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Abstract - A growing body of evidence indicates that incorporating onboard computer vision hardware and software into 

modern automotive systems aids in the pursuit of eco-driving goals. Automotive engineers face a lengthy and tedious task 

when developing Energy Management Strategies (EMSs) for various hybrid electric vehicle configurations. By capitalizing 

on similarities between various hybrid electric vehicle EMSs, experienced engineers can shorten the development cycle. This 

automated EMS development framework aims to speed up the production of hybrid electric vehicles. The study presented 

here combines computer vision with deep reinforcement learning, which leads to an improvement in the fuel economy of 

hybrid electric cars. The proposed method can autonomously learn the best policy for control based on observed data. We 

employ the cutting-edge convolutional neural networks-based object detection technique to glean useful visual data from 

onboard cameras. A continuous deep reinforcement learning model takes the detected visual data as a state input and 

generates policies for conserving power. To be more precise, the sharing of information among four very different hybrid 

electric vehicle types is investigated. In this paper, we propose a transfer learning-based tactic to automate the improvement 

of hybrid electric vehicle EMSs through the exchange of cross-type knowledge between EMSs that employ various flavors of 

deep reinforcement learning. According to the findings, the proposed method achieves the highest possible fuel efficiency of 

the global optimization programming, and the depth reinforcement learning-based system with image perception uses less 

fuel than the one without visual information. Moreover, the system without visual information uses less fuel than the one with 

visual information. Battery modeling, accurate battery state of charge and state of health estimation, and the development 

of other advanced EMS in EVs can solve most of the problems, allowing for more precise driving range estimates and more 

efficient charging and discharging strategies. The proposed strategy was shown to be effective and reliable in reducing 

losses and increasing safety during training and validation. The proposed energy management strategy performed better 

than the methods that were based on deep learning in terms of the amount of time needed for computation and the amount 

of energy lost in the combination battery bank. This provides support for the utilization of this method in the development of 

future systems for managing energy. 

Keywords - Electric Vehicle (EV), Computer vision, BMS, Deep Reinforcement Learning.  

1. Introduction  
Due to concerns over depleting fossil fuels and global 

warming, battery electric vehicle development has received 

a lot of consideration over the past several decades. 

Compared to cars powered by internal combustion engines, 

BEVs are among the greenest options because of their zero-

emissions driving, high powertrain competence, and 

potential for incorporation with renewable energy. 

However, there are still obstacles to be overcome in the 

enterprise and process of battery systems in BEVs to 

decrease the cost further and increase the presentation and 

longevity of these vehicles. BEVs' battery systems shouldn't 

be excessively large for a number of reasons, including price 

and efficiency. However, the criteria for the potential for 

exerting force and energy must be met in all cases, 

particularly while working in cold temperatures and high 

states of charge (SoC). Multiple energy system integrations 

have been extensively discussed as a potential solution to 

the problems outlined above. Most hybrid energy storage 

systems use power electronics to pair two high-energy-

density devices. Hybrid energy storage systems show a 

number of requirements have been satisfied through the use 

of several storage technologies, including supercapacitors 

[6]. Although supercapacitors have many positive attributes, 

such as high efficacy, long cycle life, and high-power 

density, even at low temperatures, they also have certain 

negative aspects. High-power lithium-ion batteries, such as 

those with a lithium-titanate-oxide anode, have just entered 

the market [7], and this has piqued the interest of the 

business community in hybrid battery systems (HBSs) 

[8,9,10]. 

Several circuits, components, power systems, detectors, 

actuators, transistors, resistors, inductors, transducers, 

valves, translators, and safety devices make up the BMS in 

electric cars. Several methods, models, and control signals 

quantify these factors [11]. A significant amount of 
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investigation has been put into designing the right 

algorithms in BMS [12]. Model-based techniques and 

intelligent methods are the most often used methodologies 

in business performance management systems [13]. The 

compound, dynamic, and nonlinear features of lithium-ion 

batteries may be addressed by intelligent algorithms, which 

are ideal for use with these batteries. 

There is an immediate need to manufacture more fuel-

efficient automobiles due to the depletion of global oil 

sources and the more rigorous emissions rules throughout 

the world [1]. In the current technological context, hybrid 

electric vehicles (HEVs) are seen as an attractive option for 

reducing emissions and cutting energy use costs [2]. HEVs, 

which are seen as a bridge product between regular gasoline 

cars and zero-emission vehicles, combine the benefits of 

both fuel and electric vehicles to produce exceptional 

mileage and tailpipe emissions [3]. Thus, there has been a 

dramatic increase in both the quantity and variety of HEVs 

over the past several years, which has contributed to a 

rapidly expanding and successful industry [4, 5]. Concurrent 

HEVs, sequential HEVs, and energy HEVs are the three 

main subsets of HEVs based on their powertrains [3]. 

More recently, Deep Reinforcement Learning has been 

discussed as a way to overcome the constraints of real-time 

optimization approaches using scenario-action fitting 

[14,15]. This is due to the fact that Deep Learning Algorithm 

can better match circumstances to actions than can real-time 

optimization approaches. Modeling the EMS may be done 

with a Markov decision process (MDP) [16] because Deep 

Reinforcement Learning-based EMS can meet the Markov 

property. Using Q-learning and Deep As part of a Deep 

Reinforcement Learning-based energy management method 

for HEVs, Q-learning algorithms were developed by Wu J. 

et al. [17]; Deep Q-EMS learnings may be an inter-input and 

multi-information integration method, as the authors 

showed by analyzing traditional Q-learning under multi-

state inputs, which can lead to dimensional disaster. These 

results were given in a publication by Tan H. et al. [18] titled 

"DRL-based energy management method for hybrid electric 

cars based on Q-learning and Deep Q Critic-Actor learning 

technique to address discretization errors and dimensional 

catastrophes. It has been demonstrated that this tactic 

performs similarly to DP. Learning in large discrete-

continuous hybrid action spaces was made more efficient by 

Li Y and Wu Y. et al. [19,20] by pre-training the actor-

Critic network and integrating the inclination and 

congestion information. Lian R. and colleagues [21] 

developed a better approach for including expert knowledge 

in DDPG for energy management. This structure was 

developed with the hopes of facilitating quicker learning and 

improving efficiency while using less gas. 

The following are the contributions that the innovations 

made to the article based on the motivations: We intend to 

improve the fuel efficiency of HEVs by taking into account 

current traffic conditions in real-time via an in-vehicle 

vision sensor. This information includes things like the 

condition of the traffic light and the flow of road traffic. 

Interestingly, previous studies on EMS have ignored the 

importance of onboard visual systems. A cutting-edge 

reinforcement-learning-based energy management system 

has been created for extended electric-tracked vehicle range 

hybridization. With the goal of deriving an energy-efficient 

strategy and realizing faster training speed and lower energy 

consumption than the conventional DQL-based policy, a 

deep learning algorithm that employs a new iterative 

algorithm to update the weights of the nodes in the neural 

network has been proposed. The network nodes' weights are 

updated via a novel optimization technique in this method. 

Using the picture data, the real-time deep learning-based 

object identification algorithm known as YOLO is applied 

to identify traffic signals and the number of cars in the 

immediate area. The DRL agent receives the discovered 

data and processes it. The outcomes of the experiments 

reveal that the traffic data identified by YOLO is possible to 

increase fuel efficiency without adding any additional costs 

associated with the hardware. 

The remainder of the paper is prepared in the following 

fashion: In Section II, the works related to energy 

consumption are presented to the reader. In Section III, the 

algorithm for solving the proposed model and the deep 

earning is discussed. In Section IV, along with an analysis 

of the performance obtained from the proposed system. 

Section V is where we draw a conclusion to the article and 

explore the way forward. 

2. Related Works 
To classify EMSs, regulation and optimized-based 

algorithms are the most used options [22, 23]. These two 

classes can be used as broad categories for EMSs. However, 

while rule-based methods are frequently devoid of 

sophisticated and technically hard algorithms, they are often 

more compute-demanding for use in real-time software and 

need ultra-precise adjustment [25,26]. [27] Optimization-

based enterprise management systems, backed by analytical 

and numerical methods, have been found to affect the 

reduction of cost functions in studies significantly. Dynamic 

programming (DP) is a method for selecting a vehicle's most 

optimal control strategy by analyzing its whole operating 

cycle to identify all possible work-state combinations and 

minimize fuel consumption and emissions [28]. However, 

the technique cannot be employed for real-time applications 

because of the massive computational expense and the 

prerequisite for comprehensive preview knowledge of 

future routes; instead, it can only be used to offer criteria for 

analyzing various EMSs. After then, many researchers 

devoted attention to studying actual optimization algorithms 

[29,36], the Equivalent Consume Risk reduction Strategy 

[31], and the model control strategy [32]. These are just a 

few examples. It is difficult to maximize energy allocations 

using the conventional EMSs described above since doing 

so requires the processing of enormous volumes of 

information in real time, which makes it challenging. As a 

result, learning-based EMSs, in particular, approaches based 

on deep reinforcement learning, are the subject of a 

significant amount of research. 



S. Manoj & S. Pradeep Kumar / IJETT, 71(5), 219-227, 2023 

 

221 

The artificial neural networks (ANN) predictor used 

data from the previous driving cycle as well as other data 

collected as input variables. Following that, the anticipated 

future velocity sequence was fed into a Model Predictive 

Control (MPC) algorithm. The journey details, including 

road conditions and the path traveled by automobile, were 

relayed via the communication device. The intelligent EMS 

was created by Zhang et al. [33]. This EMS, in conjunction 

with the chaining neural network velocity prediction mode, 

builds up future driving cycles with the goal of 

minimizing fuel usage. 

Complete, deep transfer reinforcement learning 

(DTRL) is a viable approach that might make it easier to 

construct DRL-based control agents; however, it is not 

being investigated in HEV EMSs at the moment. As part of 

this study, we look at adapting DRL-based EMSs to other 

HEVs and provide a novel DTRL framework for HEV 

energy management. The DTRL framework is founded 

upon a deep deterministic policy gradient DRL model, 

which is continuous in nature (DDPG). This model aims for 

improved generalization and steers clear of the 

discretization mistake [34]. We show that it is possible to 

increase the learning efficiency of one kind of HEV by 

transferring information from another type of HEV with a 

powertrain structure that is very different from the first 

HEV. 

In addition, the state variable quantity used in 

reinforcement learning algorithms is distinct, which 

indicates that there is a restricted range of possible values 

for those variables. The "curse of dimensionality" issue will 

arise after the thickness of the discrete points reaches a 

certain threshold [35]. Research in the energy management 

field based on deep reinforcement learning and in which the 

states are set continuously, has been presented as a solution 

to this problem. In the paper referred to as [20], a continuous 

control method for managing energy on a series-parallel 

plug-in hybrid electric bus was published. This technique 

was based on deep reinforcement learning. An extensive 

number of driving cycles were generated from the traffic 

simulation and used to train the smart energy agent. Deep 

RL network updates were made using the stochastic gradient 

descent (SGD) method. The suggested method performed 

significantly better than the usual reinforcement learning 

strategy, as the experiments and simulations show.  

Further deep learning method for hybrid electric vehicle 

power corporate governance is described in reference [37]. 

In the research, the neural networks were updated using a 

different steepest descent method called Adam, 

incorporating reweighted measurement. The research used 

this technique. In the first place, prior research has 

frequently used gradient descent techniques to minimize the 

loss function and update the weights of the nodes during 

the training of neural networks. Current optimization 

approaches hamper the efficacy of deep RL-based resource 

management controls because they need a high number of 

training cycles and frequently fall into the trap of local 

optimization. It is required to use a novel optimization 

strategy to investigate better ways to update the neural 

network nodes and implement the deep reinforcement 

learning-based energy management control. 

3. Methodology 
A straightforward diagrammatic representation of our 

approach is shown in Figure 1, which was created with the 

goal of making the suggested EMS more comprehensible. 

As shown in Figure 1, the DRL agent receives two different 

types of observations. These observations include the 

intrinsic vehicle states of speed, acceleration, and state of 

charge of the battery, as well as the external visual 

observation acquired through a camera. The DRL algorithm 

takes the environmental observations it gets at each time 

step into consideration before deciding how the power 

should be dispersed between the machine and the motor. 

After then, the DRL agent receives feedback on the HEV's 

overall energy usage, which is the direct result of the 

decision that it made. 

 

 
Fig. 1 Deep reinforcement learning 

 

Table 1. Parameters of electric vehicle 

Parameters Value 

Maximum efficiency 56kw 

Maximum efficiency 49kw 

Maximum efficiency 81kw 

Most possible traction 468Nm 

Potential 1.2kwh 

planetary gearbox 2.4 

Transmission gear ratio 3.992 

control bulge 1338kg 

Wheelbase Diameter of the Drive Train 0.312m 

the coefficient of air resistance 0.32 

Presentational Zone 2.32m2 

Inertia of Rolling 0.021 
 

3.1. Powertrain Modelling 

EMS studies have shown that the longitudinal 

dynamics of a vehicle—both the vehicle's and the 

engine's—have a noteworthy impact on the quantity of 

energy consumed by the vehicle. This discussion centres on 

a hypothetical vehicle with mass M and speed v. In order for 

the vehicle to go forward, it must combat a variety of 

obstacles, including rolling resistance, vertical resistance, 

air drag, and vehicle inertia. The equation for vehicle 

dynamics may be used to determine the propulsive force, 

denoted by the letter 𝐹𝑡𝑟:
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𝐹𝑡𝑟 = 𝑐𝑟𝑓𝑀𝑔𝑐𝑐𝑜𝑠𝜃 + 0.5𝑐𝑟𝑑𝐴𝑓𝑣2𝜆 + 𝑀𝑔𝑠𝑖𝑛𝜃 + 𝑀
𝑑𝑣

𝑑𝑡

              (1) 

 

Where 𝑐𝑟𝑓 Is the constant of the resistance coefficient 

between the wheel and the roadway, 𝑔𝑐 is the gravitational 

velocity, is the road angle, is the air density, 𝑐𝑟𝑑 is the 

coefficient of drag, and 𝐴𝑓 is the vehicle's frontal sectors. 

Table I provides a summary of the most important electric 

vehicle specifications, all of which have been taken directly 

from the relevant literature. 

 

As a result, the tension that is operating on the tire, 

symbolized by the letter 𝑇𝑡, and the power that is needed to 

drive the engine of the vehicle, denoted by the letter 𝑃𝑡𝑟 , 

may be computed as follows: 

{
𝑇𝑡 = 𝐹𝑡𝑟𝑟

𝑃𝑡𝑟 = 𝐹𝑡𝑟𝑣
   (2) 

It can be written as 

{
𝑇𝑡 = (𝑐𝑟𝑓𝑀𝑔𝑐𝑐𝑜𝑠𝜃 + 0.5𝑐𝑟𝑑𝐴𝑓𝑣2𝜆 + 𝑀𝑔𝑠𝑖𝑛𝜃 + 𝑀

𝑑𝑣

𝑑𝑡
)𝑟

𝑃𝑡𝑟 = (𝑐𝑟𝑓𝑀𝑔𝑐𝑐𝑜𝑠𝜃 + 0.5𝑐𝑟𝑑𝐴𝑓𝑣2𝜆 + 𝑀𝑔𝑠𝑖𝑛𝜃 + 𝑀
𝑑𝑣

𝑑𝑡
)𝑣

      (3) 

𝑟 denotes the radius of the tire. The effective internal 

impedance battery model contains a battery open-circuit 

voltage source as well as an internal controller in its 

construction. The equations of the battery model that relate 

to the calculations that need to be done may be summarized 

as follows: 

{
𝐼𝑏 =

𝑣𝑜−√𝑣2−4𝑟𝑝𝑏

2𝑟

𝑆𝑂𝐶 = 𝑆𝑂𝐶𝑖 −
1

𝑐𝑏
∫ 𝐼𝑏𝑑𝑡

𝑛

0

         (4) 

𝑆𝑂𝐶 = 𝑆𝑂𝐶𝑖 −
1

𝑐𝑏
∫

𝑣𝑜−√𝑣2−4𝑟𝑝𝑏

2𝑟
𝑑𝑡

𝑛

0
        (5) 

The battery current is defined as 𝐼𝑏  and 𝑆𝑂𝐶𝑖 is the 

initial or the starting value of SOC. 𝑣𝑜 defines the open 

circuit voltage, 𝑟 is the resistance value, 𝑝𝑏  is the power 

output of the battery, and 𝑐𝑏 denotes the battery capacity. 

The typical driving speed and the typical turning speed 

of cars are calculated by, 

{
𝑣𝑎 =

𝑣𝑎+𝑣𝑏

2

𝜔 =  
𝑣𝑎−𝑣𝑏

𝑣𝑡

  (6) 

𝑣𝑡  represents the vehicle tread. Figure 2 shows the 

velocity distributions for the Comma.ai Highway Driving 

Cycle (CHDC)  

 
Fig. 2 Velocity distributions for the comma.ai highway driving cycle 

 

3.2. Image Processing 

After being inspired by the exceptional performance 

shown on picture classification and detection, 

Convolutional networks were shown to effortlessly 

generate results in several computer vision tasks, including 

object recognition. This research provides methods for 

detecting traffic signals and counting cars by employing the 

state-of-the-art, real-time object recognition system You 

Only Look Once (YOLO), which has been proven to be 

accurate and rapid in object identification. We utilize 

YOLOv3, the most recent version, to enhance the precision 

of CNN models. Figure 10 is a schematic depicting the CNN 

architecture. As a network based on feature learning, 75 

convolutions are its primary tool.  

 

The YOLO sensor is capable of detecting vehicles, red 

lights, and green lights. Examining vehicle detection data 

can help estimate the total number of autos. Traffic density 

is a key metric for evaluating the condition of a network's 

traffic flows and may be used by a variety of applications. 

We utilize the vehicle enumeration number determined by 

the visual system because the volume of traffic ahead of the 

controlled electric vehicles may be thought of as a quantity 

of density. Figure 3 shows the suggested method's 

framework. It is made up of three parts: the input picture, 

the YOLO network's structure, and YOLO's detections. The 

Darknet 53, which consists of 53 layers, is employed as the 

feature extractor in YOLO, making it a fully convolutional 

network. 

 

3.3. Energy Management Algorithm 

An EMS powered by a hybrid of deep neural networks 

and traditional reinforcement learning is created. Since the 

suggested EMS is an end-to-end control approach, it makes 

choices based exclusively on the system's current state. This 

is a deep Q-network, a type of deep reinforcement neural 

network (DRN). Value function calculation, DRL algorithm 

design, and an online learning application based on DRN 

algorithms are shown here. Algorithm for Managing Energy 

Our proposed management system is grounded in these 

three pillars: deep learning incessant estimate, necessary 

traction energy, and secondary energy.

 



S. Manoj & S. Pradeep Kumar / IJETT, 71(5), 219-227, 2023 

 

223 

 
Fig. 3 The proposed method of YOLO's framework 

  

Algorithm for the Prediction and Control of Energy Use 

1. Notation: 

a. Air Conditioning - 𝐴𝑐 

b. Traction – 𝑇𝑟 

c. Alert – 𝐴𝑙 

d. predicted sequence triplets – 𝑝𝑠𝑡 

e. time – 𝑡 , Dst – 𝐷 

f. Full comfort -𝐹𝐶, HalfComfort -𝐻𝐶, 

2. Input: Battery Level and a History of Triplets 

3. Output:𝐴𝑐, Half, 𝑇𝑟 or 𝐴𝑙 

4. While Not at 𝐷do 

5. next𝑝𝑠𝑡(𝑎,by and 𝑡) 

a. Predicted 𝑡 to 𝐷 

b. Calculate𝐹𝐶, 𝐻𝐶 and 𝑇.energies to 𝐷 

6. if𝑇𝑟.Energy ≥ SoC, then 

a. Raise Severe 𝐴 

7. else if 𝐻𝐶≥ then SoC  

a. Raise 𝑇𝑟 Only 

8. else if𝐹𝐶 ≥ SoC then 

a. Raise𝐻𝐶 Only 

9. end if 

10. end while 

 

The electric vehicle control technique may be expressed 

mathematically as an endless horizon dynamic optimization 

problem, as shown below. 

𝑊 = ∑ 𝛶𝑘𝑟(𝑘)∞
𝑘=0   (7) 

 

where 𝑟(𝑘) represents the instantaneous reward 

experienced by at time 𝑘, and (0, 1) is a discount factor that 

guarantees the countless sum of cost function conjunction. 

The ideal value, denoted by 𝑂∗(𝑆𝑡𝑘, 𝐴𝑐𝑘), is the highest 

possible cumulative reward that may be earned by doing the 

action 𝐴𝑐𝑘while in state 𝑆𝑡𝑘. Here is how the Bellman 

Equation determines 𝑂∗(𝑆𝑡𝑘, 𝐴𝑐𝑘): 

𝑂∗(𝑆𝑡𝑘, 𝐴𝑐𝑘) = 𝐸𝑟[𝑟 + 𝛶 max
𝑥𝑘+1

𝑂∗(𝑆𝑡𝑘+1, 𝐴𝑐𝑘+1|𝑆𝑡𝑘, 𝐴𝑐𝑘]

     (8) 

As indicated in Equation 11, we apply the Q-learning 

approach to update the value estimation. 

𝑂𝑘+1(𝑆𝑡𝑘, 𝐴𝑐𝑘) = 𝑂𝑘(𝑆𝑡𝑘, 𝐴𝑐𝑘) + ŋ(𝑟𝑘+1 +
𝛶 max

𝑥𝑘+1

𝑂𝑘(𝑆𝑡𝑘+1, 𝐴𝑐𝑘+1) − 𝑂𝑘(𝑆𝑡𝑘, 𝐴𝑐𝑘)) (9) 

 

The activation function for the hidden layers is the 

rectified linear unit (ReLU), and the linear layer is utilized 

to get the action value for the output layer. Using the 

maximum Q-value action with probability 1 −  є and a 

random action with probabilityє, the є-greedy strategy picks 

actions in an effort to strike a balance between exploration 

and exploitation. By using the neural network's forward 

calculation capabilities, we can estimate the Q-value for 

every control operation. Equation 10 defines the loss 

function to be the square root of the mean error between the 

desired Q-value and the neural network's predicted output. 

𝑇𝑄 = 𝑟 + 𝛶 max
𝑥𝑘+1

𝑂(𝑆𝑡𝑘+1, 𝐴𝑐𝑘+1, 𝜃−)  (10) 

 

𝐿𝑜𝑠𝑠(𝐿) = 𝐸𝑟[(𝑇𝑄 − 𝑂(𝑆𝑡𝑘, 𝐴𝑐𝑘))2]  (11) 

 

𝑟 + 𝛶 max
𝑥𝑘+1

𝑂(𝑆𝑡𝑘+1, 𝐴𝑐𝑘+1, 𝜃−) define the output of the 

deep neural network. 𝜃− Obtained from the previous epoch.  

4. Experimental Setup 

Simulation tests are conducted in MATLAB and the 

ADVISOR co-simulation environment to measure the 

efficacy of the proposed DRL-based approach. The driving 

cycle is employed in the learning process after an initial 

evaluation of the offline learning application. The 

ADVISOR is used to create a simulation model of the 

electric vehicle in question. Meanwhile, Table 2 summarises 

the DRL-based algorithm's hyperparameters employed in 

the simulations.

Input image 

Darknet 

Convolution Layers 

 

Object 

Detection 
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Table 2. Parameters  of the experimental set-up 

Hyperparameter Value 

Batch size 64 

Memory 1000 

Factor 0.98 

Lr (Learning Rate) 0.00001 

Starting Exploration value 1 

Terminal Exploration value 0.23 

Replay 200 

 

4.1. Dataset 

The comma.ai team has released comma2k19, a dataset 

consisting of more than 33 hours of traffic data from the 280 

freeway in California. This equates to 2019 individual 

segments, each of which is 1 minute long, over a 20-

kilometre stretch of Interstate 8 between San Jose and San 

Francisco in California. A completely replicable and 

scalable dataset, comma2k19, is at your disposal. The 

information was gathered with the use of comma EONs, 

which, in addition to the usual smartphone sensors like 

camera, GPS, and temperature, also have a 9-axis inertial 

measurement unit. 

 
Fig. 4 Sample image from the dataset 

 

Figure 4 illustrates the onboard computer capable of 

seeing. Roadside records from the city of Guiyang's 

endemic dataset repository provide the basis for this study's 

data collection. The information is gathered along Changing 

South Road along the route to the Chinese Academy of 

Sciences Guizhou Technology Innovation Park. 

To evaluate the model's efficacy, we employ a pair of 

datasets comprised of data gathered from Chinese roads and 

a Comma.ai driving dataset. The city driving elements, such 

as traffic signals and pedestrians, are not covered because 

the dataset only contains highway driving scenarios. We 

incorporate a city driving cycle into our research to make it 

more comprehensive. Roadside records from the city of 

Guiyang's endemic dataset repository provide the basis for 

this study's data collection. Acceleration and camera-

captured images are among the data acquired. 

 

5. Performance Evaluation 
In this study, we assess the energy models' capability to 

bring about traction and comfort. We run two different tests: 

When the driver wants to relax, he or she cranks up the air 

conditioner to a temperature of 20 degrees and a humidity 

level of 55 percent. The halfway comfortable setting 

provides a temperature and humidity level of 25 degrees, 

which is preferable to the outdoor circumstances of 400 

degrees and 82% humidity. Figure 4 and 5 displays the 

estimated and forecasted energy usage for travel periods 

under full comfort, half comfort, and traction-only driving 

conditions. Distances, estimated times, and forecasted 

timings are all derived from data collected along Route 2. 

We demonstrate that in the convenience scenario, energy is 

completely utilized at the point where its value reaches the 

SoC value within the predicted period.  
 

 
Fig. 5 Estimated and forecasted energy usage for travel periods under 

full comfort, half comfort, and traction-only driving conditions 
 

What this signifies is that the anticipated energy is 

adequate for a basic average complexity automobile 

calculation to allow for comfortable driving to the 

destination. However, the energy is insufficient to allow for 

a pleasant drive to the location in reality and through our 

estimated time, where many parameters are considered. 

Insufficient time has elapsed by the time its value reaches 

the SoC. As a result, the battery will run dry long before the 

intended location is reached. We demonstrate that the 

estimated and expected timeframes are achievable using the 

predicted energy for the 50% comfort driving scenario. 

However, its precise worth varies greatly across the two 

journeys. It seems to reason that more power will be used 

for the anticipated time calculation as opposed to the 

estimated time calculation. Similarly, standard driving 

mode (traction alone) provides adequate energy to reach the 

destination for both travel durations. Yet again, the 

anticipated travel uses more energy since it more closely 

mimics the actual traffic congestion circumstances. 

 

 
Fig. 6 Training losses of the proposed method 
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Using the driving cycle depicted in Fig. 2 as input, we 

train the proposed neural network and verify the efficacy of 

the planned deep reinforcement learning algorithm by 

comparing it to the benchmark technique DP and the 

conventional deep Q learning method with Adam optimizer. 

The number of training episodes is set to 20. Training loss 

variations for the deep Q learning using RMSE and the 

Adam are depicted in Fig. 6. Both losses tend to decrease as 

the number of training steps increases, indicating that the 

neural networks are becoming closer and closer to ideal. In 

addition, the suggested method's loss curve quickly 

approaches zero, demonstrating the novel algorithm's 

efficiency. 

Figures 7 and 8 show the different route predictions 

using the proposed methodology. 

 
Fig. 7 Predicted route 1 

 
Fig. 8 Predicted route 2 

 

The average Root Mean squared error for each neural 

network design is displayed in Figure 9 below, as mentioned 

in Table III. The optimum RMSE value is equivalent to 

0.015 when using a neural network of 8 neurons (8 layers, 

90 hidden neurons, and two dense layers), significantly 

improving the prediction's efficiency while requiring little 

processing time. 
 

Table 3. Neural network setup 

Configuration Epochs 
Iteration per 

each epoch 

1 100 3000 

2 100 3000 

3 200 4000 

4 600 6000 

5 1000 70000 

 
Fig. 9 Root Mean squared error for each neural network design 

 

The average loss clearly lowers rapidly throughout 

training, as shown in Figures 10 and 11. The cumulative 

reward for a single epoch is shown as a line (Figure 8) along 

the training timeline. The track's main upward direction can 

be seen despite the fluctuating curvature. 

  

 
Fig. 10 Average loss through training 

 
Fig. 11 The cumulative reward for a single epoch 

 

During training, the overall prize might decline rather 

dramatically at times. This is because the algorithm incurs a 

heavy penalty whenever it makes a decision that causes a 

breach of the SOC constraint. 

6. Conclusion  

To reduce the amount of fuel that an electric vehicle has 

to use, an Energy Management System has been designed in 

this article. This system incorporates a computer vision 

system, a form of deep reinforcement learning, and an active 

noise algorithm. In addition, comparative research of the 

exploration technique is carried out using a variety of action 

noise. The simulation findings reveal that the approach 

based on vision-based deep reinforcement learning is 

superior to the original agent in terms of its ability to obtain 

the best fuel optimality in the urban driving cycle. While this 

is happening, the vision-based energy management system 

that includes information on the traffic density is superior to 

the original agent in a driving cycle on the highway. The 

enhancement is accomplished by the addition of more 

information about the atmosphere that is updated in real-
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time. Finally, the authors demonstrate how the development 

cycle length may be cut down by sharing information among 

various types of energy management systems. Because of 

the information that was transferred, the generalization 

performance with regard to vicissitudes in the 

characteristics of the vehicle has been enhanced, and the fuel 

economy has been preserved. We also explore the 

knowledge transfer between two vehicles with powertrains 

that are pretty different from one another and have control 

variables that are distinct from one another. Surprisingly, 

there have also been reports of improved results. 

To better address the challenge of energy management, 

it is intended that future studies will provide a novel 

approach to sample selection and training. This action will 

be taken in response to the previously mentioned issue of 

insufficient sample selection during the algorithm's 

planning phase. In addition, future studies will focus on the 

structural analysis of neural networks used for deep 

reinforcement learning. It is anticipated that the 

performance will be confirmed by the use of real 

automobiles as well as the hardware-in-the-loop test. 
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