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Abstract - Smart city traffic regulation relies heavily on advanced traffic management systems (ATMS), a key component of 

the broader intelligent transportation system (ITS). Traffic flow forecasting is a crucial aspect of transportation that aids in 

traffic planning, control, management, and information dissemination. Although there are a great variety of models whose 

primary focus is on the development of short-term traffic flow predictions, making credible long-term traffic flow (LTTF) 

forecasts has become an increasingly difficult topic in recent years. To solve this problem, this paper proposed a novel hybrid 

model called the autoencoder gated recurrent unit (AEGRU) that can accurately predict long-term traffic flow for the next 24 

hours. Firstly, the autoencoder (AE) will take the raw data and pick out the most important features before doing 

dimensionality reduction. Secondly, the gated recurrent unit (GRU) uses the information given by the AE to make predictions 

about how much traffic volume there will be in the future. The outcomes of the evaluation show that the proposed AEGRU 

model is much better than compared approaches in terms of root mean square error (RMSE) of 1.6% mean absolute percentage 

error (MAPE) of 2.3% and mean absolute error (MAE) of 1.9%. 

Keywords - Traffic flow prediction, Long-term traffic flow prediction, Autoencoder, Gated recurrent unit, Neural networks, 

Deep learning. 

1. Introduction  
A well-informed transport system enables efficient route 

planning, estimates travel duration, and mitigates traffic 

congestion. Typically, external factors and spatiotemporal 

data are the cause of the erratic and unpredictable movement 

of traffic. One of the most difficult problems in transportation 

studies is predicting traffic flow prediction (TFP). Precise and 

reliable traffic flow prediction is essential for the scientific 

management and control of the highway, allowing drivers to 

plan their routes and times of travel better, make more 

informed decisions about how and when to travel, save 

money, and help the government implement cutting-edge 

traffic management strategies to alleviate gridlock [1].  

The art of foretelling the future is one of the most 

fascinating aspects of analysing human nature, and the same 

is evident in the administration of transit systems. Realizing 

how traffic changes across the whole roadway, not just on a 

single road, is very important and interesting. This will help 

people who have more traffic information choose better 

routes and help traffic managers run a road network and 

allocate resources in a logical manner [2]. Traffic flow is the 

number of automobiles that use a road at frequent intervals. 

The objective of TFP is to forecast how traffic will be in the 

forthcoming by looking at data on traffic flow. Most of the 

time, short-term traffic forecasting is applied to control traffic 

in the actual moment. In most scenarios, it just isn't up to the 

task of making decisions. Better traffic management and 

service quality are possible thanks to early judgments, 

measures, and overall arrangements informed by accurate 

and timely long-term forecasting. The information it gives 

can be used to manage traffic better and help drivers plan for 

places where there is a lot of traffic [3]. Current technological 

innovation and transport systems, like a strong backup for the 

Global Positioning System, Internet of Things, wireless 

sensing, and mobile communications, make urban areas 

increasingly connected, digitalized, and thus smart.  

The flow of traffic in cities is one of the most interesting 

applications of smart cities. During a certain time period, the 

traffic flow is calculated by tallying the total number of 

vehicles, pedestrians, taxis, buses, etc., passing through a 

specific area. Advanced learning algorithms for predicting 

traffic patterns have been proposed [4]. The widespread 

adoption of sensor technologies has just ushered in the era of 

big traffic data. The dominant way for making predictions 

now is based on data rather than models; it's called "deep 

learning." Deep learning has grown in reputation because of 

the fast growth of artificial intelligence. It has been used 

successfully to classify images, recognize speech, and 
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process natural language. Congestion, accidents, and delays 

in urban areas all come from the ever-increasing car 

population, putting a heavy burden on the city's mass transit. 

The best way to deal with traffic jams is to create an effective 

strategy for managing traffic according to projections of how 

traffic will move [5]. In the past, single-time-step methods for 

predicting traffic flow were the main focus. However, multi-

time-step models for predicting traffic flow have become 

very important for many reasons, including their scientific 

value. It is crucial for the transportation management method 

and assessment of traffic flow as part of the intelligent 

transport system, and there is an early warning system that 

can accurately predict how traffic will move in the long run. 

[6]. Furthermore, most of the current approaches can only 

provide short-term traffic flow prediction, and reliable long-

term traffic flow prediction methods are still in short supply.  

Due to how quickly errors spread, it's harder to make 

long-term traffic predictions than short-term traffic 

predictions. Using long-term forecasts rather than short-term 

projections can reduce average travel times. Thus, it is of 

major importance for scientific management to give medium- 

and long-term forecasts with improved precision so that more 

data may be used to support decision-making. The major 

issue with making long-term predictions is that mistakes are 

easy to make and add up over time. The iteration method is 

used to make many model predictions. This means that each 

model prediction will return the input as a new input. By 

moving the window, the actual information will get smaller, 

the forecast data will get bigger, and the error desire will add 

up and get bigger, which will affect the algorithm's ability to 

make long-term predictions. Minimizing the effect as a result 

of these errors, the forecast can be more precise and lengthen 

the moment it takes to make a prediction [7].  

Recent progress in this area of artificial intelligence 

research has made it more common to use deep neural 

network models to predict how traffic will move [8]. Deep 

learning methods are preferred to make predictions and 

conduct time series data analyses without using 

predetermined features. Using multiple hidden layers in an 

artificial neural network, deep learning is a subset of machine 

learning able to learn the crucial information needed to make 

a response. Extracting features is the primary distinction that 

can be made between DL and ML. In addition to discovering 

features through model training, deep learning is significantly 

more accurate at predicting future outcomes than competing 

algorithms. Deep learning, on the other hand, does more than 

just find features through model training [9].  

This paper follows the structure described below. 

Section 2 presents the literature review. In Section 3 talks 

about the Materials and Methods that make up the proposed 

AEGRU framework. The Implementation work is covered in 

Section 4. Experiments were conducted to verify the 

suggested method, and the results and analysis of those 

experiments are reported in Section 5. Section 6 contains the 

Conclusion and recommendations for future work. 

2. Literature Review  
One of the biggest challenges of advanced traffic 

management is predicting traffic flows reliably. Both the total 

area of land in metropolitan areas and the number of cars on 

the road have increased to the point where they are at 

capacity. Because of this, road transit became extremely 

difficult, which led to an ecological imbalance as well as a 

threat to human life on the road. Some of the problems have 

been solved with the help of modern innovations. Predicting 

traffic conditions in advance aids in journey planning, trip 

time estimation, and gridlock avoidance. In most cases, 

external factors are responsible for the unpredictable and 

disorderly behaviour of traffic. Some of the problems were 

brought under control when various forms of technology 

were introduced. The necessity of traffic forecast has led to 

the development of numerous methods, which can be 

grouped into two broad categories: parametric and 

nonparametric. Van et al. [10] proposed the KARIMA 

method, a hybrid approach to performing short-term traffic 

forecasting. Autoregressive integrated moving average 

(ARIMA) is a type of parametric model. The method 

employs Kohonen's self-organizing map while its 

foundational overview; furthermore, the ARIMA model is 

fine-tuned for each class separately.  

If you use a Kohonen map with a hexagonal layout, 

specifying the classes becomes much simpler. Forecasting 

performance is significantly enhanced in comparison to the 

ARIMA framework or backpropagation neural network since 

categorization and functional approximation are explicitly 

separated. This study shows how the model works by 

predicting traffic on a French highway for the next 30 

minutes and the next hour. Chan et al. [11] proposed a new 

Levenberg-Marquardt (LM) approach, and the hybrid 

exponential smoothing approach are applied to train neural 

networks (NNs) with the goal of enhancing the generalization 

capabilities of existing NN training methods for short-term 

traffic flow forecasting. The neural network method's weights 

are trained with a modified version of the LM technique after 

the data has been pre-processed with exponential smoothing 

to remove the lumpiness of acquired traffic flow data. Kumar 

[12] proposed ARIMA or seasonal ARIMA model being, 

forecasting traffic flow requires a lot of traffic data to build a 

methodology.  

However, it could fail to work if there isn't enough traffic 

data. In order to solve this issue, a forecasting method that is 

fixed, the Kalman filtering method (KFT), was 

recommended. This method makes less information than 

what is often used; therefore, it is more efficient. The only 

data that is used by the KFT-based prediction system to make 

an estimate of the flow values for the next 24 hours with a 

certain degree of accuracy is data from the previous two days. 
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Zhao et al. [13], an abundance of traffic data has shown the 

limitations of many tried-and-true techniques when applied 

to real-world scenarios with unpredictable traffic and 

intricate road layouts. When the traffic flow changes 

randomly and nonlinearly, it's easy to see where the 

parameter model's prediction went wrong. Nonparametric 

techniques have grown in popularity as a means of addressing 

this issue. Some important discoveries from the past few 

years have been put into models that predict traffic. Hou et 

al. [14] proposed the transit time in a network can be 

predicted using a random forest estimator. Two years worth 

of journey time data were used to train the estimator, and both 

temporal and spatial impacts were taken into account during 

modelling. The random forest models gave accurate 

estimates of how long trips would take in both heavy and light 

traffic situations.  

Mingheng et al. [15] proposed a support vector machine 

(SVM)-based, an accurate multi-step model that may be used 

to anticipate the flow of traffic in which the input vectors 

were made up of the real traffic volume and four distinct 

types of input vectors were contrasted to determine how well 

they predicted the same quantity of actual traffic. Sun et al. 

[16] came up with a Bayesian network-based way to estimate 

traffic flow between two nearby roads that meet in a 

transportation system. For instance, in a Bayesian network, 

the joint probability distribution among the cause nodes 

alongside the effect nodes is expressed as a Gaussian mixture 

model (GMM), and its variables are computed via the 

competitive expectation maximisation (CEM) method. Sun et 

al. [17] offer a dynamic procedure-k-nearest neighbour (DP-

KNN) that allows the KNN features to be adaptable as well 

as powerful, lacking the need for any sort of training or pre-

existing models. Isravel et al. [18] proposed a multivariate 

time series framework that analyses and forecasts SDN traffic 

flow.  

The proposed architecture modifies randomised singular 

value decomposition (RSVD) with multivariate singular 

spectrum analysis (MSSA) through increased traffic flow 

prediction accuracy. From observed traffic traces, the 

proposed technique predicts long-term traffic fluctuations. 

Future traffic flows are anticipated using the SDN controller's 

traffic records. Peng et al. [19] came up with a way to predict 

long-term traffic flow using dynamic graphs. Dynamic traffic 

flow probability graphs represent the traffic network. These 

graphs undergo graph convolution to learn spatial 

characteristics, and long short-term memory (LSTM) units 

are then used a focus on learning temporal attributes. When 

the dynamic graphs aren't complete, this article suggests 

using a graph convolutional policy network trained using 

reinforcement learning to fill in the gaps as a result of the data 

sparsity issue. Belhadi et al. [20] proposed a technique called 

recurrent neural networks with long-term traffic flow (RNN-

LF) to anticipate future flows from a variety of data sources. 

Parallel implementation details for the suggested solution 

architecture using graphics processing units are also 

provided, which makes it possible to improve the 

performance of RNN-LF. Qu et al. [21] proposed a technique 

for forecasting daily traffic based on past traffic patterns and 

other environmental factors using a deep neural network. 

Points are made in the following directions regarding the 

research gaps found in the literature review. 

 

• Lack of a recent survey in LTTF forecasting considering 

vital external factors like weather information and 

special events. 

• Limited exploration of capturing the extreme values in 

time series data. 

• Accuracy problem when dealing with temporal and 

spatial information. 

• Limitations of extracting the best features from the 

dataset using advanced learning techniques. 

 

2.1. Contributions 

The most important contributions of this paper are 

summed up in the following points. 

• This work provided an AE for extracting meaningful 

attributes from unprocessed data. 

• This paper suggests GRU uses the information from the 

AE to predict how much traffic there will be in the future. 

3. Materials and Methods 
As a result, in this section, an AEGRU approach was 

developed for conducting a long-term traffic flow prediction 

analysis over the next twenty-four hours, as depicted in 

Figure 1. Additional information on the proposed AEGRU 

framework is outlined in the following subsections. 

3.1. Autoencoder 

AE are a form of artificial neural network (ANN) used to 

learn unsupervised data encodings. Simple learning circuits 

called autoencoder to convert inputs to outputs with little 

noise. Autoencoders were initially used by Hinton and the 

PDP group during the 1980s to address the issue of 

"backpropagation." The goal of an autoencoder is to learn a 

pattern (encoding) for data with higher dimensions, often for 

the purpose of dimension reduction. Autoencoders are a key 

part of both unsupervised learning and deep architectures that 

use transfer learning and network training. A dimensionality 

reduction is the same thing as an autoencoder. 

Dimensionality reduction is apparently used in data pre-

processing (reduce or compress). The number of dimensions 

in a dataset is drastically reduced by the process of 

"dimensionality reduction." There could be a lot of 

information in the dataset being looked at. It doesn't use all 

of those features and uses some of them and then needs to 

figure out which features [22]. Autoencoder has the three-part 

architecture depicted in above Figure 1.



Mohandu Anjaneyulu & Mohan Kubendiran / IJETT, 71(5), 156-165, 2023 

 

159 

 
Fig. 1 Autoencoder gated recurrent unit 

 

3.1.1. Input Layer (Encoder) 

A component that reduces the size of the input data for 

the train, validate, and test sets by encoding it into a format 

that is often many orders of magnitude smaller than the 

original data. 

3.1.2. Hidden Layer (Bottleneck) 

A component that stores the condensed representations 

of the accumulated body of knowledge is; as a result, the most 

vital component of the network. 

3.1.3. Output Layer (Decoder) 

A module that assists in "decompressing" the knowledge 

representations held inside the network and reconfiguring the 

data from its original encoded state. After that, the results are 

contrasted with the ground truth. Training autoencoder. 

3.2. Hyperparameters to Train an Autoencoder 

3.2.1. Code size 

When tuning an autoencoder, the code size (or 

bottleneck size) is the most crucial hyperparameter. The size 

of the bottleneck will determine how much data needs to be 

compressed. Moreover, it can be used as a regularization 

phrase. 

3.2.2. Number of Nodes per Layer 

Autoencoders are neural networks; hence, the depth of 

the neural network used for both the encoder and the decoder 

is a crucial hyperparameter for tuning. The model becomes 

more complicated as its depth increases, although the model 

may be processed more quickly at lesser depths. 

3.2.3. Reconstruction Loss 

To train an autoencoder, first, choose a loss function that 

best fits the input and output data types. Both MSE losses and 

L1 losses have become standards when it comes to 

reconstructing the data shown in Equation 1. The 

reconstruction loss is expressed in terms of the binary cross 

entropy with input and output in the range [0, 1]. 

(𝑋, 𝑌^′ ) = ‖𝑌 − 𝑌^′ ‖
= ‖𝑌 − 𝜎^′ (𝑊^′ (𝜎(𝑊_𝑟 + 𝑏))
+ 𝑏^′ )‖^2                                                (1) 

where 

Y – original input, 

Y' – reconstructed input, 

σ – activation function, 

σ' - loss function, 

W – weight, 

b – bias. 
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3.3. Gated Recurrent Unit 

After RNN and LSTM, the Gated Recurrent Unit is the 

most recent method for modelling sequences. Because it is 

the newest competitor, it offers an upgrade over the other two 

techniques. In 2014, Kyunghyun Cho proposed GRU. GRU 

doesn't have a specific cell state called Ct. Instead, it has a 

hidden state called Ht. Because of the less complex 

architecture, GRUs can be trained much more quickly. The 

gates are to receive a value that is between zero and one. The 

fact that the gate returned a 0 indicates that the data is 

insignificant. One states that it is essential (closer to 0, it is 

unimportant, closer to 1, it is important). GRU comprises two 

gates, which are labelled the reset gate and the update gate, 

shown below in Figure 2. 

 
Fig. 2 Gated recurrent unit 

3.3.1. Reset Gate (Short-term Memory) 

Reset Gate is crucial for short-term memory, with the 

hidden state (Ht) utilized by the model to determine how 

much historical data to forget. Reset gate symbolized by rt. 

Parameters are input denoted by Xt and prior state defined by 

Ht-1 data multiplied by corresponding weights. Due to the 

sigmoid function, the value of rt will vary between 0 and 1. A 

sigmoid activation is employed to calculate rt in Equation 2. 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1)                    (2) 

where 

rt – reset gate, 

σ – Sigmoid activation function, 

Wr –Weights, 

Ur – Weights, 

Xt  -  input, 

ht-1 – previous state information. 

3.3.2. Update Gate (Long-Term Memory) 

The most important job of the update gate is to provide 

the model with information regarding "how much of the 

information from the past has to be kept," which is another 

way of saying "must be passed along to the future." The 

update gate is denoted by Ut, shown in Equation 3, the input 

is denoted by Xt, and information about the state before the 

most recent one is multiplied by relevant weights to generate 

the parameters. 

𝑢𝑡 = 𝜎(𝑊𝑢𝑥𝑡 + 𝑢𝑢ℎ𝑡−1)                         (3) 

where 

ut – update gate, 

σ – Sigmoid activation function, 

Wu –Weights, 

uu – Weights, 

Xt  -  input, 

ht-1 – previous state information. 

3.3.3. Working of GRU 

As a result, GRU gates have two distinct phases: the 

hidden state and the candidate hidden state. The candidate's 

hidden state is initially derived. 

3.3.4. Candidate Hidden State 

The end result of the reset gate rt amplifies the input state 

and hidden state at time t-1. The candidate hidden state can 

be calculated by feeding all of this data into the tanh function 

in Equation 4. When rt equals 1, all of the data from the 

hidden 

state 

ht-1  

＋ 

input Xt 

＋ 

 

σ 

σ 

1- 

1-Ut 

× 

＋ 

tan

h 

× 

× 

＋ ht 

rt 

 

Ut 

 

h'
t 

  



Mohandu Anjaneyulu & Mohan Kubendiran / IJETT, 71(5), 156-165, 2023 

 

161 

previous hidden state Ht-1 is taken into account. Similarly, if 

rt is equivalent to 0, the entire data against the prior hidden 

state is discarded. 

ℎ𝑡
́ = 𝑡𝑎𝑛ℎ(𝑊𝑋𝑡 + 𝑟𝑡 ∙ 𝑈ℎ𝑡−1)                          (4) 

where 

ht – hidden state, 

tanh – activation function, 

W – weights, 

Xt – input, 

rt – reset gate, 

U – Update gate, 

ht-1 – previous state information. 

3.3.5. Hidden State 

The current hidden state Ht is built using the hidden state. 

The update gate is opened for the first time at this point. GRU 

makes use of a single update gate to manage both the 

historical information, which is denoted by the value Ht-1, and 

the current information, which is derived from the candidate 

state in Equation 5. If the value of ut is close to zero, then the 

first term in the equation will vanish, which indicates that the 

newly revealed hidden state will not have a great deal of 

information from the previously revealed hidden state. On the 

other hand, the second portion becomes almost one, which 

effectively means that the information from the candidate 

state will be the only part of the hidden state at the present 

timestamp [23]. 

ℎ𝑡 = 𝑈𝑡 ∙ ℎ𝑡−1 + (1 − 𝑈𝑡) ∙ ℎ𝑡
́                              (5) 

where 

ht – hidden state, 

Ut – Update gate, 

ht-1 – previous state information. 

4. Implementation 
The parameter configuration of AE and GRU are 

depicted below in Table 1 and Table 2 subsequently. 

Table 1.  AE parameters 

Summary Values 

Input Parameters 1(2D array) 

Output Parameters 1(2D array) 

encoder layers 2 

decoder layers 2 

Batch size (Records 

loaded to train) 
256 

Number of epochs 

(Forward+Backward) 
500 

Loss Binary-cross-entropy 

Input: UK Traffic dataset 

Output: Traffic flow 

1. Load the UK traffic Dataset 

2. Apply Data Pre-process activities 

2.1 Remove outliers if exists. 

2.2 Transform direction_of_travel column values as 

E-1, W-2, N-3 and S-4. Count_date column as yyyy-

mm-dd. 

Input Data Preparation: 

3. Add StandardScalarization transform technique with a 

range between -1 and 1. 

4. Add reverse StandardScalarization. 

5. Autoencoder: 

5.1 Add 2 Encoding Layers with 3 Neurons 

5.2 Add 2 Decoding Layers with 3 Neurons. 

NOTE: 3 Neurons because considered only date,      

direction, all_motor_vehicles. 

6. Sort the dataset based on count_date, hour, and 

direction_of_travel columns. 

Model Construction: 

7. Create AEGRU model: 

7.1 Add 50 Hidden layers with neurons as 36. 

7.2 Add 3 Dense layers with neurons as 70, 50, and 

25, respectively. 

8. Add a single flatten layer. 

9. Fit or Train the Model with input data for 275 epochs 

and capture the loss. 

11. Predict traffic flow. 

 

Table 2.  GRU parameters 

Summary Values 

Input Parameters 1 [3D Array] 

Output Parameters 1  (2D array) 

Hidden layers 50 

Neurons in the Hidden 

Layer 
36 

Batch size 256 

Number of epoch 275 

Activation function Softmax 

Loss Function 
Mean Absolute Error 

(MAE ) 

Dense layers 3 

Neurons in Dense layers 50, 25 successively 

flatten layers 1 
 

5. Results and Discussion 
5.1. Data Description 

In this research, the traffic dataset was gathered from 

Zone 1 to Zone 5 at the Department of Transport in Great 

Britain, United Kingdom (UK) (Road Traffic Statistics, Great 

Britain, UK) [24]. The sensors were employed to keep track 

of how many cars were on major and minor roads in the UK. 
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Using 8,000 physical observations of the roads, the electronic 

vehicle monitors record the important information—the 

experimental evaluation compared to other algorithms used 

in this dataset. The dataset obtained 21 years (2000-2021) 

includes 35 variables with spatiotemporal data, such as rain, 

snowfall, and windy seasons, all of which have a significant 

impact on traffic flow during the weekdays and were used to 

assess the efficacy of proposed AEGRU technique.  

In this study, the dataset was split into two sections, with 

the training dataset accounting for 70% and the testing dataset 

for 30%. Also, there's a column labelled "all motor vehicles" 

that contains information on all vehicles. This feature adds 

cars, pedal cycles, taxis, buses, two-wheeled motor vehicles, 

light goods vans, four-rigid-axle heavy goods vehicles, 

articulated-axle heavy goods vehicles, and three-rigid-axle 

heavy goods vans vehicles on weekdays and weekdays off 

during busy and quiet periods. 

5.2. Data Pre-Processing 

Furthermore, at the beginning stages of development, the 

proposed AEGRU model requires data pre-processing to 

standardize the input data. This is accomplished by the 

application of the standardschalarization method from the 

Scikit package. Standardization is a method of scaling that 

involves centering values on the meanwhile maintaining a 

unit standard deviation; this indicates that the mean of the 

attribute remains zero and the distribution produced has a unit 

standard deviation. 

5.3. Validation 

Three indices were employed to quantify the 

effectiveness of the proposed AEGRU model: RMSE 

exhibited in Equation 6, MAPE exhibited in Equation 7, and 

MAE exhibited in Equation 8 was evaluated [25]. The 

formulas are as follows: 

RMSE = √
1

m
∑ (�̂�k − dk)

2n
j=1                                (6) 

MAPE =
1

𝑚
∑

|�̂�𝑘−𝑑𝑘|

𝑑𝑘

𝑛
𝑗=1                                (7) 

MAE =
1

𝑚
∑ |�̂�𝑘 − 𝑑𝑘|𝑛

𝑗=1                                 (8) 

 
Where  

�̂�k signifies the predicted value,  

dk signifies the observed value and  

n signifies the number of data elements. 

5.4. Results Analysis 

To test the efficacy of the proposed AEGRU technique, 

contrast the five approaches: ARIMA, naive bayes, linear 

regression, recurrent neural network (RNN), and LSTM 

using the UK traffic dataset. The error rates achieved by 

training and testing models are summarized below in Table 

3. 

Since the UK traffic dataset was divided into training and 

testing data sets with a ratio of 70%:30%, the proposed 

AEGRU model was trained on the training dataset and tested 

on the testing dataset. As the number of epochs (training 

loops) increased, the loss rate in the testing data set went from 

60% to 5%, and in the training data set, it went from 52% to 

5%. Four convergences between training loss and testing loss 

occurred at epochs 97, 146, 220, and 270, with loss rates of 

47%, 33%, 29%, and 8%, respectively. Eventually, the loss 

during testing reached 6%, whereas the loss during training 

reached 4%. This occurred before significant divergence 

commenced. A loss of around 6% is predicted by the 

proposed AEGRU model, shown in below Figure 3. 

Furthermore, the comparison of predicted traffic to 

actual traffic for the following twenty-four hours of the day 

is depicted below in Figure 4. In this context, "predicted 

traffic" refers to the prediction made by the proposed model. 

There is a significant increase in traffic volume during the 

morning peak hour, which begins at 6:00 a.m. and ends at 

12:00 p.m. as well as during the evening peak hour, which 

runs from 15:00 p.m. to 23:05 p.m. During off-peak hours, 

the flow of traffic is relatively normal. Therefore, the 

prediction made by the proposed AEGRU model is quite 

close to the actual flow of traffic, except for a few hours; the 

expected traffic is somewhat higher and lower than real 

traffic, with the difference being essentially insignifican

Table 3. Error metric values 

 

 Training Testing 

Algorithm RMSE MAPE MAE RMSE MAPE MAE 

ARIMA 37.1 32.5 29.4 38.9 36.71 39.8 

Naive Bayes 29.7 28.5 27.1 35.7 33.51 32.54 

Linear Regression 13.4 11.7 10.3 16.35 13.47 14.01 

RNN 9.3 8.6 7.67 12.65 13.9 11.74 

LSTM 6.2 8.5 7.9 6.14 5.86 4.6 

AE-GRU✓ 1.6 2.3 1.9 1.87 2.15 3.21 
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Fig. 3 Loss of proposed algorithm on UK Traffic data per epoch 

 
Fig. 4 Proposed algorithm traffic flow prediction 

 

Fig. 5 All algorithms traffic flow prediction evaluation 

In order to predict the traffic flow that is expected to 

occur in the future with the results of using various models, 

including the ARIMA model, the naive bayes model, the 

linear regression model, the RNN model, and LSTM model, 

which are depicted in above Figure 5, compared to other 

algorithms, where error rates are far higher than the proposed 

model's, it is evident that the proposed AEGRU forecast is 

consistent and, in most cases, aligns with the actual traffic. 

Therefore, the proposed AEGRU model is more successful at 

predicting traffic patterns than alternative methods. 

Moreover, during training of the proposed hybrid model, 

AEGRU attained error values of 1.6%, 2.3%, and 1.9% for 

RMSE, MAPE, and MAE. In comparison, the LSTM error 

value is 4.2%, and the error values of other techniques are 

above 5%. Similarly, the proposed method has a 1.9% RMSE 

error value, whereas all peer-comparison methods have 

greater than 6% error values. As a result, this study concluded 

that the proposed AEGRU model had a lower error rate in 

training, as demonstrated in below Figure 6. 
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Fig. 6 Training RMSE, MAPE, MAE on UK traffic data

 
Fig. 7 Testing RMSE, MAPE, MAE on UK traffic data

Furthermore, the testing of the proposed hybrid model 

AERU is insignificant for RMSE, MAPE, and MAE error 

values of 1.87%, 2.15%, and 3.21%, respectively. In contrast, 

it is greater than 4% for other methods. Also, in testing, it was 

determined that the proposed AEGRU method performed 

more effectively, with a lower overall error rate, as shown in 

above Figure 7. 

 

The benefits of the proposed AEGRU algorithm are 

listed below. 

• The proposed model best fits linear data because the 

proposed LTTF model has RMSE, MAPE, and MAE 

ratios of less than 4% in training and testing data sets. It 

also outperforms other algorithms in terms of training 

speed, fewer parameters (less memory consumption), 

weight sharing, and error rates. 

• LTTF prediction is more accurate and closer to the actual 

prediction. 

 

6. Conclusion 
This research presents the AEGRU model, a hybrid of 

AE and GRU, for LTTF prediction. AE will take the raw data 

and pick out the most important features before doing 

dimensionality reduction. AE will then prepare well-defined 

and intuitive input data for GRU so that it can work faster. 

GRU uses the information given by the AE to make 

predictions about how much traffic volume there will be in 

the future. The research methodology focuses mostly on the 

LTTF prediction for the upcoming twenty-four hours of a 

day, making it easier for commuters to plan their itineraries. 

Finally, the effectiveness of the AEGRU forecast was 

evaluated by employing actual data sets from the United 

Kingdom's road traffic statistics. The outcomes of the 

following metrics reveal that the proposed methodology 

performed better than other methods being used, including 

ARIMA, Naive Bayes, Linear Regression, RNN, and LSTM 

models. When compared to alternative methods, long-term 

traffic flow prediction endure minor error rates and comes 

quite close to the actual value. Additionally, the execution 

time is shortened.  
• Lesser error rates for RMSE, MAPE, and MAE in testing 

data, with values as 1.87%, 2.15%, and 3.21%, 

respectively.  

• Lesser error rates for RMSE, MAPE, and MAE in 

training data, with values as 1.6%, 2.3%, and 1.9%, 

respectively.  

 

In future work, to make the long-term traffic flow 

prediction more stable, the proposed AEGRU algorithm 

ensemble with automatic feature selection technique 

enhances the performance. 
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