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Abstract - In this paper, characterization of polymers fire behavior is studied for predicting the thermophysical flammability 

characteristics from developed supervised machine learning (SML) models. In the first stage, polymethyl methacrylate 

(PMMA) flammability properties, total heat release (THR) and heat release capacity (HRC) were examined and measured 

based on conducted micro-scale combustion calorimetry (MCC) experiments at varying heating rates (β) of milli-gram masses 

(m) ranging (0.1-3.5 Ks-1) and (1-3.5 mg) respectively. Normalized experimental data was then used to develop SML models, 

radial basis function (RBF) and group method of data handling (GMDH-type) neural networks (NN) using m and β as input 

variables for performance prediction of HRC and THR. GMDHNN model performed remarkably well, attaining nominal errors 

in predicting HRC. Also, in estimating THR, RBFNN attained values with improved outcomes as compared to GMDHNN; 

hence, RBFNN performed relatively better in predicting THR. Overall, both ML algorithms performed well; nonetheless, 

GMDHNN outperformed RBFNN for prediction. Moreover, the GMDHNN and RBFNN models provided the lowest mean 

errors compared with HRC outcomes for PMMA from other HRC estimation models in the literature. As a result, both 

GMDHNN and RBFNN serve as applicable tools for PMMA flammability properties estimation based on the MCC fire test. 

Keywords - Flammability, Group method of data handling-type neural-network, Microscale combustion calorimetry, 

Polymethyl Methacrylate (PMMA), Radial basis function neural-network. 

 

1. Introduction  
In light of the need for new heat- and fire-resistant 

materials in recent years, it is essential to be able to estimate 

the intrinsic flammability qualities of interest from suitable 

estimating methods before constructing these flame-resistant 

materials [1]. The important flammability properties of heat-

releasing capacity (HRC) and the total heat released (THR) 

have been used to characterize and explain fire behaviors of 

materials, assisting in the development of polymers' flame-

retardant properties [2].  

For this purpose, experiments are conducted based on 

pyrolysis and combustion processes, representing the 

combustion properties at various fire scales, to study how 

combustible materials behave in a fire. To date, several fire 

calorimetry test methods, from macro to micro, have been 

established and developed to look at material flammability 

behaviors [3–5]. Small-scaled microscale combustion 

calorimetry (MCC) [6] is the most frequently used 

“miniature” fire conducted experiment to evaluate and study 

the dynamic and static parameter behavior of material from 

the combustion process when subjected to fire in conformity 

to ASTM D7309-13 [7], "Method-A" standards. 

 

To estimate this MCC flammability characteristics (THR 

and HRC), conventional methods have been used to conduct 

molecular structure model analysis based on material 

functional groups or molecular moiety properties established 

in Ref. [1, 7–13]. Although these conventional methods give 

satisfactory estimations, they are prone to large prediction 

errors due to the inability of their modelling tools to further 

normalize the nonlinearity in large-noisy fire database. 

Furthermore, conventional model utilization is not time and 

economically sustainable, as fire test results integrated with 

conventional modelling entail a lot of expertise, work and 

resources. In an attempt to address these challenges, Ref. 

[14,41] presented estimations for imperative fire properties 
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from correlation and statistical analysis with comparatively 

more precise accuracies with less estimation errors than the 

conventional models. 

 

Due to the rapid improvement of artificial intelligence 

(AI) technologies in the fire science sector, the shortfalls of 

the conventional modelling system can be addressed using 

the ability of AI techniques as an alternative to establishing a 

generalized normalization within the non-linear database. 

Research has shown that thermophysical flammability 

characteristics or parameters can be predicted using machine 

learning (ML) models in the absence of molecular structures 

in the modelling process. Algorithm-based machine learning 

(ML) techniques are currently employed in the fire and 

flammability science study [16-19] to predict the 

flammability properties of materials more accurately. 

Prediction systems based on machine learning generally use 

learning algorithms with normalized datasets. Artificial 

neural networks (ANN) [18] are the most commonly used 

ML method, which has progressively more powerful 

algorithms to incorporate fire-safety data to validate ML's 

applicability. This can be attributed to their non-parametric 

algorithms and capacity to learn and cope with nonlinearities 

in large-noisy fire data compared to conceptual statistical, 

correlation, and linear regression methods. Although, this is 

partly because of the algorithm types used and the constant 

iterative tuning of network training parameters to achieve the 

best prediction variable(s). However, the general 

applicability of ANN is constrained by modelling overfitting, 

the absence of probabilistic output, and merging at local least 

points [18].  

 

In Ref. [16], the authors employed MATLAB-developed 

feedforward backpropagation (FFBP) and generalized 

regression (GR) neural network model framework to predict 

HRC, pHRR, THR, pTime, and pTemp of "black" PMMA  

from quantified sample mass and heating rates of conducted 

MCC experiments. The work discovered improved HRC-

predicted results for PMMA with the lowest error deviations 

as compared to various conventional estimations in the 

literature [1, 8, 11]. Hence, showing a superior prediction 

power over the conventional methods. 

 

To enhance the prediction accurateness of flammability 

characteristics of PMMA, Ref. [18] developed multivariate 

adaptive regression splines (MARS) and random forest (RF) 

models to estimate pHRR, an MCC fire parameter. In their 

study, sample mass, THR, pTemp, pTime and HRC were 

found to be marginally sensitive towards the generalized 

model prediction output of pHRR.  However, the results 

indicated that the heating rate greatly impacted pHRR 

predictions. In terms of predicting pHRR, MARS 

outperformed RF with the least RMS statistical errors. A 

comparative analysis of pHRR prediction results with results 

of Ref.[16] indicated least mean error deviations of MARS 

and RF over GR and FFBP models.  Other improved ML 

systems explored in flammability and thermochemical 

investigations for prediction purposes include; the least 

square support vector machine (LSSVM) [42].  

 

The literature has recognized group method of data 

handling neural network (GMDH-NN) [21-22] and radial 

basis function neural network (RBF-NN) [23] as improved 

machine learning models to produce better predictions than 

the ANN models to explain the shortcomings of ANN for 

large data predictions. This can be attributed to their powerful 

algorithms that normalize the nonlinearity in large, noisy 

datasets for modelling and develop polynomial mathematical 

equations for parameter estimation of variables. GMDHNN-

type applications for parameter estimations in engineering 

fields include; modeling magnetorheological Damper 

properties in Ref. [24]. In other works in Ref. [25-26] fused 

thermal material parameter deposition predictions have been 

carried out to ascertain GMDH capabilities. Another study 

also focused on optimizing Stirling engines through the 

prediction of their thermal parameters respectively. In Ref. 

[27], the authors studied crested side weirs and modelled their 

discharge coefficient using the GMDH approach focusing on 

rectangular shapes, which provided better results.       

Furthermore, field estimation studies in RBFNN, including 

Ref. [28], adopted the concept of comparing the prediction 

prowls of ANN and RB function networks. Their work 

reported that the RBF model provided a more accurate 

prediction of combustion parameters for an electrical system 

optimization than the ANN models. 

 

The present study further enhances THR and HRC 

predictions of GMDH-type and RBF by incorporating the 

PMMA MCC flammability data in its model development. 

The application of GMDH and RBF for predicting PMMA 

flammability characteristics (THR and HRC) has not yet been 

explored. For this purpose, the following objectives are 

sought to be derived from this study: (1) To determine if 

GMDHNN and RBFNN can be used to predict the MCC 

characteristics of HRC and THR of PMMA (2) To develop a 

model equation based on the GMDHNN and RBFNN 

algorithms for prediction of HRC and THR. (3) To examine 

the variations in inaccuracy from the flammability predicted 

parameters by established models. (4) To conduct a 

comparison between the created models and existing HRC 

prediction models for PMMA that exist in the literature. 

 

2. Flammability Characteristics  
Typically, MCC experimental studies are based on 

ASTM D7309-13, "Method-A" [7]. MCC test yields 

flammability characteristics values including; heat release 

capacity (HRC), peak of heat release rate (pHRR), total heat 

release (THR), peak of heat release temperature (pTemp or 

Tmax) and peak of heat release time (pTime). Key 

parameters, HRC and THR, are therefore expressed in terms 

of measurable quantities in equations (1)-(2) [7-8]. 
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𝐻𝑅𝐶(𝜂𝑐) =
𝑝𝐻𝑅𝑅

𝛽
  (1) 

 

Where HRC, in (J/g°C) and β = heating rate (K/s), 

time(t), in seconds. The maximum heat output is expressed 

as total heat released, THR, in (kJ/g). Peak heat release rate 

(pHRR) is expressed in W/g.  

 

        
𝐻𝑅𝐶(𝜂𝑐) is a better indicator of flammability and fire 

reactivity in a material, often described in combination with 

temperature stability and combustion characteristic. When 

complete combustion in an O2 atmosphere is present, the 

integral area under the peak HRR curve as a function of time 

is what is used to calculate THR [5, 7, 29]. 

 

3. Materials and Methods 
3.1. Material 

     The material employed in this study is a polymethyl 

methacrylate (PMMA) with an LOI of 17. The PMMA 

material was prepared per polymer preparation standards and 

then used for the fire test. The relevant properties and 

chemical structure of the PMMA are listed in Table 1.  

 

3.1.1. Material Preparation  

      Thirty-one (31) pieces from the PMMA sample were 

sized and cut out using dimensional cutting. Then, the cut-

sized PMMA samples were weighed using an analytical 

semi-micro mettler AX-205 balance, delta range instrument 

(readability: 0.01 mg, weighing: 81.0 g)[14-29], acquired 

from Hamilton firm in Nevada, USA. The cut samples were 

then crushed and milled into powdered form and then utilized 

for the fire experiment. 

 

3.2. Microscale Combustion Calorimetry (MCC)  

        The fire experiment was conducted in line with ASTM 

D7309-13 [7] (Method-A specifications) using PMMA 

samples. This experiment was performed using a pyrolysis 

combustion flow calorimeter (PCFC) or MCC (Govmark 

manufactured MCC-2 device [31], and Table 2 shows the 

MCC-2 specifications considered in this study. In the MCC 

test, the condensed and gas-phase processes of flame 

combustion are independently recreated by controlled 

pyrolysis of milligram samples in an inert gas stream and 

high-temperature thermal oxidation (combustion) of the 

pyrolyzate in excess oxygen [6], [32] as shown in the flow 

chart in Fig. 1. 

        

𝑇𝐻𝑅 = ∫
𝑝𝐻𝑅𝑅

𝑡
𝑑𝑡        (2) 

 

This study utilized the Govmark® technical document, 

which fundamentally approves sample mass(es) (0.5 - 50 mg) 

[31]. This study considered nine (9) different constant heating 

rates (0.1, 0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 K s-1) [18] based 

on the experimental designed values. Then, three (3) replicas 

of each of the thirty-one (31) cut-out PMMA sample masses  

(1-3.5 mg) were prepared. The pyrolizer and combustor were 

adjusted at 75-600°C and 900°C, respectively, to heat the 

PMMA samples. The oxygen flow rate and concentration in 

gases leaving the combustion chamber were continuously 

measured. At a point, the thermally degraded material then 

discharged heated gases into the combustion chamber, where 

they were mixed with oxygen to complete the oxidation 

process. Next, nitrogen was used to propel these heated gases 

into the chamber.  

 

Each sample was put to the test in three (3) turns of 

firing. Usually, the heat emission of the PMMA samples is 

directly correlated with the oxygen consumption principle. 

The mean of three (3) measurements was taken for each of 

the MCC characteristics listed in ASTM D7309-13 [7], 

including the peak of heat release rate (pHRR), the peak of 

heat release duration, heat release capacity (HRC), total heat 

released (THR), and heat release temperature. 

  
 

Table 1. Structure and properties of PMMA [16, 17, 29] 

Compound Molecular                   

formula 

     Chemical 

     structure 

 ρ/(Kg/m)     k/(W/mK) c/(J/gK) LOI 

(%) 

 

PMMA 

 

 

([C5 H8 O2] n) 

 

 

     

     1.180 

 

 

    0.185 

 

 

1.510 

 

 

17 

LOI-Limiting Oxygen Index, c-Specific heat, ρ-Density, k-Thermal conductivity [33]. 
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Table 2. Govmark manufactured MCC-2 experimental device specifications 

Specifications Range 

Sample heating rate (0-10 K/s) 

Gas flow rate 50-200 cm3/min, response time of < 0.1 s, sensitivity of 0.1% of full-scale 

Repeatability (± 0.2%) of full scale and accuracy of ± 1% of full-scale deflection 

Sample size 0.50-50.0 mg (milligrams). 

Detection limit 5.0 mW. 

Repeatability (± 2%, 10 mg specimen) 
 

 
Fig. 1 Setup of MCC or Pyrolysis-Combustion flow calorimeter (PCFC) [5] 

  

3.3. Group Method of Data Handling-Type Neural Network 

(GMDHNN)  

A supervised machine learning approach, known as the 

group method of data handling (GMDH), was first presented 

by [21]. Additionally, GMDH is a family of algorithms 

distinguished by an inductive self-organizing process and a 

method for sorting out data to automatically develop 

networks suitable for the noise level within the dataset [22, 

34].  

 

An essential component of GMDHNN is a two-variable 

quadratic polynomial that models nonlinear systems using 

NN networks as a data-driven model. In contrast to typical 

neural networks, no initial parameter assumptions such as 

activation function and the predetermined network structure 

are required, hence representing a better neuron architecture 

that minimizes prediction errors during training [35]. For this 

purpose, assuming a training set z of n number of parameters 

and having a variable input range of  and an 

output y which is expressed to be HRC or THR, in this study. 

GMDHNN develops a neuron network for modelling 

function f as a polynomial function, represented in Equation 

(3): [21, 22]]: 

 

 𝑦 = 𝑓(𝑥1, . . . , 𝑥𝑝)    (3) 

 
The Volterra f function describes the relation of inputs to 

outputs. This function can be represented as a discrete analog 

of the Kolmogorov-Gabor polynomial by means of the input 

variables [36], as stated in Equation (4).  

 

𝑦 = 𝑎0 + ∑ 𝑎𝑖
𝑃
𝑖=1 𝑥𝑖 + ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗

𝑃
𝑗=1

𝑃
𝑖=1 +

∑ ∑ ∑ 𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘
𝑃
𝑘=1

𝑃
𝑖=1

𝑃
𝑖=1    (4) 

 

Since the difficulty of the polynomial increases with the 

number of input variables, GMDHNN chooses an ideal 

number of input variables that best describe the output 

variable y to attain the best degrees (only part)—a typical ( )1,..., px x
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schematic architecture of a multi-entry GMDH network 

illustrated in Figure 2. 

 

For the GMDH network in this experimental study, each 

neuron contains two (2) inputs and only a single output. The 

output for each neuron is estimated by means of 

Ivakhnenko’s polynomial mentioned in Equation (5):  

 

𝑦 = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑗 + 𝑎𝑥𝑖𝑥𝑗 + 𝑎4𝑥𝑖
2 + 𝑎5𝑥𝑗

2              (5) 

 

where; ai(i=0,1,2,3…, n) the weights of the neurons [35].  

 

      In order to obtain the sets with the lowest mean squared 

errors (MSE), neuron weights are continuously adjusted 

during the training of GMDHNN networks. Parameters for 

each layer in the GMDHNN model must be estimated using 

the ordinary least square method. The model's layer count is 

increased up until it reaches the least MSE or a particular 

selection criteria level. When modeling, GMDH uses the 

symmetry, unbiasedness, or balance-of-variables measure. 

Symmetry or regularity criteria is calculated using Equation 

(6) [34, 35]. 

 

𝑅𝑙,𝑚 = √
∑ (𝑦𝑘−𝑤𝑘)
𝑁
𝑘=1

∑ (𝑦𝑘)
2𝑁

𝑘=1

2

                  (6) 

 

      Where: yk denotes the desired target value (measured 

experiment data), and wk denotes the predicted output 

parameter with feature vectors; mth neuron of lth layer for the 

kth parameter. A selection decision is reached considering the 

range of values Tl of Rl,m, which includes the minimum (Rl, 

min) and the maximum (Rl,max)  as shown in Equation (7) [37]:  

 

𝑇𝑙 =  𝛽(𝑅𝑙,𝑚𝑎𝑥) + (1 − 𝛽)(𝑅𝑙,𝑚𝑖𝑛)              (7) 

 

With β as the normalized input data (xi) between 0 and 1. 

The layer with the least error is then selected to be the output 

network layer.   

 

3.4. Radial Basis Function Neural Network (RBFNN) 

Input, hidden, and output layers for the radial basis 

function neural network (RBFNN) [28] are basically linked 

to perform network-supervised training. Fig. 3 illustrates a 

typical RBFN topology architectural network with n- entries, 

l hidden units and m output layers. 

 

Using unweighted connections, the RBFNN input layer 

assigns data into the hidden layer space and the system 

network. The hidden layer then uses a nonlinear function to 

modify the entry data. Each neuron calculates a Euclidean 

norm in the hidden layer, representing the separation between 

entering the network and localizing the neuron's centre. 

Activation of the neuron is then calculated and outputted by 

a radial basis activation function [37].   

The Gaussian activation function [38] was used from 

input to hidden through to the output layer computations of 

the RBFN network in this study.  

 

Assuming an RBFN network with n inputs, l hidden 

units, and m outputs (HRC or THR), the output layer 

calculation can be computed. In the process of activating the 

input of hidden unit l, using input vector  (i = 1, 2, n) is 

weighted by input weights  and expressed in Equation  (8) 

as [28, 39]: 

 

𝐼𝑙 = {𝑥1𝑤1,𝑙
ℎ , 𝑥2𝑤2,𝑙

ℎ , . . . , 𝑥𝑛𝑤𝑛,𝑙
ℎ }                   (8) 

 

Given that; 

xn is the n-th input, 𝑤𝑛,𝑙
ℎ   as the input weight between 

input n and hidden unit l. where, n is the index of input and l 

is the index of hidden units.  Generally, all input weights are 

set at unity “1”. In estimating to compute the hidden layer, 

the output of hidden unit l is calculated from Equation (9) 

[39]:  

𝜑𝑙(𝐼𝑙) = 𝑒𝑥𝑝 (−
‖𝐼𝑙−𝐶𝑙‖

2𝜎𝑙
2

2

)         (9) 

 

Where, activation function 𝜑𝑙(𝐼𝑙) for hidden unit l is 

chosen as the Gaussian function, and denoting center of 

hidden unit l of the Gaussian function.  as the width or 

spread parameter of the Gaussian bells of hidden unit l.  Let 

ym denote the output of the mth radial basis function on the 

ith sample. Each output target node l is computed using the 

weights 
 

[28]. Hence, estimating the output layer 

computation, the m output  network can be calculated, 

expressed in Equation (10) as [28, 39]: 

 

                        𝑦𝑚 = ∑ 𝜑𝑙
𝐿
𝑙=1 (𝐼𝑙)𝑤𝑙,𝑚

𝑜 + 𝑤0,𝑚
𝑜            (10) 

 

Given; , output weight between hidden unit l and 

output unit m; m is the index of output; bias weight of 

output unit m. Generally, the output layer contains the linear 

function and uses the weighted sum of the hidden layer as the 

propagation function [28]. From Eqs. (8-10), four 

parameters, such as input weight matrix wh, output weights 

matrix wo, center matrix C and width vector σ, are key in 

algorithm computation. Usually, after setting input weights 

to “1”, linear least squares (LLS) approaches are employed to 

adjust the output weights for nonlinearities. Iteratively LS 

method [38] improves the nonlinear performance of the 

output layer. Offering optimum minimum-normal 

approximation of the inverse in the least-medium-square 

direction. This training process continues until the network 

error reaches an acceptable value [28, 39].  

 

,...,i nx

hw

lC

l

,

o

l mw
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Fig. 2 A typical  architecture of a multi-inputs GMDH networks  with one (1) output [22] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 3 Typical RBFNN architecture [28] 

 

3.5. Models Implementation 

       The main objective of this study is to develop 

prediction models to estimate THR and HRC flammability 

parameters of PMMA from MCC fire tests using neural 

network (NN) approaches. Two input parameters were used 

for the GMDHNN and RBFNN models development. The 

sample mass (m) and heating rate (β) were employed 

through inputs or independent parameters to predict the 

study's dependent variables, total heat release and heat 

release capacity. Subsequently, the MCC’s data was then 

arbitrarily split into training then testing sets for these 

models’ development. The training set was used to alter the 

algorithm [40]. This method is carried out using a hold-out 

cross-validation technique. In order to prevent overfitting, 

the correct amount of data is used when training NN 

algorithms. The fraction utilized as training data must, 

therefore, accurately parametrize the entire set of data [23].  

        

In other words, the testing set consisted of 4 (15%) out 

of the MCC dataset, whereas 27 out of the 31 MCC data, or 

x1 

x2 

x3 

xM 
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85%, were randomly selected to make up for the training set. 

Training and testing datasets used to build the models are 

shown in Table 3. The models were implemented using 

MATLAB (R2018a version, MathWorks Inc., Natick, MA, 

USA). The RBFNN used the Gaussian activation function in 

the modelling for normalizing the data between (- 1 and 1). 

In contrast, the Levenberg-Marquardt algorithm was used in 

this study to train RBFNN partitioned data. The process of 

successive trial and error helped to produce the best outcome. 

The ideal model network topology was determined to achieve 

the highest correlation coefficient (R) after several try-and-

error of training [19]. 

 

3.6. Data Normalization 

        Data set normalization is a process that is used to train 

the neural network to ensure that the data set is consistent 

with the model's variability. Usually, the data set is 

normalized to a certain interval as [−1, 1], [0, 1] or another 

scaling parameter to ensure constant variability in the RBF 

and GMDH models. By speeding up convergence, this data 

standardization lowers the likelihood of reaching local 

minima. The splitted input and output variables in this 

investigation were standardized to the range [-1, 1] using 

Equation (11): [23], [38]. 

 

( ) ( )

( )
max min min

min

max min

i

i

y y x x
y y

x x

−  −
= +

−
        (11) 

 

where xi is the measured experimental data, and yi is the 

normalized data. While xmin and xmax represent the 

minimum and maximum experimental data values with ymax 

and ymin set to 1 and −1, respectively. 

3.7. Models Performance Indicators 

The effectiveness of RBFNN and GMDHNN models on 

training and testing data was evaluated in this work using a 

variety of statistical valuation measures. This study aimed to 

estimate the performance of the RBFNN and GMDHNN 

models in terms of training and testing data to compare the 

experimentally determined training and testing data values of 

GMDHNN, and RBFNN predicted data. To do so, various 

statistical indicators were used.  

 

These included root mean squared error (RMSE), the 

mean absolute error (MAE), the coefficient of determination 

(R2), and the correlation coefficient (R). The root of the mean 

square error, or RMSE, quantifies the discrepancy between 

experimental outcomes and predicted data. Also, the MAE is 

an average absolute difference between the measured and 

predicted data. As MAE and RMSE values get lower, the 

better accuracy of the prediction [40]. Additionally, the 

correlation coefficient and the coefficient of determination 

are two of the most common tools used to measure the 

relationship between experimental and predicted results. The 

former shows how much variability exists in the study's 

results, while the latter describes the extent to which the 

predicted results can explain the variance. When R and R2 

values are closer to 1, there is a more significant linear 

relationship between the two variables.  Equations (12)-(15) 

presents the various statistical indicators [16,40]: 

 

𝑅 =
∑ (𝑒𝑖 − �̄�)(𝑝𝑖 − �̄�)
𝑛
𝑖=1

√∑ (𝑒𝑖 − �̄�)
2 × √∑ (𝑝𝑖 − �̄�)

2𝑛
𝑖=1

𝑛
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(12) 
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𝑛
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𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑒𝑖 − 𝑝𝑖)

2

𝑛

𝑖=1

 

                                     (14) 

                     

𝑀𝐴𝐸 =
1

𝑛
∑|𝑒𝑖 − 𝑝𝑖|

𝑛

𝑖=1

 

                   (15) 

 

�̄� =
1

𝑛
∑𝑒𝑖

𝑛

𝑖=1

 

                 (16) 
 

 With reference to Eqs. (12 – 15) [16]; n = total number 

of experimental data, while = an integer varying from 1 to 

n. = measured value, 
 
= predicted value, = mean 

measured value and  = mean predicted value. 

4.  Results and Discussion 
4.1. MCC Experiment Results 

Statistical descriptions for MCC parameters obtained 

for the thirty-one sample masses used in this study are 

detailed in Ref. [18].   

       

Fig. 4(a) illustrates a plot of specific HRR against 

associated temperatures from the measured MCC 

experimental dataset. The curves in the graph depict the 

thirty-one (31) heating rates considered in the experiments 

and range from (0.1-3.5 K/s). The curves demonstrate that, 

for various tested sample masses of PMMA, increasing 

heating rates increase both the peak HRR and peak 

temperatures (pTemp), respectively [17-18, 32, 33].
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Table 3. RBFNN and GMDHNN models training/testing data 

Inputs Outputs 

β (K/s) Mass (mg) HRC (J/g oC) THR (kJ/g) 

Training Data 

0.1 1.09 750.9±0.5 15.3±0.8 

0.1 1.47 636.5±0.7 10.2±1.9 

0.1 2.58 918.5±0.8 18.6±0.9 

0.2 1.1 804.3±0.4 20.6±0.3 

0.2 1.61 756.9±1.5 21.7±3.6 

0.2 2.6 776.5±0.5 26.2±3.8 

0.5 1.06 615±0.4 26.7±2.7 

0.5 1.67 598.5±1 26.5±0.4 

0.5 2.57 630.1±0.6 27.8±1.1 

1 1.06 534.2±0.6 31.8±0.5 

1 1.48 489±1.6 28.1±0.3 

1 2.68 475.6±0.9 28.8±0.9 

1.5 1.06 403.5±1.3 28.9±0.5 

1.5 1.54 416.5±1.2 29.4±0.8 

1.5 2.56 447.9±1.7 28.9±0.3 

2 1.06 442.6±0.7 30.7±1.3 

2 1.54 438.5±0.9 31.2±0.6 

2 2.59 387.2±1.2 29.2±0.4 

2.5 1.1 404.5±1.1 30.9±1.4 

2.5 1.55 395.3±0.6 29.3±2.1 

2.5 2.51 340.4±2 29.7±0.8 

3 1.03 373.7±0.7 30.3±0.7 

3 1.06 385.4±0.7 30.3±0.1 

3 1.5 375.2±0.8 30.4±0.3 

3.5 0.99 345.5±2.1 31.3±0.6 

3.5 1.67 344.5±0.8 30.3±3 

3.5 3.46 320.3±1.7 29.6±1.1 

Testing Data 

0.1 1.79 537.6±0.9 11.2±0.1 

0.2 1.75 659.5±0.8 19.2±1 

3 2.64 342.2±1.2 29.8±0.9 

3.5 2.72 365.4±1.3 31.1±0.4 

 

Similarly, measurements and observations of the 

impact of sample mass on pHRR proved that, for almost all 

measured heating rates, the pHRR values reported on 

average for the 1 mg sample mass were the highest, as 

illustrated in Fig. 4(b).  

That is to say, a smaller sample mass specimen, when 

subjected to fire, tends to produce higher pHRR values at 

lower pyrolysis temperature and time [32].  

 

4.2. RBFNN Prediction Results 

This section analysed the predicted outputs from the 

RBF neural network MATLAB developed a model for THR 

and HRC estimation. The training and testing results obtained 

in Fig. 5 and 6, respectively, showed that the RBFNN 

produced THR and HRC estimates having very high R and 

R2 with low errors of MSE.  

    

In addition, Cross-plots in Fig. (7 – 10) further interpret 

the experimental results versus measured findings for the 

training and testing datasets. The best prediction from Fig. (7 

and 8) with the least errors was revealed through THR 

training. The lines of best fit for the HRC training and test 

results, respectively, were not very well fitted with the data 

points, as shown in Figures 9 and 10.  

 

Even though both neural network models delivered 

excellent predictions with the least error rates that are highly 

correlated with measured data, the prediction of THR, thus, 

produced superior R and lower RMSE values compared to 

the results of HRC.  

It can be observed that the RBFNN model's prediction of 

the THR training and testing data displays outstanding 

agreement with the measured data since its fit line is more 

closely aligned with the ideal line than the fit line of the HRC 

model. 

 
Fig. 4 (a) Plot of specific HRR against the temperature of MCC dataset for PMMA  
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Fig. 4 (b) Sample mass effect on peak heat release rate (pHRR) 

           
Fig. 5 Performance of THR-RBFNN and HRC-RBFNN during training       Fig. 6 Performance of THR-RBFNN and HRC-RBFNN during testing 

 

 
Fig. 7 RBFNN-training predicted THR versus experimental THR  

 

Fig. 8 RBFNN-training predicted HRC versus experimental HRC  
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     Fig. 9 RBFNN-testing predicted THR versus experimental THR  

 

 
Fig. 10 RBFNN-testing predicted HRC versus experimental HRC 

 

4.3. GMDHNN Prediction Results 

Similarly, results from predicted outputs from the 

GMDH-type neural network model (developed in MATLAB) 

were analysed for THR and HRC estimation. The training 

and testing results obtained in Fig. 11 and 12, respectively, 

showed that the GMDHNN produced THR and HRC 

estimates having very high R and R2 with low errors of MSE.  

 

Fig. (11 and 12) displays the results for the performance 

indicators from the neural network models. The exceptional 

predictability of the created model is backed up by the R, R2, 

MAE, and MSE values for training and testing. The analysis 

of the training data for HRC revealed that the predictions 

made by GMDHNN had a very high correlation to the 

findings of the measurements. It is evident that the training 

strategy used for the HRC model produced the highest R and 

R2 values (0.9999) and the least MSE and MAE values. 

Again, Fig. (11 and 12) shows that, on average, MAE and 

MSE offer a low error margin that is steady over the course 

of the model's performance. 

 

In addition to the aforementioned results, Fig. (13 – 16) 

demonstrates experimentally measured and predicted HRC 

and THR results. After training, the predicted data values 

were found to be in perfect agreement with the experimental 

results (dataset), as can be seen by carefully examining the 

cross-plot results of Fig. (13 – 16)). The training results 

showed that the HRC model had greater predictive power 

over the THR model going forward. This was not entirely the 

case, though, as GMDH prediction of THR had a marginally 

stronger correlation with the measured THR values.   

 

Generally, the GMDH neural network model system in 

predicting HRC of PMMA with inputs parameters, mass and 

β generated mathematical equations for obtaining this MCC 

parameter. Representation of the modelling equation is 

presented in Equation (17): 

 

𝐻𝑅𝐶 (
𝐽

𝑔0𝐶
) = −23.5428 + 11.387(𝑚𝑎𝑠𝑠) + 1.00591(𝑋1)  

          (17) 

 

𝑋1 = 752.565 − 265.323(𝛽) − 6.05114(𝛽)(𝑚𝑎𝑠𝑠) 
+47.5798𝛽2 

 

Equation (18) was equally derived for predicting THR 

from sample mass (m) and heating rate (β): 

 

  𝑇𝐻𝑅 (
𝑘𝐽

𝑔
) = 20.8568 + 0.121466(𝑚𝑎𝑠𝑠) + 3.37651𝛽   

                                                                            (18)    

     

     Despite the marginal insignificant variations in R, R2 and 

MSE values obtained for both models. RBFNN and 

GMDHNN's prediction accuracy showed workable models 

with acceptable correlation coefficients, mean averages, and 

minimal root mean squared errors. Nonetheless, GMDHNN 

modeling for HRC prediction was more precise. In terms of 

predicting the flammability properties of a polymethyl 

methacrylate, GMDHNN fared better than RBFNN 

generally.  

 

A comparative assessment of the testing performance of 

the GMDHNN and RBFNN and how the estimations deviate 

from measured HRC is demonstrated in Fig. 17. From Fig. 

17, it can be deduced that there was a better improvement in 

the generalization test of the models once the dataset 

incorporated into the estimation of HRC is normalized.
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Fig. 11 Performance of THR-RBFNN and HRC-RBFNN during training   Fig. 12 Performance of THR-RBFNN and HRC-RBFNN during testing

 
Fig. 13 GMDHNN-training predicted THR versus Experimental THR  

 

 
Fig. 14 GMDHNN-testing predicted THR versus Experimental THR 

 
Fig. 15 GMDHNN-training predicted HRC versus Experimental HRC  

 

 
Fig. 16 GMDHNN-testing predicted HRC versus Experimental HRC  
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4.4. Comparison Analysis with other HRC Models 

        The HRC data used in the study were then compared 

with the mean HRC values produced from other PMMA 

results from the literature in Ref. [1, 11, 16]. The core idea 

was to determine the predictive prowess of GMDHNN and 

RBFNN against the models in Ref. [1, 11, 16]. From a 

comparative analysis of the difference from their measured 

and predicted mean HRC outcomes, as illustrated in Fig. 18,  

we can infer that the GMDHNN prediction outcomes had the 

least deviation of mean HRC outcome, indicating a high level 

of accuracy, with an error deviation of a 1.32 for PMMA. 

This affirms GMDHNN-type as a highly applicable system 

in providing PMMA flammability characteristics HRC 

estimations for polymers' development of flame-retardant 

properties.  

 
          Fig. 17 Comparing the testing results of the GMDHNN, RBFNN  

                                                and MCC-HRC data

 

                                               Fig. 18 Mean HRC values of RBFNN and GMDHNN compared to other literature models  

5. Conclusion 
     In this study, RBF and GMDH neural networks were 

developed and applied to model the flammability 

characteristics of polymethyl methacrylate as determined by 

the MCC fire test. Using the sample mass and corresponding 

heating rates as input parameters, the experiment's test 

findings were used to estimate heat release capacity and total 

heat released. With sample mass and heating rate as input 

variables, this work developed an artificial intelligence-

supervised machine learning model based on RBFNN and 

GMDHNN for predicting HRC and THR. Although 

GMDHNN outperformed RBFNN in predicting HRC, it was 

discovered that both models exhibited excellent repeatability 

with nominal errors and excellent agreement with measured 

experimental data. Moreover, compared to GMDHNN, 

RBFNN achieved values with greater correlation when 

estimating THR; as a result, RBFNN performed relatively 

better when predicting THR. 
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The mean value of the predicted HRC from the current 

neural network models was then compared to the PMMA 

results from other existing flammability estimation and 

predictive modeling techniques in the literature to ascertain 

the error margins with the models’ predictive power. The 

results indicate that GMDHNN offered the lowest error 

deviation for predicting PMMA amongst the predicted models 

in the literature, followed by RBFNN. Hence, compared to 

GMDH, RBFNN had an error deviation of 1.94 as against 1.32 

for GMDHNN. Therefore, this study demonstrates that the 

GMDHNN and RBFNN models are capable of accurately 

predicting the PMMA flammability parameters from the MCC 

fire-safety test with minimal prediction errors. 
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