
International Journal of Engineering Trends and Technology Volume 71 Issue 5, 146-155, May 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I5P215 © 2023 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Towards the Generation of a PSM Model from a PIM

Model, Integration of the MDA Approach in NoSQL

Databases, the Case of Document-Oriented NoSQL

Platforms

Aziz Srai1, Fatima Guerouate2

1ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco

2LASTIMI Laboratory, Superior School of Technologies of Sale, Mohammadia School of Engineering, Mohamed V University

City of Rabat, Morocco

1Corresponding Author : a.srai@uae.ac.ma

Received: 22 February 2023 Revised: 02 April 2023 Accepted: 28 April 2023 Published: 25 May 2023

Abstract - Model-driven engineering has allowed several significant improvements in the development of complex systems by

allowing one to focus on a more abstract concern than classical programming. It is a form of generative engineering in which

all or part of an application is generated from models. A model is an abstraction, a simplification of a system that is sufficient to

understand the modeled system and answer the questions that arise about it. A system can be described by different related

models each other. The key idea is to use as many different modeling languages as system development's chronological or

technological aspects require—two major concepts of model-driven engineering, metamodeling and model transformation.

Model transformation makes models operational for code generation, documentation and testing, validation, verification,

execution, and so on. In the same context, the massive evolution of data has generated a new notion for the processing of these

data; it is the notion of NoSQL. NoSQL databases are a new generation of databases that allow the processing and exploitation

of massive data. In the work presented in this article, we will try to combine between the two, the MDA approach and NoSQL

databases. We will generate a PSM model for NoSQL databases based on the document to validate the validity and applicability

of the MDA approach with NoSQL models. We consider a case study of a simple class diagram sufficient to demonstrate the

approach.

Keywords - Big data, MDA approach, Model programming, NoSQL, Qvt.

1. Introduction
In order to achieve platform-independent reuse, the OMG

subsequently proposed the MDA architecture (Model Driven

Architecture). With the MDA approach, the development of

software platforms is centered on technology-independent

models (the PIM models - platform Independent Model),

which are then refined into models containing technical details

(the PSM models - Platform Specific Model). By expressing

with models the different levels of abstraction of a system, the

MDA architecture has enabled reuse in the most upstream

phases of development, such as analysis and design. MDE

(Model Driven Engineering) then generalized the approach

beyond architectural issues. This new approach represents all

dimensions of engineering, its products and processes through

models. In addition to models, this engineering uses a second

form of artifacts. These are model transformations. These are

used to manipulate the models, for example, modifying them,

representing them in another formalism, generating code, etc.

the reuse of transformations makes it possible to respond to

complex tasks. It consists of creating transformations from

existing ones, adding or modifying transformation rules and

combining transformations. Typically, combining

transformations is done by chaining them.

In another context, we have noticed the increase in the

volume of data reaching critical proportions; this massive data

is mainly processed through Relational Database Management

Systems (RDBMS). These approaches prove to be difficult to

extend to big data, and this is the reason why a new notion has

emerged, it is the NoSQL model or NoSQL databases. In the

work presented in this article, we will try to combine between

the two, the MDA approach and NoSQL databases. We will

generate a PSM model for Document-based NoSQL databases

to validate the validity and applicability of the MDA approach

with NoSQL models. We consider a case study of a simple

class diagram sufficient to demonstrate the approach.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:a.srai@uae.ac.ma

Aziz Srai & Fatima Guerouate / IJETT, 71(5), 146-155, 2023

147

2. Literature Review

In the literature, several research projects have been

proposed as part of the integration of the MDA approach in

NoSQL databases. In [Chevalier, 2015], the authors defined a

set of rules to map a star schema into two NoSQL models:

column-oriented and document-oriented. Other studies [Li et

al., 2010] and [Vajk et al., 2013] investigated the process of

transforming relational databases into a NoSQL model. [Li et

al., 2010] proposed an approach to transform a relational

database into HBase (column-oriented system). [Vajk et al.,

2013] defined correspondence between a relational model and

a document-oriented model using MongoDB. [Li et al., 2014]

propose a method based on the MDA process to transform the

UML class diagram into a column-oriented model specific to

HBase. [Gwendal et al., 2016] describe the correspondence

between a UML conceptual model and graph databases via an

intermediate graph metamodel. In this work, the

transformation rules are specific to graph databases used as a

framework for managing complex data with many

connections. Generally, this type of NoSQL system is used in

social networks where data is strongly connected. To our

knowledge, no work has presented a global study to transform

a source model (uml diagram) into a target model (graph-

oriented NoSQL databases), i.e. the key-value generation of

NoSQL database via an MDA approach. According to the

analysis of the works cited, we have found that a majority of

authors do not invoke an interest in applying the MDA

approach on NoSQL platforms via a transformation from a

PIM model to a model PSM or through code generation

through a PSM-to-code transformation. To our knowledge, we

are the first authors to have proposed a total generation of code

for NoSQL platforms to use models independent of all

implementation platforms. No work has presented a global

study to transform a source model (uml diagram) into a target

model (Document-oriented NoSQL databases), i.e. a

generation of a NoSQL Document database via an MDA

approach.

3. Research Methodology
3.1. Model-Driven Engineering

Following the object approach of the 80s and its

“everything is object” principle, software engineering is now

moving towards model-driven engineering and the

“everything is model” principle. This new approach can be

considered both in continuity and rupture with previous work.

First of all, continuity because it is the object technology that

triggered the evolution towards models. Indeed, once acquired

the design of computer systems in the form of objects

communicating with each other, the question arose of

classifying them according to their different origins (business

objects, techniques, etc.). Model-driven engineering,

therefore, aims, in a more radical way than could be the

approaches of patterns and aspects, to provide a large number

of models to separately express each of the concerns of users,

designers, architects, etc. It is through this fundamentally

different basic principle that model-driven engineering can be

considered to break with the work of the object approach.

While the object approach is based on two essential

relationships, “InstanceFrom” and “InheritFrom”, model-

driven engineering is based on another set of concepts and

relationships. The central concept of MDI is the notion of a

model for which there is currently no universal definition.

3.2. The MDA Approach

The consensus on UML was decisive in this transition to

model-based production techniques. After the acceptance of

the key concept of metamodel as a model description

language, many metamodels have emerged in order to each

bring their specificities in a particular domain (software

development, data warehouse, development process, etc.).

Faced with the danger of seeing this great variety of

metamodels emerge independently and in an incompatible

manner, there was an urgent need to provide a general

framework for their description. Therefore, the logical answer

was to offer a language for defining metamodels, which itself

took the form of a model: the metametamodel MOF (Meta-

Object Facility). As a model, it must also be defined from a

modeling language. To limit the number of levels of

abstraction, it must then have the property of metacircularity,

i.e. the ability to describe itself.

3.3. Metametamodel

A metametamodel is a model that describes a

metamodeling language, i.e. the modeling elements necessary

for the definition of modeling languages. He also has the

ability to describe himself. It is on these principles that the

organization of the OMG modeling is based, generally

described in a pyramidal form. The real world is represented

at the pyramid's base (level M0). The models representing this

reality constitute level M1. The metamodels allowing the

definition of these models (e.g. UML) constitute level M2.

Finally, the metametamodel, unique and metacircular, is

represented at the top of the pyramid (level M3).

3.4. Technical Area

A technical space is the set of tools and techniques

resulting from a pyramid of metamodels whose top is

occupied by a family of similar metametamodels. The OMG

defined MDA (Model Driven Architecture) in 2000 to

promulgate good modeling practices and fully exploit the

benefits of models. In 2003, members adopted the latest

specification version giving a detailed architecture definition.

This approach aims to highlight the intrinsic qualities of the

models, such as durability, productivity and consideration of

execution platforms. The MDA includes for this the definition

of several standards, in particular UML, MOF and XMI. The

key and initial principle of MDA consists in relying on the

UML standard to describe models separately for the different

phases of the development cycle of an application. More

specifically, the MDA advocates the development of models.

Aziz Srai & Fatima Guerouate / IJETT, 71(5), 146-155, 2023

148

Fig. 1 The MDA lifecycle

Fig. 2 OMG modeling pyramid

Requirements (Computation Independent Model – CIM)

in which no IT consideration appears, analysis and design

(Platform Independent Model – PIM), code (Platform Specific

Model – PSM). The major objective of the MDA is the

development of durable models (PIM), independent of the

technical details of the execution platforms (J2EE, .Net, PHP,

etc.), to allow the automatic generation of all of the code

models (PSM) and to obtain a significant gain in productivity.

Fig. 3 Transformation of models in the MDA approach

3.5. Dedicated Modeling Languages

In the same way that the arrival of object-oriented

programming did not invalidate the contributions of structured

programming, model-driven development does not contradict

the contributions of object technology. Therefore, it is

important not to consider these solutions as antagonistic but

complementary. However, a point of divergence between

these two approaches concerns the integration of paradigms.

Initially, object technology was also intended as an integration

technology because it was theoretically possible to uniformly

represent processes, rules, functions, etc., by objects. Today,

we return to a less hegemonic vision where the different

programming paradigms coexist without giving more

importance to one or the other. An important point is then to

separate the model-driven engineering approaches from the

UML formalism clearly and from the use made of them in the

MDA. Indeed, not only is the scope of model-driven

engineering broader than that of UML, but the vision of

model-driven engineering is also very different from that of

UML, sometimes even in contradiction. UML is a fairly

monolithic standard obtained by maximum consensus, the

scope of which must be reduced or extended using

mechanisms such as profiles. These mechanisms do not all

have the desired precision and sometimes lead to dangerous

Cod

e
CIM PIM PSM

2

1

4

3

6

5 7

Aziz Srai & Fatima Guerouate / IJETT, 71(5), 146-155, 2023

149

contortions to “stay” in the UML world. On the contrary,

model-driven engineering favors the definition of modeling

languages dedicated to a particular domain (Domain Specific

Modeling Languages – DSML), thus offering users concepts

specific to their profession and which they have mastered.

These languages are generally small in size and must be easily

manipulated, transformed, combined, etc.

3.6. Standards and Languages for Model Transformation

Many languages are currently available for writing

generation model transformations. We first find generalist

languages that rely directly on the abstract representation of

the model. We will quote, by example, the EMF API, which,

coupled with the Java language, makes it possible to

manipulate a model in the form of a graph. In this case, it is

up to the programmer to search for information in the model,

to explain the order of application of the rules, to manage the

target elements built, etc.. to abstract the definition of model

transformations and make the implementation details

transparent; the idea was to define DSMLs dedicated to model

transformation. This approach is then based on the definition

of a metamodel dedicated to model transformation and tools

allowing to execute transformation models. We will cite, for

example, ATL (ATLAS Transformation Language) that we

use throughout this thesis. It is a hybrid language (declarative

and imperative) which allows the definition of a

transformation from model to model (called Module) in the

form of a set of rules. It also allows you to define model-to-

text type transformations (called Query). A transformation

takes as input a set of models (described from metamodels in

Ecore or KM3). In order to provide a normative framework

for the implementation of the different languages dedicated to

model transformation, the OMG has defined the QVT

(Query/View/Transformation) standard. QVT's metamodel is

MOF compliant, and OCL is used for model navigation. The

metamodel shows three sub-languages for the transformation

of models, characterized by the paradigm implemented to

define the transformations (declarative, imperative and

hybrid). The Relations and Core languages are both

declarative but placed at different levels of abstraction. One of

the goals of Core is to provide a basis for specifying the

semantics of Relations. The semantics of Relations is given as

a transformation from Relations to Core. Defining a

declarative solution to a given transformation problem is

sometimes difficult. To address this issue, QVT offers two

mechanisms to extend Relations and Core: a third language

called Operational Mappings and a mechanism for invoking

transformation features implemented in an arbitrary language

(black box or black box). Operational Mappings extend

Relations with imperative constructs and OCL constructs with

side effects.

3.7. NoSQL Models

The term NoSQL was first used in 2009. This term refers

to a new performance-based approach to databases capable of

handling a large amount of information, ensuring high service

availability and having good scalability. To manage

scalability. NoSQL adopts a non-relational approach; its

development has been marked by the abandonment or

compromise made on the ACID properties of relational

databases, qualified so far as an obstacle to horizontal

scalability. A significant number of NoSQL solutions have

developed. There are different ways to structure data, but all

the solutions developed can be divided into four models, the

key-value-oriented model, column-oriented model,

document-oriented model and graph-oriented model. In the

beginning, these approaches were developed by relaxing the

relational principles. NoSQL is currently considered a

complementary solution; an important difference concerns the

data model adopted by each of these solutions.

3.8. Key-Value Oriented Model

The key-value model considers each record as a key

associated with a value. This approach is like a two-column

associative array where the key uniquely identifies the

associated value. Unlike the relational model, the size and type

of the value are not determined beforehand. The case of the

key-value model is more flexible; the value of the key can

change from one record to another, can each line has a

different type and size. A second characteristic of the key-

value model lies in the modularity of the keys, which can be

generated automatically or constructed according to a certain

logic. How the key can be constructed is left up to you; the

developer can imagine various key generation methods to

facilitate his search.

Fig. 4 Relationships between QVT metamodels

Operational

Mappings

Relations

RelationsToCore

Transformation

Core

Black Box

Aziz Srai & Fatima Guerouate / IJETT, 71(5), 146-155, 2023

150

Fig. 5 Principle of the key-value model

Organizing data into key-value pairs allows for good

performance. The keys are natively indexed. Communication

with the database is limited to basic operations designated by

the acronym CRUD (create, read, update, delete). On the other

hand, search performance is impacted based on other criteria,

particularly parts of the value. The key-value model is the

fundamental NoSQL model. It has a simple structure that

allows it to gain significant performance. However, it does not

allow fine manipulation of the value. This limitation has

motivated the development of column- and document-

oriented models, which can be considered an evolved form of

the key-value model. These two models introduce a

structuring of value according to orthogonal principles. The

value can thus be either atomic or compound. These models

are distinguished by the storage of data which is carried out

either by document (horizontal) or by line broken down into

families of columns (vertical). A fourth NoSQL model is

based on the graph-oriented model. It is characterized by a

structure based on the theory of labeled graphs.

3.9. Document-Oriented Model

Following the same principle as the key-value-oriented

model, the document-oriented model consists of key-value

pairs. The key identifies a structured value called a document.

A document is considered a hierarchy of elements that can be

either atomic or compound values (multiple atomic values or

nested documents). The nesting level is not limited. A value

can also be a reference to another document. All the

documents are contained in a collection corresponding to the

notion of a relational table and follow horizontal physical

storage. In the document-oriented model, a document is a

structure readable by the NoSQL engine. It is defined in a

tagged textual format, usually JSON (JavaScript Object

Notation) format. It facilitates the representation of structured

data, especially in a hierarchical way. Other representation

formats are possible, such as XML.

In the document-oriented NoSQL approach, the schema

is not established in advance, each document can have its own

structure, and we speak of dynamic schema. Natively, the

recording of values in a document is not subject to any system

control.

Fig. 6 Principle of the document-oriented model

However, keeping a common minimal structure to

facilitate data manipulation is preferable. Unlike the key-value

model, it is possible to manipulate the elements that make up

a given value directly. For example, it becomes possible to

manipulate a subpart of a document representing a user, such

as his name or his address, without having to extract the whole

value. In addition, the document-oriented model allows

extended indexing to other attributes (other than the key),

which can improve query performance.

3.10. Column-Oriented Model

The column-oriented model is the second evolved form

of the key-value model. In relational databases, the

relationship schema determines the data structure in advance,

with a limited number of columns, each similar for all records

(“tuples”). The column-oriented model provides a flexible

schema (untyped columns) that can vary between each record

(each row). The flexibility of a column-oriented NoSQL

database makes it possible to manage the absence of certain

columns between the different rows of the table. A column-

oriented database is a set of tables defined row by row but

whose physical storage is organized vertically by a group of

columns called “column families”. A column family can

contain a very large number of columns. The number of

columns can vary from row to row; each column family is like

a key-value set where the key is seen as a column associated

with a value.

Id-U

nom

Country

day

…

…

X1234

}

nom:

country:

day:

}

}

nom:

country:

day:

Subject: {

topic:

Category:

},

Language:

}

X1235

Aziz Srai & Fatima Guerouate / IJETT, 71(5), 146-155, 2023

151

Fig. 7 Principle of the column-oriented model

Fig. 8 Principle of the graph-oriented model

3.11. Graph-Oriented Models

The graph-oriented model is based on graph theory. The

graph-oriented model is based on three notions; node, relation

and property. Each node has properties. Relations connect

nodes and optionally have properties. This type of approach

facilitates navigational queries between nodes by following

the relationships that connect them: each node has a physical

pointer to neighboring nodes allowing the fast local search.

The structure of the graph-oriented model is very suitable

for responding to issues such as the management of a

company's social network or any other storage requiring the

traversal of graphs. The flexibility of schema also

characterizes the graph-oriented model; it is unnecessary to

create a schema beforehand for the nodes and the relations.

4. Results and Discussions
In our MDA approach, we opted for modeling approaches

to generate the document-oriented NoSQL database. These

approaches require a source metamodel and a target

metamodel. In this section, we present the different meta-

classes that make up the UML class diagram source

metamodel and the document-oriented NoSQL target

metamodel—the process of transforming the UML source

model into a document-oriented target model.

Fig. 9. Illustrates the simplified UML source metamodel

based on packages, including operations, associations and

classes. Those classes are composed of properties with

parameters.

Rowkey_X1234

Famille_User

Famille_Subject

Id-U:

nom:

Language:

…

nom:

category:

…

Nom:

Langue:

1

2

3

Name:

Labo:

Poste:

Name:

équipe:

Propriétés

Relation

Aziz Srai & Fatima Guerouate / IJETT, 71(5), 146-155, 2023

152

Fig. 9 Simplified UML source metamodel

Fig. 10. Illustrates the simplified Document target metamodel:

Fig. 10 Simplified document target metamodel

Fig. 11. Illustrates the transformation rules M2M and M2T:

umlPackage

pname: EString

Association

assname: EString

Class

cname: EString

Operation

opname: EString

Property

pname: EString

Parameter

paramname: EString

sourceUmlDBName: EString

sourceUmlDataBase

Mongodb DataBase

mongodbName: EString CollectionDB

CollName: EString

Document

docName: EString

Id Value

Field

flName: EString

[0..*] collections

[0.."] documents

[1..1] value

[0..1] fields

[1..1] id

[0..*] associations
[0..*] packages

[0..*] operations

[0..*] classes

[0..*] properties [0..*] parameters

Aziz Srai & Fatima Guerouate / IJETT, 71(5), 146-155, 2023

153

Aziz Srai & Fatima Guerouate / IJETT, 71(5), 146-155, 2023

154

Fig. 11 Simplified document target metamodel

Fig. 12 Simplified document-Oriented MongoDB PSM

Uml Package Transformation UmITODocumentDB

Class Company

Property CompanyName

Class Person

Property PersonName

Person

+ personname: String
+ personage: Float

+ companyname: String

Company

Works_for

Aziz Srai & Fatima Guerouate / IJETT, 71(5), 146-155, 2023

155

To validate our transformation rules, we conducted several

tests. After applying the transformation to the UML source

model, we generated the document-oriented PSM target

model (see Fig. 12).

5. Conclusion
 In this work, we have proposed an MDA approach to

transform a UML class diagram into a document-oriented

database. The transformation rules were developed using the

QVT model transformation language. This work should be

extended to allow the generation of other NoSQL solutions,

such as key-value-oriented and column-oriented solutions.

Through this work, we have validated the validity and

performance of the MDA approach. Today, we can say that

the application of such an approach in the context of Big Data

is very important and also a current research axis.

References
[1] Aziz Srai et al., “Generated PSM Web Model for E-learning Platform Respecting n-tiers Architecture,” International Journal of Emerging

Technologies in Learning, vol. 12, no. 10, pp. 212-220, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[2] Aziz Srai et al., “MDA Approach for EJB Model,” 6th IEEE International Conference on Multimedia Computing and Systems, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[3] Nandula Rohan Kausik, Nandula Nikhil Kartik, and G. Soma Sekhar, "Personal Expense Tracker utilizing Amazon Web

Services," International Journal of Computer Trends and Technology, vol. 70, no. 11, pp. 8-14, 2022. [CrossRef] [Publisher Link]

[4] Vahid Gharavi, Ali Mesbah, and Arie van Deursen, “Modelling and Generating AJAX Applications: A Model-Driven Approach,”

Proceeding of the 7th International Workshop on Web-Oriented Software Technologies, New York, USA. [Google Scholar] [Publisher

Link]

[5] Dr.D.Shravani, "Research Methodology on Security Engineering for Web Services Security Architectures Extended for Integration of

Cloud, Big Data and IoT," SSRG International Journal of Computer Science and Engineering, vol. 3, no. 6, pp. 18-24, 2016. [CrossRef]

[Google Scholar] [Publisher Link]

[6] J. Bezivin et al., “Applying MDA Approach for Web Service platform,” Proceedings Eighth IEEE International Enterprise Distributed

Object Computing Conference, pp. 58-70, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[7] Zuzana Bizonova, Daniel Ranc, and Matilda Drozdova, “Model Driven e-Learning Platform Integration,” Proceedings of the EC-TEL

2007 PROLEARN Doctoral Consortium, Crete, Greece, 2007. [Google Scholar] [Publisher Link]

[8] G. Muneeswari et al., "Urban Computing: Recent Developments and Analytics Techniques in Big Data," International Journal of

Engineering Trends and Technology, vol. 70, no. 7, pp. 158-168, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[9] Xiao Cong et al., “A Model Driven Architecture Approach for Developing E-Learning Platform,” International Conference on

Technologies for E-Learning and Digital Entertainment, vol. 6249, pp. 111-122, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[10] Aziz Srai, Fatima Guerouate, and Hilal Drissi Lahsini, “Generated Psm Multi-Layered Model Using Mda Approach,” International

Journal of Engineering and Advanced Technology, vol. 8, no. 4, 2019. [Google Scholar] [Publisher Link]

[11] Imane Essebaa, and Salima Chantit, “QVT Transformation Rules to Get PIM Model from CIM Model,” Europe and MENA Cooperation

Advances in Information and Communication Technologies, pp. 195-207, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[12] Julia N. Korongo, Samuel T. Mbugua, and Samuel M. Mbuguah, "A Review Paper on Application of Model-Driven Architecture in Use-

Case Driven Pervasive Software Development," International Journal of Computer Trends and Technology, vol. 70, no. 3, pp. 19-26,

2022. [CrossRef] [Google Scholar] [Publisher Link]

[13] Yassine Rhazali, Youssef Hadi, and Abdelaziz Mouloudi, “Model Transformation with ATL into MDA from CIM to PIM Structured

through MVC,” Procedia Computer Science, vol.83, pp. 1096-1101, 2016. [CrossRef] [Google Scholar] [Publisher Link].

[14] Sarra Roubi, Mohammed Erramdani, and Samir Mbarki, “Model Driven Architecture as an Approach for Modeling and Generating

Graphical User Interface,” Proceedings of the Mediterranean Conference on Information & Communication Technologies, pp. 651-656,

2015. [CrossRef] [Google Scholar] [Publisher Link]

[15] M.Upendra Kumar, "Theoretical Analysis on Agile Security Architecture Model," International Journal of Computer & Organization

Trends, vol. 4, no. 5, pp. 39-42, 2014. [CrossRef] [Publisher Link]

[16] Mbarki, S. and Rahmouni, M. “Combining UML Class and Activity Diagrams for MDA Generation of MVC 2 Web Applications,”

International Review on Computers and Software, vol. 8, no. 4, pp. 949-957, 2013. [Google Scholar] [Publisher Link]

[17] Frédéric Jouault, and Ivan Kurtev, “Transforming Models with ATL,” Proceedings of MoDELS 2005 Workshops, Springer-Verlag Berlin

Heidelberg, vol. 3844, pp. 128 –138, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[18] Krzysztof Czarnecki, and Simon Helsen, “Classification of Model Transformation Approaches,” Proceedings of the 2nd OOPSLA’03

Workshop on Generative Techniques in the Context of MDA, Anaheim, 2003. [Google Scholar] [Publisher Link]

https://doi.org/10.3991/ijet.v12i10.7179
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Generated+PSM+Web+Model+for+E-learning+Platform+Respecting+n-tiers+Architecture%2C&btnG=
https://online-journals.org/index.php/i-jet/article/view/7179
https://doi.org/10.1109/ICMCS.2018.8525924
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MDA+Approach+for+EJB+Model&btnG=
https://ieeexplore.ieee.org/document/8525924
https://doi.org/10.14445/22312803/IJCTT-V70I11P102
https://ijcttjournal.org/archives/ijctt-v70i11p102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modelling+and+Generating+AJAX+Applications%3A+A+Model-Driven+Approach&btnG=
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a96e8367105e924788ff36404e51e77ec0c16682
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=a96e8367105e924788ff36404e51e77ec0c16682
https://doi.org/10.14445/23488387/IJCSE-V3I6P104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+Methodology+on+Security+Engineering+for+Web+Services+Security+Architectures+extended+for+Integration+of+Cloud%2C+Big+Data+and+IOT&btnG=
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=151
https://doi.org/10.1109/EDOC.2004.1342505
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applying+MDA+Approach+for+Web+Service+platform&btnG=
https://ieeexplore.ieee.org/document/1342505
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+Driven+E-Learning+Platform+Integration&btnG=
https://ceur-ws.org/Vol-288/p02.pdf
https://doi.org/10.14445/22315381/IJETT-V70I7P217
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Urban+Computing%3A+Recent+Developments+and+Analytics+Techniques+in+Big+Data&btnG=
https://ijettjournal.org/archive/ijett-v70i7p217
https://doi.org/10.1007/978-3-642-14533-9_12
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Model+Driven+Architecture+Approach+for+Developing+E-Learning+Platform&btnG=
https://link.springer.com/chapter/10.1007/978-3-642-14533-9_12
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Generated+Psm+Multi-Layered+Model+Using+Mda+Approach&btnG=
https://www.ijeat.org/wp-content/uploads/papers/v8i4/C5882028319.pdf
https://doi.org/10.1007/978-3-319-46568-5_20
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=QVT+Transformation+Rules+to+Get+PIM+Model+from+CIM+Model&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-46568-5_20
https://doi.org/10.14445/22312803/IJCTT-V70I3P104
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Review+Paper+on+Application+of+Model-Driven+Architecture+in+Use-Case+Driven+Pervasive+Software+Development&btnG=
https://ijcttjournal.org/archives/ijctt-v70i3p104
https://doi.org/10.1016/j.procs.2016.04.229
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+Transformation+with+ATL+into+MDA+from+CIM+to+PIM+Structured+through+MVC&btnG=
https://www.sciencedirect.com/science/article/pii/S1877050916302629
https://doi.org/10.1007/978-3-319-30298-0_72
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+Driven+Architecture+as+an+Approach+for+Modeling+and+Generating+Graphical+User+Interface&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-30298-0_72
https://doi.org/10.14445/22492593/IJCOT-V12P309
https://ijcotjournal.org/archive/ijcot-v12p309
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Combining+UML+class+and+activity+diagrams+for+MDA+generation+of+MVC+2+web+applications&btnG=
https://www.praiseworthyprize.org/jsm/index.php?journal=irecos&page=article&op=view&path%5B%5D=12403
https://doi.org/10.1007/11663430_14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Transforming+models+with+ATL&btnG=
https://link.springer.com/chapter/10.1007/11663430_14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Classification+of+Model+Transformation+Approaches&btnG=
http://files.rsdn.org/73/czarnecki_helsen.pdf

