and, therefore Δi becomes negative, i.e., 

the present results are more accurate than those given in the 

bibliography. The value m = 16 seems to be optimal since 

the relative differences Δi remains less than 0.7% for the 

first six frequency parameters. The convergence study of the 

first frequency parameters for several values of the aspect 

ratio α is performed using Figure 3. b. The Figures for the 

other six lowest frequency parameters are very similar to 

Figure (3. b); they are omitted for brevity. One can be 

concluded that the convergence study is insensitive to the 

aspect ratio. For m = 16  trial beam functions in the x-

direction and n = 2 trial beam functions in the y-direction, 

the coefficient contributions ak, listed in Table 2, show that, 

as may be expected, the only significant contributions are 

those corresponding to height symmetric functions in the x-

direction and one S.S. beam function in the y-direction. A 

second calculation was made with 8 symmetric plate 

functions corresponding to m = 8  symmetric CC beam 

functions in the x-direction and one S.S. beam function in 

the y-direction(n = 1). The numerical results presented in 

Table 3 prove that neglecting the antisymmetric modes leads 

to the same results listed in Table 2.  

3.2 Numerical Validation 

 A computer program performed for this work using 

MATLAB software calculates the linear frequency 

parameters expressed in Equation 21 and plots the 

normalized mode shape defined in Equation 2. To verify the 

validity and precision of the present analysis, the three-span 

rectangular plate displayed in Figure 1 is examined for two 

plates with three boundary conditions SSSS, CSSS and 

CCSS. The first plate, noted plate (1), has an aspect ratio 

α = 4 and the two intermediate lines located at x1 = 0.25 

and x2 = 0.75. The second plate, noted plate (2), has an 

aspect ratio α = 3, and the two intermediate lines located at 

x1 = 1/3  and x2 = 2/3 . Table 4 lists the first six 

frequency parameters Ωk = ωk. (
a

α
)
2

√ρ. H/D for the two 

plates. For uniformity of computation, the symmetric and 

asymmetric modes were used in the x-direction, which leads 

to the use of 16 trial beam functions in this direction and two 

beam functions in the y-direction. The results of plate (1) are 

compared to those found using the Rayleigh-Ritz method 

and given by Zhou, [15] Kim, [8] Liew [11] and Mizusawa 

[9]; it also compared to the resultants given by Wu [10] 

using the finite strip method. The most accurate results in 

Table 4 are those found by Zhou [16], thanks to its small 

values. Zhou [16] has developed static solutions of a point-

supported beam under a series of sine loads as a set of 

admissible functions. The comparison with these latter 

results shows that (1) some present results are smaller than 

that of Ref [16]. (2) the difference percentages remain less 

than 0.67% for the six frequency parameters and the three 

boundary conditions considered.
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Table 2. The contribution coefficient 𝒂𝒌 = 𝒂𝒊𝐣 of the first ten modes of the continuous CCSS plate type (a), 𝜶 = 𝟒. 𝒎 = 𝟏𝟔, 𝒏 = 𝟐 

i j Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 

10 1 1 8,70E-

01 

3,16E-

03 

-2,03E-

01 

1,03E-

02 

-2,46E-

01 

-8,51E-

10 

7,31E-

12 
1,68E-03 -1,62E-

10 

-3,48E-

11 2 1 -4,35E-

03 

4,54E-

01 

5,71E-

02 

5,90E-

01 

-1,27E-

02 

7,04E-

12 

2,63E-

10 
1,66E-01 -1,63E-

10 

-5,39E-

10 3 1 -4,91E-

01 

3,74E-

03 

-4,34E-

01 

1,67E-

02 

-4,55E-

01 

4,19E-

10 

1,43E-

11 
1,74E-03 -3,78E-

10 

-6,82E-

11 4 1 -9,55E-

04 

-8,87E-

01 

2,44E-

02 

3,67E-

01 

-9,97E-

03 

1,35E-

12 

-6,93E-

10 
6,58E-02 -7,07E-

11 

-3,07E-

10 5 1 3,38E-

02 

7,97E-

03 

-8,49E-

01 

9,63E-

02 

4,58E-

01 

-3,11E-

11 

1,83E-

11 
-1,36E-04 -5,22E-

10 

-1,43E-

10 6 1 -1,34E-

03 

7,88E-

02 

6,61E-

02 

7,03E-

01 

-3,27E-

02 

4,90E-

12 

1,77E-

10 
-3,12E-01 6,15E-

10 

-2,57E-

10 7 1 3,27E-

02 

2,28E-

03 

-1,97E-

01 

4,01E-

03 

-7,17E-

01 

-9,14E-

11 

-2,48E-

12 
2,69E-02 -2,70E-

10 

-6,57E-

11 8 1 -6,80E-

04 

5,76E-

03 

1,35E-

02 

9,60E-

02 

9,26E-

03 

2,19E-

12 

-2,39E-

10 
9,24E-01 -1,41E-

09 

-6,63E-

10 9 1 -7,40E-

04 

2,32E-

05 

-2,42E-

04 

-5,00E-

04 

2,95E-

03 

6,94E-

13 

2,07E-

13 
-1,70E-03 2,02E-

12 

1,81E-

12 10 1 -5,28E-

04 

-2,00E-

02 

3,58E-

04 

-4,30E-

02 

1,13E-

02 

3,31E-

12 

7,23E-

11 
-7,36E-02 1,44E-

10 

1,29E-

10 11 1 -7,05E-

03 

-1,15E-

03 

1,12E-

02 

-7,32E-

03 

4,68E-

02 

7,51E-

12 

3,07E-

12 
-2,76E-02 4,80E-

11 

2,81E-

11 12 1 -1,42E-

03 

-5,78E-

03 

1,51E-

02 

1,09E-

02 

2,24E-

02 

4,17E-

12 

-3,86E-

12 
3,20E-02 -1,76E-

11 

-2,48E-

11 13 1 3,79E-

03 

5,82E-

04 

-3,14E-

02 

-2,46E-

02 

-4,75E-

02 

-8,31E-

12 

1,67E-

11 
-6,18E-02 4,23E-

11 

6,15E-

11 14 1 -3,30E-

03 

8,95E-

03 

4,60E-

03 

2,64E-

02 

2,12E-

02 

5,42E-

12 

-1,37E-

11 
6,61E-02 -8,86E-

11 

-6,43E-

11 15 1 4,42E-

03 

-1,63E-

03 

-2,21E-

02 

-1,65E-

02 

-3,80E-

02 

-7,22E-

12 

1,08E-

11 
-2,72E-02 1,19E-

11 

3,33E-

11 16 1 -3,26E-

03 

4,74E-

03 

9,89E-

03 

1,93E-

02 

2,01E-

02 

4,90E-

12 

-9,58E-

12 
3,14E-02 -3,29E-

11 

-3,81E-

11 1 2 -8,33E-

10 

-1,24E-

12 

1,68E-

10 

-7,06E-

12 

2,01E-

10 

-8,83E-

01 

8,12E-

03 
-3,52E-10 -2,07E-

01 

-4,31E-

02 2 2 6,09E-

12 

-3,44E-

10 

-4,09E-

11 

-4,26E-

10 

7,67E-

12 

8,58E-

03 

4,60E-

01 
-7,49E-11 1,53E-

01 

-5,85E-

01 3 2 4,53E-

10 

-2,10E-

12 

3,18E-

10 

-1,40E-

11 

2,55E-

10 

4,63E-

01 

1,56E-

02 
-8,45E-10 -5,05E-

01 

-8,87E-

02 4 2 1,61E-

12 

6,58E-

10 

-1,79E-

11 

-2,61E-

10 

7,08E-

12 

2,89E-

03 

-8,84E-

01 
-4,27E-10 5,55E-

02 

-3,64E-

01 5 2 -3,30E-

11 

-6,34E-

12 

5,89E-

10 

-6,57E-

11 

-2,01E-

10 

-4,50E-

02 

2,57E-

02 
-1,29E-09 -7,48E-

01 

-2,11E-

01 6 2 -3,38E-

14 

-5,43E-

11 

-4,70E-

11 

-4,89E-

10 

2,08E-

11 

3,03E-

03 

6,59E-

02 
-3,20E-11 1,60E-

01 

-6,64E-

01 7 2 -3,72E-

11 

-1,60E-

12 

1,66E-

10 

-6,15E-

12 

4,03E-

10 

-5,03E-

02 

1,04E-

02 
-4,92E-10 -2,84E-

01 

-5,49E-

02 8 2 1,20E-

13 

-8,74E-

13 

-1,08E-

11 

-8,74E-

11 

-2,99E-

12 

1,72E-

03 

-2,44E-

03 
-3,96E-10 4,08E-

02 

-1,40E-

01 9 2 1,95E-

12 

-3,37E-

13 

2,33E-

12 

-6,43E-

14 

-1,97E-

12 

1,96E-

03 

2,68E-

04 
-5,34E-12 -4,20E-

03 

7,62E-

04 10 2 -1,36E-

12 

2,41E-

11 

-1,04E-

12 

3,01E-

11 

-6,74E-

12 

1,54E-

03 

-3,51E-

02 
4,28E-11 3,02E-

04 

3,53E-

02 11 2 1,24E-

11 

2,21E-

12 

-3,98E-

12 

7,09E-

12 

-3,04E-

11 

1,29E-

02 

-1,37E-

03 
2,09E-11 4,82E-

04 

1,63E-

02 12 2 2,46E-

12 

6,17E-

12 

-8,64E-

12 

-9,84E-

12 

-1,25E-

11 

4,04E-

03 

-1,03E-

02 
1,22E-11 2,59E-

02 

-2,16E-

02 13 2 -5,82E-

12 

1,23E-

12 

2,82E-

11 

1,71E-

11 

3,37E-

11 

-9,11E-

03 

2,97E-

03 
-6,09E-11 -6,78E-

02 

3,36E-

02 14 2 4,74E-

12 

-9,58E-

12 

-2,74E-

12 

-2,82E-

11 

-1,29E-

11 

7,12E-

03 

1,50E-

02 
-2,76E-11 1,76E-

02 

-4,75E-

02 15 2 -8,15E-

12 

3,37E-

12 

2,26E-

11 

1,44E-

11 

3,02E-

11 

-1,08E-

02 

-2,86E-

03 
-5,10E-11 -4,83E-

02 

2,30E-

02 16 2 5,31E-

12 

-6,07E-

12 

-6,62E-

12 

-1,89E-

11 

-1,40E-

11 

6,86E-

03 

8,25E-

03 
0,00E+00 2,08E-

02 

-3,07E-

02  

Table 3. The contribution coefficient 𝐚𝐤 = 𝐚𝐢𝐣 of the modes of the continuous CCSS studied plate, 𝛂 = 𝟒. 𝐦 = 𝟖, 𝐧 = 𝟏.   

𝒂𝒊𝒋 Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 

𝒂𝟏𝟏 8,68E-01 1,96E-01 -2,44E-01 1,80E-01 6,96E-02 -6,44E-02 1,70E-01 -2,80E-01 

𝒂𝟐𝟏 -4,95E-01 4,15E-01 -4,48E-01 2,98E-01 1,10E-01 -1,03E-01 2,70E-01 -4,45E-01 

𝒂𝟑𝟏 3,31E-02 8,67E-01 4,35E-01 -1,14E-01 -5,60E-02 3,87E-02 -1,04E-01 1,72E-01 

𝒂𝟒𝟏 3,22E-02 1,92E-01 -7,39E-01 -3,69E-01 -1,55E-01 9,95E-02 -2,57E-01 4,24E-01 

𝒂𝟓𝟏 -7,59E-04 2,37E-04 3,08E-03 -2,63E-02 6,08E-03 9,77E-01 1,13E-01 -1,76E-01 

𝒂𝟔𝟏 -7,87E-03 -1,38E-02 5,53E-02 -8,53E-01 6,99E-02 -1,30E-01 2,60E-01 -4,25E-01 

𝒂𝟕𝟏 1,43E-03 2,05E-02 -2,85E-02 -5,01E-02 9,75E-01 3,75E-02 -1,06E-01 1,80E-01 

𝒂𝟖𝟏 4,16E-05 2,06E-04 -2,91E-04 1,91E-03 -2,59E-03 -5,26E-03 8,54E-01 5,20E-01 

 

The results of the plate (2) are also compared to those 

found using R.R.M. and given by Zhou, [14]; he chose a 

combination of beam eigenfunctions and polynomials as 

trial beam functions and 25 trial plate functions were 

considered in this reference.  

It is noted that  

1) the difference percentages remain less than 1.88%. 

2) Actual results are the smallest in this Table, so they 

are the most accurate.
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Table 4. First six frequency parameters, 𝛀𝐤 = 𝛚𝐤. 𝐛
𝟐√𝛒.𝐇/𝐃, of the three-span continuous rectangular plates, with three boundary conditions 

(B.C.). 

B.C.  𝛀𝟏 𝛀𝟐 𝛀𝟑 𝛀𝟒 𝛀𝟓 𝛀𝟔 

Plate (1) α = 4, x1 = 1/4 and x2 = 3/4 

SSSS 

Present 12.926 19.739 21.572 23.743 35.328 42.259 

Zhou [16] 12.919 19.739 21.534 23.647 35.215 42.245 

Azimi [7] 12.920 19.740 21.530 23.650 35.210 42.240 

Mizusawa 12.921 19.741 21.551 23.682 35.415 0.000 

Wu 12.920 19.740 21.550    

Kim 12.930 19,739 21.594 23.812 35.401 42.268 

Liew 12.924 19.739 21.531 23.653 35.283 42.254 

CSSS 

Present 12.948 20.056 22.621 26.598 35.661 42.262 

Zhou [16] 12.938 20.097 22.643 26.506 35.605 42.247 

Azimi [7] 12.940 20.100 22.640 26.500 35.590 42.240 

Wu 12.940 20.100 22.670    

Kim 12.972 20.118 22.916 26.915 36.628 42.307 

Liew 12.961 20.114 22.866 26.514 36.164 42.286 

CCSS 

Present 12.972 20.800 25.524 27.302 36.098 42.271 

Zhou [16] 12.957 20.816 25.648 27.128 35.980 42.249 

Azimi [7] 12.960 20.810 25.640 27.120 35.970 42.250 

Wu 12.960 20.830 25.690    

Kim 12.967 20.828 25.684 27.262 36.170 42.296 

Liew 12.963 20.814 25.654 27.179 35.998 42.263 

Plate (2) α = 3, x1 = 1/3 and x2 = 2/3. 

SSSS 

Present 19.719 21.443 26.805 49.250 49.317 50.383 

Zhou [14] 19.739 21.854 26.373 49.348 49.348 50.876 

Azimi [7] 19.74 21.6 26 49.35   

CSSS 

Present 20.216 23.780 28.541 49.628 50.706 51.940 

Zhou [14] 20.269 23.843 28.523 49.712 50.848 52.029 

Azimi [7] 20.22  28.07 49.63 50.69  

CCSS 
Present 21.868 25.777 29.476 50.735 53.106 54.996 

Zhou [14] 21.611 26.235 29.507 50.545 53.661 55.206 

 

  

Fig. 4 The first and second modes of CCSS plate (1) for 𝛂 = 𝟒. 
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The Matlab software code performed for this work is 

validated by plotting the first and the second mode of the 

CCSS studied plate for an aspect ratio α = 4 ; the 

perspective drawings of these two modes are shown in 

Figure 4; both symmetric and asymmetric modes have been 

considered, 16 CC beam functions were used in the x-

direction, and 2 S.S. beam functions were used in the y-

direction. In addition to this, the normalized cross-sections 

of the four lowest normalized mode shapes at the plate 

middle x∗ = 0.5 and y∗ = 0.5 are depicted in Figure 5 and 

Figure 6 for an aspect ratio α = 4  and α = 0.25, 
respectively. The same curves are plotted in Figure 7 for 

plate (2). Figures 5 to 7 show that all four modes are zero at 

the intermediate lines, which leads to conclude that the 

hypothesis of modeling the support line by a distribution of 

translation springs is verified. It should be noted that Figs. 

(5) to (7) show that the slopes corresponding to clamped 

edges (at x∗ = 0 and x∗ = 1) are zero. On the other hand, 

Figure 5 shows that the cross-sections at x∗ = 0.5 of the 

normalized four mode shapes are superposed. This is 

explained by the fact that the width b is small enough for 

an aspect ratio α =4. Figure 6 shows that the cross-sections 

in the x-direction of the first two mode shapes are 

superposed: the length a  is too small since α = 0.25. 

However, the crosse sections in the y-direction are no longer 

superposed. The cross-sections of the first and third 

normalized mode shapes are superposed, and those of the 

second and fourth normalized mode shapes are superposed. 
 

   

 
 

 

 
 

Fig. 5 Normalized cross-sections of the four lowest mode shapes at the middle of the CCSS plate (1) for 𝛂 = 𝟒, in the x-direction 𝐲∗ = 𝟎.𝟓, 

and in the y-direction 𝐱∗ = 𝟎.𝟓 
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Fig. 6 Normalized cross-sections of the four lowest mode shapes at the middle of the CCSS plate (1) for 𝛂 = 𝟎. 𝟐𝟓, in the x-direction 𝐲∗ =
𝟎. 𝟓, and in the y-direction 𝐱∗ = 𝟎. 𝟓 

 

4. Nonlinear Vibrations of the Rectangular 

Plate Resting on Line Support 

This section examines the difficult problem of the 

nonlinear vibration for the three-span continuous CCSS 

rectangular plates noted plate (1). Benamar's method was 

used in the present section to calculate the coefficient 

contribution vector {A}  and of the nonlinear frequency 

parameters Ω  in order to determine the fundamental 

nonlinear mode shape w1.  

Determination of the coefficient contribution vector 

and nonlinear frequency parameter  
 

The nonlinear geometrical rigidity tensor [B{A}]  is 

taken into account in Eqs (17), whose tensorial form is 

written as follows [34]:  

2aikir
∗ + 3aiajakbijkr

∗ − 2Ω2aimir
∗ = 0    r = 1. . N   (23) 

 

This nonlinear system has N  equations and (N + 1) 
unknowns, which are the N components of the contribution 

coefficient vector {a1    a2    . . .    aN}  and the nonlinear 

frequency parameter Ω  denoted in what follows ΩNL . 

Consequently, a further equation must be added to Eqs (23) 

to complete the formulation. The principle of conservation 

of energy allows giving the expression of ΩNL
2  [51]:  

 

Ω𝑁𝐿
2 =

𝑎𝑖𝑎𝑗𝑘𝑖𝑗+𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏𝑖𝑗𝑘𝑙

𝑎𝑖𝑎𝑗𝑚𝑖𝑗
           (24) 

 

On the other hand, the first component 𝑎1  of the 

unknown vector {𝐴}  is assigned. Therefore, the index 𝑟 

written in Equation (23) varies from 2 to 𝑁. 
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Fig. 7 Normalized cross-sections of the four lowest mode shapes at the middle of the CCSS plate (2) 𝛂 = 𝟑, in the x-direction 𝐲∗ = 𝟎. 𝟓, and 

in the y-direction 𝐱∗ = 𝟎. 𝟓 

 

By replacing the frequency parameter expression given 

in Equation (24) in Equation (23), one gets (𝑁 − 1) 
nonlinear equations to solve: 

  

𝑎𝑖𝑘𝑖𝑟
∗ + 1.5𝑎𝑖𝑎𝑗𝑎𝑘𝑏𝑖𝑗𝑘𝑟

∗ −
𝑎𝑖𝑎𝑗𝑘𝑖𝑗+𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏𝑖𝑗𝑘𝑙

𝑎𝑖𝑎𝑗𝑚𝑖𝑗
𝑎𝑗𝑚𝑖𝑟

∗ = 0      

(25) 

𝑟 = 2. . 𝑁.  Approximate methods such as the single 

mode approach, the first and second formulation, are often 

used in the vibration investigation of beam, plate and shell 

[40-47]. These approximate methods give questionable 

results when the nonlinearity increases. In order to avoid 

using these approximate methods, a Matlab iterative code, 

performed for this work, allows for solving the nonlinear 

system expressed in Equation 25. The solution is based on 

the least squares method for the nonlinear system using the 

lsqnonlin routine from Matlab. This routine starts at a given 

initial solution estimate and finds a minimum sum of 

squares of the functions defined in Equation 25. The initial 

solution requested by the cited routine is given by the 

approximate method called the second formulation 

developed by Benamar-El Kadiri [18]. Once the 

contribution coefficient vector {a1 a2  … aN}  has been 

found, they are injected into   Equation 25 in order to 

calculate (n-1) differences Hr as well as the residual is the 

sum of the squares of these differences noted ℜ𝔢𝔰 . The 

differences Hr and the residuals ℜ𝔢𝔰 are defined by:  
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𝐻𝑟 = 𝑎𝑖𝑘𝑖𝑟
∗ + 1.5𝑎𝑖𝑎𝑗𝑎𝑘𝑏𝑖𝑗𝑘𝑟

∗ −
𝑎𝑖𝑎𝑗𝑘𝑖𝑗+𝑎𝑖𝑎𝑗𝑎𝑘𝑎𝑙𝑏𝑖𝑗𝑘𝑙

𝑎𝑖𝑎𝑗𝑚𝑖𝑗
𝑎𝑗𝑚𝑖𝑟

∗ ,       ℜ𝔢𝔰 = ∑𝑁𝑟=2 𝐻𝑟
2

   (26) 

The results are supposed to be validated when the residuals 

ℜ𝔢𝔰 remain less than 10−7. 
  

4.1. Amplitude Dependence of the Mode Shapes and the 

First Nonlinear Frequency 

 The contribution coefficient vector {A} are calculated 

by solving Equation (25) as well as the nonlinear frequency 

parameters ΩNL  by Equation (24) for an assigned first 

contribution a1 of the first trial plate function w1
∗. On the 

other hand, the convergence study carried out above allowed 

to use of m = 8 symmetric modes in the CC direction and 

one mode in the S.S. direction ( n = 1 ). From this 

consideration, the fundamental nonlinear mode expressed in 

Equation 2 is written in dimensionless form as:  

 

𝑤∗(𝑥∗, 𝑦∗, 𝑎1) = ∑
8
𝑘=1 𝑎(2𝑘−1)𝑤(2𝑘−1)

∗ (𝑥∗, 𝑦∗)     (27) 

 

The assigned a1  is the first component of the 

contribution coefficient vector {A} =
{a1    a3    a5    . . . a13}

T , it varies from 0.05 to 0.5 in the 

present work. Tables 4 and 5 summarize the result of the 

vector {A} for several values of a1 for aspect ratios α = 4 

and 0.25, respectively. These contribution coefficients are 

included in expression 27 in order to calculate the 

fundamental nonlinear mode w∗(x∗, y∗, a1)  whose 

maximum values, denoted Wmax , are listed in the first 

column of the two Tables. In addition, Equation 24 

calculates the fundamental nonlinear frequency parameters 

ΩNL  allowing getting the ratios 
ΩNL

Ω
, Ω  being the linear 

frequency parameters. These ratios are listed in the second 

column of Tables 4 and 5. The residuals ℜ𝔢𝔰 calculated by 

Equation 26 are listed in the last column of the latter tables. 
 

Table 5. 𝑾𝑴𝒂𝒙
∗ . 𝛀𝑵𝑳/𝛀 and 𝒂𝒌 as function of 𝒂𝟏 for the CCSS studied plate for 𝜶 = 𝟒 

𝑾𝑴𝒂𝒙
∗  𝛀𝑵𝑳/𝛀 𝒂𝟏 𝒂𝟑 𝒂𝟓 𝒂𝟕 𝒂𝟗 𝒂𝟏𝟏 𝒂𝟏𝟑 𝒂𝟏𝟓 𝕽𝖊𝖘 

1,70E-01 1,0152 0,0500 -0,03 1,72E-03 1,94E-03 -4,50E-05 -4,66E-04 9,12E-05 2,10E-06 3,03E-08 

3,36E-01 1,0589 0,1000 -0,06 2,46E-03 4,37E-03 -9,55E-05 -1,01E-03 1,91E-04 4,81E-06 5,84E-11 

4,97E-01 1,1263 0,1500 -0,08 1,47E-03 7,60E-03 -1,53E-04 -1,69E-03 3,00E-04 8,70E-06 5,38E-11 

6,52E-01 1,2123 0,2000 -0,11 -1,63E-03 1,17E-02 -2,14E-04 -2,54E-03 4,06E-04 1,43E-05 1,15E-08 

8,02E-01 1,3123 0,2500 -0,14 -7,00E-03 1,64E-02 -2,73E-04 -3,58E-03 4,92E-04 2,20E-05 3,92E-10 

1,00E+00 1,4647 0,3180 -0,18 -1,80E-02 2,32E-02 -3,44E-04 -5,28E-03 5,44E-04 3,62E-05 1,00E-08 

1,09E+00 1,5416 0,3500 -0,20 -2,47E-02 2,63E-02 -3,75E-04 -6,17E-03 5,36E-04 4,44E-05 1,83E-12 

1,23E+00 1,6672 0,4000 -0,23 -3,72E-02 3,08E-02 -4,27E-04 -7,64E-03 4,79E-04 5,89E-05 1,07E-10 

1,38E+00 1,7986 0,4500 -0,26 -5,26E-02 3,42E-02 -4,97E-04 -9,17E-03 3,83E-04 7,52E-05 1,78E-09 

1,52E+00 1,9349 0,5000 -0,30 -7,11E-02 3,64E-02 -6,11E-04 -1,07E-02 2,79E-04 9,29E-05 6,08E-11 

Table 6. 𝑾𝑴𝒂𝒙
∗ . 𝛀𝑵𝑳/𝛀 and 𝒂𝒌 as function of 𝒂𝟏 for the CCSS studied plate for 𝜶 = 𝟎. 𝟐𝟓 

𝐖𝐌𝐚𝐱
∗  𝛀𝐍𝐋/𝛀 𝐚𝟏 𝐚𝟑 𝐚𝟓 𝐚𝟕 𝐚𝟗 𝐚𝟏𝟏 𝐚𝟏𝟑 𝐚𝟏𝟓 𝕽𝖊𝖘 

0,1729 1,0077 0,05 -2,98E-02 1,39E-03 9,70E-04 -1,14E-05 -1,68E-04 3,77E-05 -4,15E-08 4,10E-09 

0,3111 1,0246 0,09 -5,37E-02 2,46E-03 1,74E-03 -1,84E-05 -3,19E-04 6,70E-05 3,49E-08 8,55E-11 

0,5185 1,0669 0,15 -8,96E-02 3,93E-03 2,88E-03 -2,20E-05 -6,00E-04 1,08E-04 5,23E-07 2,16E-09 

0,7016 1,1193 0,20 -1,21E-01 5,07E-03 3,85E-03 -1,48E-05 -9,26E-04 1,37E-04 1,51E-06 5,24E-09 

0,8744 1,1797 0,25 -1,51E-01 5,98E-03 4,71E-03 3,42E-06 -1,32E-03 1,58E-04 3,07E-06 9,49E-10 

1,0023 1,2304 0,29 -1,73E-01 6,56E-03 5,31E-03 2,51E-05 -1,67E-03 1,68E-04 4,68E-06 3,78E-12 

1,0369 1,2448 0,30 -1,79E-01 6,70E-03 5,46E-03 3,22E-05 -1,77E-03 1,70E-04 5,19E-06 3,06E-11 

1,2100 1,3214 0,35 -2,09E-01 7,35E-03 6,17E-03 7,66E-05 -2,36E-03 1,71E-04 8,24E-06 2,58E-12 

1,3939 1,4094 0,40 -2,41E-01 7,91E-03 6,80E-03 1,40E-04 -3,10E-03 1,59E-04 1,24E-05 1,25E-11 

1,5572 1,4922 0,45 -2,70E-01 8,33E-03 7,25E-03 2,11E-04 -3,86E-03 1,37E-04 1,70E-05 2,38E-10 

1,7315 1,5843 0,50 -3,00E-01 8,71E-03 7,61E-03 3,01E-04 -4,78E-03 9,94E-05 2,27E-05 1,08E-11 
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From Tables 5 and 6, some observations must be 

emphasised: (1) the residuals ℜ𝔢𝔰, listed in the last column, 

are very low and do not exceed 4.11 × 10−9 for the whole 

range of the assigned a1 considered. One can conclude that 

the calculations of the nonlinear system expressed in 

Equation 17 are accurate. (2) The contribution coefficient of 

the modes decreases as the index i in ai  increases. (3) the 

rate of increase in the fundamental nonlinear frequency ΩNL 

with increasing the dimensionless maximum deflection 

WMax
∗  is quite low at small amplitudes. It can be concluded 

that the linear frequency parameters can be used for low 

amplitudes with accepted accuracy. However, the effect of 

nonlinearity is very acute when the amplitudes reach 

approximately once the thickness of the plate.  In effect, the 

increase in the nonlinear fundamental frequency parameters 

with respect to the first linear frequency is about 23% and 

46%  in cases α = 0.25   and  α = 4,  respectively, for 

vibration amplitudes equal to plate thickness H. 
 

4.2. Backbone curves 

In vibration studies of the classical plates without 

intermediate lines, the hardening effect is monotonic to the 

aspect ratio α. The present section deals with the variation 

of the hardening effect on the continuous CCSS studied 

plate as a function of α. The Matlab software code cited 

above calculated the dimensionless maximum deflection 

WMax
∗  and the ratio 

ΩNL

Ω
  for different values of the aspect 

ratio of the range [0.24, 4] for the value of the contribution 

coefficient of the first mode  a1 = 0.5 . The results are 

summarized in Table 7, and their accuracies are validated by 

the residuals listed in the last line.  

 

Figure 9 plots two curves WMax
∗ = f(α)  and 

ΩNL

Ω
 =

f(α). Table 7 and Figure 9 shows that   WMax
∗  is strictly 

decreasing as a function of the aspect ratio α. However, the 

ratio ΩNL/Ω  is decreasing up to about  α = 1.04,  after 

what it increases. One can conclude that the curves 

WMax
∗ = f (

ΩNL

Ω
 ), denoted backbone curves, change his 

behavior at the value of the aspect ratio   α = 1.04 . This 

result was illustrated in Figure 10: the hardening type 

decrease very slightly when α < 1.04 . However, for an 

aspect ratio greater than 1.04, the hardening increases.  

 

Table 7. 𝑾𝑴𝒂𝒙
∗  and  

𝛀𝑵𝑳

𝛀
 as a function of 𝜶 for the CCSS studied   plate for 𝒂𝟏 = 𝟎. 𝟓  

𝛂 0,24 0,44 0,64 0,84 1,04 1,24 1,5 2,04 2,44 2,84 3 4 

𝑾𝑴𝒂𝒙
∗  1,7315 1,7305 1,7288 1,7263 1,7228 1,7181 1,7099 1,6839 1,6562 1,6224 1,6077 1,5190 

𝛀𝑵𝑳/𝛀 1,5846 1,5775 1,5687 1,5608 1,5568 1,5592 1,5741 1,6449 1,7158 1,7861 1,8120 1,9349 

𝕽𝖊𝖘 
3,00E-

10 

1,09E-

10 
4,4E-09 5,6E-10 4,3E-12 

8,88E-

12 

3,74E-

12 

1,79E-

10 

2,08E-

11 

8,24E-

12 

6,94E-

08 

7,12E-

12 

 

 
Fig. 8 Backbone curves of the CCSS plate type (a) in the vicinity of the first mode for various values of the aspect ratio 𝜶. 
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Fig. 9 Backbone curves of the CCSS plate type (a) in the vicinity of the first mode for various values of the aspect ratio 𝛂. 

4.3. The Fundamental Nonlinear Mode 

The fundamental nonlinear mode of the studied   plate 

is determined by Equation 27  and plotted in Figure 6; m=8 

symmetrical CC and one S.S. trial beam functions were used 

in the x and y-direction, respectively the aspect ratio is α =
4 and the first component of the vector contribution a1 =
0 .5. The four lowest normalized cross-sections of the 

amplitude-dependent nonlinear fundamental mode for 

increasing the values of a1, at the middle plate lines y∗ =
0.5 and x∗ = 0.5, are given in Figs (7) and (8) for aspect 

ratios α = 4  and α = 0.25,  respectively. All curves 

depicted in these latter Figures show that: (1) From Figure 

7, it is noticed that the amplitude dependence of the mode 

shapes is accentuated for α = 4, but Figure 8  shows that 

this dependence is low for aspect ratios α = 0.25; this result 

agrees very well with the above conclusion concerning the 

backbone curve when the plate aspect ratio verify α ≤ 1.04. 

It should be remembered that, for the studied plate, the 

length of the intermediate lines increases when the aspect 

ratio decreases. One can conclude that in the presence of the 

intermediate lines, and for α ≤ 1.04,  the effect of the 

amplitude on the mode shapes is low. (2) The curvatures 

near the clamped edges increase with the dimensionless 

maximum deflection WMax. (3)  The mode does not change 

shape in the y-direction when incrementing the amplitude, 

thanks to the unique S.S. beam function used in this 

direction. (4) As might be expected, all modes are null at the 

line supports located at x1
∗ = 0.25 and x2

∗ = 0.75, i.e., at 

the intermediate lines. 

 
Fig. 10 The first normalized nonlinear mode shape of the CCSS 

studied plate for an aspect ratio 𝛂 = 𝟒. 

admin
Text Box
429 



Ahmed Babahammou & Rhali Benamar / IJETT, 71(4), 416-435, 2023 

 

427 

 

 
 

 

 
 

Fig. 11 (a) Normalized cross-sections in the x-direction 𝐲∗ = 𝟎. 𝟓, (b) Normalized cross-sections in the y-direction 𝐱∗ = 𝟎.𝟓 of the first 

nonlinear mode shape of the CCSS three-span plate, 𝛂 = 𝟒. 
 

5. Nonlinear Forced vibrations 

The purpose of this section is to examine the 

geometrically nonlinear forced vibrations of the CCSS 

studied plate for two values of the aspect ratio α . The 

harmonic excitation is the either concentrated force 

Fc(x, y, t)  applied at a known point (x0, y0) , or to a 

distributed uniform force Fd(x, y, t)  applied to the entire 

plate area. The excitations Fc  and Fd  are modeled as 

follows:  
𝐹𝑐(𝑥, 𝑦, 𝑡) = 𝐹𝑐𝛿(𝑥 − 𝑥0)(𝑦 − 𝑦0)sin(𝜔𝑡)

𝐹𝑑(𝑥, 𝑦, 𝑡) = 𝐹𝑑sin(𝜔𝑡)
  (28) 

 

in which δ  is the Dirac function. Taking into account 

Equation (2), the generalized concentrated Fi
c(t)  and 

distributed Fi
d(t) forces are deduced as follows:  

 

 
𝐹𝑐(𝑥, 𝑦, 𝑡) = 𝐹𝑐𝑤𝑖(𝑥0, 𝑦0)    sin(𝜔𝑡) = 𝑓𝑖

𝑐sin(𝜔𝑡)

𝐹𝑑(𝑥, 𝑦, 𝑡) = 𝐹𝑑 ∫
𝑆
𝑤𝑖(𝑥, 𝑦)𝑑𝑥𝑑𝑦    sin(𝜔𝑡) = 𝑓𝑖

𝑑sin(𝜔𝑡)
  

    (29) 

 

The dimensionless generalized forcing vector {f ∗}  is 

defined by the expression:  

 

 {𝑓∗} =

{
 
 

 
 𝑓𝑖

∗𝑐 =
𝑎3𝐹𝑐

𝑏𝐷𝐻
𝑤𝑖
∗(𝑥0

∗, 𝑦0
∗)                                        

𝑖𝑛  𝑐𝑎𝑠𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑑  𝑓𝑜𝑟𝑐𝑒 

𝑓𝑖
∗𝑑 =

𝑎4𝐹𝑑

𝐷𝐻
∫
𝑆∗
𝑤𝑖
∗(𝑥∗, 𝑦∗)𝑑𝑥∗𝑑𝑦∗   

𝑖𝑛  𝑐𝑎𝑠𝑒  𝑜𝑓  𝑡ℎ𝑒  𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦  𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑  𝑓𝑜𝑟𝑐𝑒

  

                                           (30) 

 

where S∗  is the dimensionless surface over what the 

uniformly distributed force Fd  acts. The amplitude 

equation expressed by Equation 17 becomes in the nonlinear 

forced regime and using the matrix and tonsorial forms [18]: 

 

([𝐾∗] − ΩNL
2 [𝑀∗]){𝐴} + 1.5[𝐵∗{𝐴}]{𝐴} = {𝑓∗}

𝑎𝑖𝑘𝑖𝑟
∗ + 1.5𝑎𝑖𝑎𝑗𝑎𝑘𝑏𝑖𝑗𝑘𝑟

∗ − ΩNL
2 𝑎𝑖𝑚𝑖𝑟

∗ = 𝑓𝑟
∗    𝑟 = 1. . 𝑁

 (31) 

 

In the event of forced mode, ΩNL It is no longer the 

unknown resonant frequency but the parameter of the 

known excitation frequency. It varies within a range 

according to excitation tests. The nonlinear algebraic system 

31 has N  equations and N  unknowns which are the 

components of the contribution coefficient vector {A}. 
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Fig. 12 (a) Normalized cross-sections in the x-direction 𝐲∗ = 𝟎. 𝟓, (b) Normalized cross-sections in the y-direction 𝐱∗ = 𝟎. 𝟓, of the first nonlinear mode shape of the 

CCSS three-span plate, 𝛂 = 𝟎. 𝟐𝟓 

 
Fig. 13 Forced response of the CCSS studied   plate excited by different levels of concentrated force 𝑭𝒄 = 𝟎,𝟎. 𝟓, 𝟏 using the multi-mode 

approach in the vicinity of the fundamental mode for two aspect ratios(𝜶 = 𝟒). Dashed curve: linear case, continuous curves: nonlinear case. 

admin
Text Box
431 



Ahmed Babahammou & Rhali Benamar / IJETT, 71(4), 416-435, 2023 

 

429 

 
Fig. 14 Forced response of the CCSSS studied plate excited by different levels of distributed force using the multi-mode approach in the 

vicinity of the fundamental mode for two aspect ratios(𝜶 = 𝟒). Dashed curve: linear case, continuous curves: nonlinear case. 

A Matlab code, realized for the preset work and using 

the lsqnonlin routine, allows solving Equation 31 in order to 

obtain the N contribution coefficients (a1 a2. . . aN). Then, 

these latter are injected into Equation 27 to calculate the 

nonlinear fundamental mode. The determination of the 

maximum value of the dimensionless deflection WMax
∗  is 

then immediate. In what follows, one take a = 0.24, b =
a/α,     H = 0.0005, ρ = 7850, and E = 198 × 109. 

 

The forced nonlinear dynamic behavior is investigated 

for the studied   plate, which is excited by a concentrated 

force at the plate center (x∗ = 0.5, y∗ = 0.5)  and by a 

distributed force for aspect ratios α = 1,4 and for different 

excitation levels. Figure 10 displays the linear and nonlinear 

forced frequency response function (NFFRF) in the vicinity 

of the fundamental mode in cases of concentrated for three 

excitation level Fc = 0, 0.5,1. The bashed black line plots 

the linear forced frequency response function. For excitation 

level Fc = 0  NFFRF coincides with the backbone curve 

corresponding to α = 4  in Figure 13 (sky blue curve). 

Figure 14 shows the same curves for a distributed excitation. 

From these Figures, one can show that:  

(1) a comparison between the linear and nonlinear 

frequency response functions when the continuous plate is 

excited by the same excitation level. The jump phenomenon 

commonly encountered in vibratory systems is observed. It 

is accentuated for the linear case.  

(2) The comparison between the NFFRF of the studied 

plate, excited by different levels of concentrated forces 

Fc = 0,0.5,1 and of distributed     forces Fd = 5,50,100 

allows emphasis on the effect of geometrical nonlinearity 

with the multivalued region.        

(3) The increase in the intensity of the excitation force 

is disproportionate to the increase in the amplitude of the 

NFFRF.    

Fig. 15 Forced response of the CCSS continuous studied   plate 

subjected to concentrated harmonic force 𝑭𝒄 = 𝟏 using the multi-

mode approach up to the fourth resonant mode, with 𝜶 = 𝟒 

 

 Figure (15) plots the NFFRF for a concentrated 

excitation at the plate center. The assigned nonlinear 

frequency Ω𝑁𝐿  varies up the fourth symmetric mode. The 

jump phenomenon that occurred at the resonance 

frequencies is well observed in the vicinity of the nonlinear 

frequencies, verifying 
Ω𝑁𝐿

Ω1
= 1.0, 1.979, 2.797, 6.095 i, 

e when the frequency parameter of excitation Ω𝑁𝐿  becomes 

equal to the four linear frequency parameters Ω1 = 12,978, 

Ω3 = 25,676 , Ω5 = 36,292,  and Ω7 = 79,075,  defined 

in Equation 21.   
 

6. Conclusion 
Linear and geometrically nonlinear free and forced 

vibrations of three-span rectangular plates have been studied 

by a new formulation of the Rayleigh-Ritz method. The line 

supports are modeled by distributions of elastic springs 

participating to the strain energy with a stiffness tending to 

infinity at the limit case of rigid supports. The trial plate 

functions are obtained as products of beam functions in the 
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x-and y-direction respecting the plate boundary conditions. 

They have been determined without taking into account the 

intermediate lines. The trial plate functions can be solved 

easily and unified independently of the line supports. 

Kinetic energy, linear strain energy due to the bending, 

nonlinear strain energy induced by the large vibration 

amplitudes and elastic strain energy stored in the spring 

distributions that model the line supports have been 

calculated and discretized. Afterwards, the application of 

Hamilton's principle allowed getting the classical nonlinear 

algebraic system governing the studied plate motion. An 

accurate convergence study has been carried out for the 

linear case. An investigation of the mode contribution 

coefficients reinforced this study's convergence. To validate 

the proposed solution, the linear vibrations of plates with 

different boundary conditions have been solved and 

compared to previously published results given by many 

authors showing a very good accuracy which leads to 

validate the present approach. The mode shapes and their 

cross-sections plotted showed that the deflections are zero 

at the line supports. In the linear vibrations, it is interesting 

to report that the intermediate lines inside the plate increase 

the frequency parameters.   

 

Geometrically nonlinear free and forced vibrations 

have been examined by Benamar's method, using an 

iterative solution. The multi-mode approach was adopted 

without approximate methods. The amplitude-dependent 

fundamental modes are plotted. The aspect ratio influences 

the dependence of the mode on the amplitude; for the 

studied plate, it is more accentuated when the aspect ratio 

increases. The backbone curves have been plotted in order 

to investigate the hardening type. In this study, the 

hardening type is not a monotonic function of the aspect 

ratio. The forced vibrations were also analyzed. The effect 

of the excitation level on the plate dynamic behavior was 

illustrated and discussed. Moreover, a comparison of the 

linear and nonlinear frequency response was carried out. 

Concentrated and distributed excitations over the whole 

plate were utilized.    
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