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Abstract - The accurate detection of breast cancer is imperative for optimal therapeutic outcomes, and minimizing false positive 

and false negative rates is a vital element in this process. Super-resolution images are particularly used in health research due 

to their ability to provide higher spatial resolution and more detailed information about the appearance of tissues and structures 

in medical images. These images can enable the model to learn to identify subtle abnormalities and distinguish them from normal 

tissue, and they are also more resistant to image degradation, such as noise or blur. To obtain high-resolution mammograms, a 

generator network (SRGAN) was trained and obtained SR images were applied on EfficientNet models, which are highly effective 

deep learning architectures that exhibit superior performance on a wide range of tasks with a reduced number of parameters 

and lower computational complexity compared to other models. A combination of three datasets (CBIS-DDSM, Mini-MIAS, and 

INbreast) with data augmentation was used to train and evaluate the model. The proposed model achieved a false positive and 

false negative rate of 0.0029, indicating a high level of accuracy in detecting breast cancer. This low rate highlights the efficacy 

of the approach in minimizing false positive and false negative rates, which is crucial for optimal treatment outcomes. 

Keywords - Breast cancer, Deep learning, Efficientnet, SRGAN, Super-resolution. 

1. Introduction  
False positives and false negatives in breast cancer 

detection can have significant consequences for patients. False 

positives, also known as false alarms, occur when a test 

incorrectly indicates the presence of cancer. This can lead to 

unnecessary additional testing, such as biopsies, which can be 

expensive and invasive for the patient. False positives can also 

cause anxiety and distress for the patient. On the other hand, 

false negatives, also known as missed diagnoses, occur when 

a test incorrectly indicates the absence of cancer. This can 

result in a delay in diagnosis and treatment, which can be 

particularly harmful in the case of breast cancer, as early 

detection is often key to successful treatment. False negatives 

can also lead to a false sense of security for the patient, causing 

them to forego necessary screenings in the future. It is, 

therefore, important to strive for high levels of accuracy in 

breast cancer detection methods in order to minimize both 

false positives (FP) and false negatives (FN). 

 

1.1. Limitations of Current Breast Mass Classification 

Models 

After analyzing several papers from previous research 

(presented in section 2), it can be observed that the percentage 

of FN and FP results in the classification of breast masses is 

high, with significant variation between the FN and FP 

percentages.  

 

Despite the application of robust preprocessing 

techniques, advanced enhancement methods, and state-of-the-

art deep learning models for feature extraction and 

classification, the classification accuracy of breast masses 

remains suboptimal. The primary question is why these 

models cannot accurately diagnose masses with high 

accuracy. Indeed, it appears that the limited information 

provided by low-resolution mammograms may be hindering 

the accuracy of breast mass classification. Therefore, more 

relevant features are necessary for accurate classification, 

which may ultimately lead to a reduction in the number of FP 

and FN results.  

 

To overcome this limitation, high-resolution 

mammograms can be utilized to extract more detailed and 

comprehensive features that may be crucial for accurate 

classification. Incorporating this additional information into 

the models may enable them to make more accurate decisions, 

ultimately reducing the number of FP and FN. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.2. High-Resolution Images 

The image is a grid of individual pixels. Pixel density per 

inch gives the resolution of the image. Low resolution 

indicates less no. of pixels per inch, and high resolution 

indicates more pixels per inch. When no. of pixels is more per 

inch, the image will be of more clarity with much more details. 

 

1.3. High-Resolution Mammograms 

A mammogram contains information about the structure 

and tissue of the breast, which includes fatty tissue, ducts and 

lobules, and it also shows blood vessels in the breast. There 

may be the presence of abnormalities in the mammograms, 

like masses and calcifications, which will be small in size 

when compared with the full size of the breast. Detailed 

information on abnormalities is needed to decide whether the 

abnormalities are benign or malignant, which may not be seen 

in low-resolution mammograms and especially when the 

tissue is dense. So there is a need for high-resolution 

mammograms which give finer details or more detailed 

information about the abnormalities, which will help in 

deciding whether the abnormality is benign or malignant. 

 

1.4. Methods to Acquire High-Resolution Mammograms 

Interpolation methods: These methods use mathematical 

algorithms to estimate the values of missing pixels in an 

image, thereby increasing its resolution. Some frequently used 

methods for interpolation include the nearest neighbor, 

bilinear[1], and bicubic interpolation[2]. The bicubic 

interpolation method calculates the value of each new pixel by 

taking a weighted average of the 16 pixels that are closest in 

proximity, using a sophisticated algorithm to derive a precise 

approximation. This method may be effective at increasing the 

resolution of an image. Still, it introduces artifacts such as 

blurriness and ringing, which can reduce the image's level of 

detail and clarity. 

 

1.4.1. CNNs 

These deep learning models can be trained on pairs of LR 

and HR images, from which they can construct a mapping 

function to generate HR images from LR images. To construct 

mapping function 1. SRCNN[3] uses 3 convolutional layers, 

the initial layer acts as a feature extractor, the subsequent layer 

serves as a mapping layer, and the last layer acts as a 

reconstructor. 2. FSRCNN[4] uses feed-forward architecture 

and a deconvolutional layer. 3. ESPCN[5] uses sub-pixel 

convolutional layer. 4. VDSR[6] uses very deep network 

architecture with a residual learning strategy. 5. EDSR [7] 

uses deep residual network architecture with a high-capacity 

feature extractor. Many more CNN models have been 

introduced to generate high-resolution images, but the fact is 

that CNNs are introduced to recognize and classify images but 

not to generate images.  

 

1.4.2. GANs 

In these models, the generator network generates new 

images and is paired with a discriminator network that 

evaluates the generated images' authenticity. GANs can be 

used to synthesize HR images from LR ones by training the 

generator network to produce images that are similar to the 

original high-resolution ones. Many GAN models have been 

introduced to generate super-resolution images. Some of the 

models are SRGAN [8], ESRGAN [9], DCGAN [10], CGAN 

[11], and WGAN [12]. In this study, SRGAN was initially 

utilized to obtain the super-resolution mammograms, and 

other GAN models may be explored in future work. 

 

1.5. Selection of Deep Learning Models 

To optimize the performance of the deep learning model 

for breast cancer(BC) detection using super-resolution 

mammogram images, a series of experiments were conducted 

with various architectures. After evaluating the results, it was 

determined that the EfficientNet model demonstrated superior 

performance in terms of reducing both FN and FP. As a result,  

EfficientNet was selected as the most appropriate model for 

this task. 

  

This paper provides a comprehensive review of relevant 

previous research in the field in Section 2. The dataset creation 

and proposed model are presented in detail in Section 3. The 

implementation procedure is explained, and the study results 

are analyzed for their significance in Section 4. Lastly, the 

findings are summarized, and potential avenues for future 

work are suggested in Section 5. 

 

2. Related Work 

Breast cancer has been a rising concern in both rural and 

urban parts of India, with an alarming estimated count of 

224,000 new cases in the year 2021 alone. Over the past 

decade, the incidence rate of breast cancer in India has been 

increasing at a yearly pace of 5-6%. Unfortunately, the 

mortality rate for breast cancer in India remains relatively 

high, with an estimated 138,000 fatalities in the same year. 

Early detection is crucial as cancer survival becomes 

increasingly challenging in advanced stages, and it's 

disappointing to note that more than half of Indian women are 

detected with stages 3 and 4 of BC. The best way to curb the 

mortality rate is by detecting breast cancer in its initial stage 

to provide better chances of recovery. 

 

        Several recent studies have delved into breast cancer 

research to find ways to address the rising incidence and 

mortality rates in India. In this section, we present a selection 

of such literature that sheds light on the current state of breast 

cancer research. 

      It has been observed from Table 1. that the percentage of 

FP and FN  is high, with significant variation between the FN 

and FP percentages. Despite the application of robust 

preprocessing techniques, advanced enhancement methods, 

and state-of-the-art deep learning models for feature 

extraction and classification, the classification accuracy of 

breast masses remains suboptimal. 
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Table 1. Presents details of a few research papers 

Sl. No Author Methods/Models 
Accuracy  

% 

False 

Negative 

% 

False 

Positive 

% 

1 
Pak F [22] 

(2015) 

(Mini-MIAS), NSCT for feature extraction and Adaboost for 

classification 
91.43 12.85 6.42 

2 

Al-Antari 

MA [27] 

(2018) 

(Inbreast), YOLO for mass detection, FrCN for mass 

segmentation, CLAHE for enhancement, AlexNet with few 

changes for extraction and classification 

90.00 2.00 30.00 

3 
Ragab B 

[26] (2019) 

(CBIS-DDSM, DDSM), threshold and region-based methods 

for segmentation, CLAHE for enhancement, AlexNet for 

extraction and SVM for classification 

87.20 13.80 12.30 

4 
Ridhi A 

[32] (2020) 

(CBIS-DDSM), histogram equalization for enhancement, an 

ensemble of AlexNet, VGG16, ResNet, GoogleNet, and 

Inception ResNet for extraction and classification 

88.00 9.00 15.00 

5 
Lenin G. 

[33] (2020) 

(CBIS-DDSM), CLAHE for image enhancement, applied 

transfer learning/finetuning for VGG, ResNet, NasNet, 

DenseNet, Inception, MobileNet, Xception, and ResNext for 

feature extraction and classification. 

81.58 21.73 15.10 

6 
Zeiser FA 

[28] (2020) 

(CBIS-DDSM), CLAHE for enhancement and UNET models 

for feature extraction and classification. 
85.95 7.68 19.53 

7 
Rose j [34] 

(2022) 

(Mini-MIAS), region growing methods for segmentation and 

mobilenet for feature extraction and variational autoencoder 

for classification. 

86.26 6.49 22.32 

Breast mass classification using low-resolution 

mammograms can result in inaccurate results due to the 

limited information available. More relevant features are 

needed to address this to improve classification accuracy and 

reduce the number of FN and FP. High-resolution 

mammograms can be used to extract more detailed features 

that can be incorporated into the models to enable them to 

make more accurate decisions. Ultimately, this can lead to 

more accurate breast mass classification and better patient 

outcomes. 

 

       Super-resolution images obtained using different 

techniques have a broad spectrum of potential uses in 

healthcare. These images are able to refine the spatial 

granularity and quality of medical images, making them more 

accurate and reliable for diagnostic and treatment purposes. A 

few papers which used different techniques to generate super-

resolution are specified below. 

 

2.1. Models to Generate Super-Resolution Images 

       In 2014 Zheng J et al. [13]  Authors designed an algorithm 

to generate high-resolution images, in which the first step is to 

align and register DDSM mammograms using a mesh warping 

algorithm. Then in the second step combination of a 

comprehensive model based on PCA and a local model 

utilizing patches can be used to generate HR images. These 

HR images are compared with HR images obtained with the 

nearest neighbor and bilinear, and the calculated PSNR values 

are 35.74, 31.56 and 32.57, respectively. 

        In 2017 Umehara K et al. [14], Authors trained the 

SRCNN and used it to generate HR mammograms from LR 

mammograms. They also generated HR mammograms using 

nearest neighbor and bilinear interpolations and compared 

them with HR mammograms generated from SRCNN. The 

PSNR of SRCNN, nearest neighbor, and bilinear interpolation 

are 34.50 ± 3.44 dB, 33.12 ± 3.18 dB, and 33.78 ± 3.34dB. So 

SRCNN produced images with improved resolution compared 

to traditional methods, which could be a useful tool for 

enhancing the diagnostic accuracy of mammograms. 

        

In 2021 Shahidi F.[15] The paper presents a process to 

improve the spatial granularity of BC histopathology images 

using WA-GAN, which uses two loss functions, Wasserstein 

gradient penalty and perceptual loss, to improve the 

performance of the GAN model. The model generated HR 

images of factors 2, 4, 8 and 16. In this, the PSNR and SSIM 

values for factor 2 images are high (28.74, 0.96).  

         

In 2018. Korkinof D et al. [16] The authors tried to 

communicate that training GANs progressively will generate 

highly realistic images. They explored how much HR images 

can be produced by GANS and how to overcome the 

underlying instabilities inherent in training GANs. 

       

In 2020 Wang Z et al. [17]  The authors have introduced 

udGAN, which is acquired by replacing the skip-connection 

structure in GANs generator with an ultra-dense residual 

network. Due to this replacement, the udGAN, with its high 
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number of connections and added feature extraction 

capabilities, is particularly suited for handling the varying 

complexities found in image content. They applied udGAN 

for video satellite imagery datasets from kaggle. The PSNR 

and SSIM obtained are 34.53 and 0.93, respectively. 

 

In 2020 Zhang M et al. [18] the authors presented SPGAN 

in which the focus was on each pixel of the generated SR 

image, i.e., the proposed approach does not compare fake and 

real images but compares each pixel of images. They applied 

this GAN on datasets like VGGFace2, celebA and many 

more—the PSNR and  SSIM obtained by SPGAN 25.98 and 

0.78. 

 

In 2022 Davradou A et al. [19] The authors presented the 

ISR model, which combines the techniques from SRGAN and 

ESRGAN and is used to generate high-resolution images of 

the foot of diabetic patients and to reduce noise in the foot 

images to monitor foot ulcers. They also used SRGAN, 

ESRGAN and EDSR to compare results with their model. The 

PSNR and SSIM values achieved by ISR are 45 and 0.95. 

 

The focus of most papers on high-resolution (HR) image 

generation has been on enhancing image quality; very few 

studies have explored the potential applications of HR images. 

In response, a proposal has been made to utilize HR 

mammograms to reduce FNR and FPR in breast mass 

classification. By extracting more detailed and comprehensive 

features from HR images, the aim is to develop more accurate 

models for classification that can ultimately lead to better 

patient outcomes. The study seeks to bridge the gap between 

HR image generation and its practical applications in 

improving medical diagnosis and treatment. 

2.2. Techniques to Enhance Images 

In[20], histogram equalization, histogram stretching and 

median filters were used to enhance the mammograms. In 

[35], the authors used LCM-CLAHE to enhance 

mammograms. In order to overcome the loss of local 

information due to over-enhancement using CLAHE, they 

proposed LCM-CLAHE, which provides optimal contrast 

without losing much local information. In [22], the authors 

used NSCT as a part of the preprocessing step. To enhance the 

quality of breast lesions. A fuzzy-driven-based SR technique 

was implemented to predict intricate structures and detailed 

patterns accurately and to remove distortions after identifying 

the region of interest. In [23], authors used a combination of 

CLAHE and morphology methods to enhance mammograms 

so that the noise that remained in the mammogram after 

applying CLAHE could be removed by the morphology 

methods.  In [24], authors used FC-CLAHE to enhance 

mammograms. In CLAHE, the clip value is fixed. Due to this, 

all pixel values in the image will be equally affected, which 

may not give a good contrast to the image. The authors have 

developed some fuzzy rules, using which the clip limit will be 

selected based on the data present in a mammogram. This 

method has enhanced image more than CLAHE. In [25], the 

authors used a pre-trained model DnCNN to enhance the 

mammograms, as it is pre-trained based on the previous 

learning it will enhance the images. In [26] this paper, the 

authors proposed a new CAD system in which mammograms 

are enhanced using CLAHE because AHE will over-enhance 

the noise in the images; next, mammograms are segmented 

with a region-based segmentation method. The segmented 

mammograms are given to the AlexNet model with an SVM 

classifier to extract features and classify masses. In [27], the 

authors used YOLO to detect masses, CLAHE for enhancing 

mammograms, full resolution convolutional network for mass 

segmentation and CNN for extraction of features and 

classification. In [28], the authors used CLAHE to enhance 

mammograms and U-Net for extraction and classification. In 

[31], the authors used filtering techniques and histogram 

equalization for preprocessing mammograms, autoencoder for 

feature extraction, RFE for feature reduction and various DL 

models for classification. 
 

        Throughout this discussion, various models that generate 

super-resolution images and techniques to enhance images 

have been explored. Combining SR techniques with 

enhancement can give scope to models to extract more 

relevant features from images and help in taking the right 

decisions. In this work, SRGAN is used to enhance the 

mammograms, extracting more detailed features from high-

resolution images and ultimately improving breast mass 

classification accuracy by reducing FPR and FNR. 

 

3. Proposed Approach 
        The proposed approach utilizes SR images to detect 

mammograms to reduce FP and FN. By using SR technology, 

the resolution of mammogram images was enhanced, which 

resulted in more accurate detection of abnormalities. This 

innovative approach aims to improve the accuracy of 

mammogram detection and ultimately save lives. The steps in 

the proposed model are presented in this section. 

 

3.1. Datasets 

CBIS-DDSM is the subset of DDSM, which is a dataset 

of mammograms with annotations for abnormalities such as 

masses and calcifications. It is a publicly available collection 

of mammography cases provided by the Cancer Imaging 

Archive. The CBIS-DDSM dataset includes both craniocaudal 

(CC) and mediolateral oblique (MLO) views of the breasts, 

with a total of 1697 images. Of these images, 909 are benign, 

and 788 are malignant. The images are in dicom format and 

have been carefully curated and annotated by expert 

radiologists. The CBIS-DDSM dataset is commonly used to 

develop and evaluate ML methods for mammogram analysis, 

aiming to improve the accuracy and efficiency of a breast 

cancer diagnosis. 

 
       The Mini-MIAS dataset collects 323 mammograms, 

including 207 normal, 64 benign, and 52 malignant cases. It 
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was generated by the MIAS group in the UK and published in 

1994. The mammograms in the Mini-MIAS dataset are all in 

the mediolateral oblique (MLO) view and are in the PGM 

format. The Mini-MIAS dataset is often used to develop and 

evaluate ML techniques for mammogram analysis, aiming to 

improve the accuracy and efficiency of a breast cancer 

diagnosis. Because the dataset is relatively small and only 

includes MLO views, it is often used as a supplementary 

dataset alongside larger and more diverse datasets, such as the 

CBIS-DDSM and INbreast datasets. The INbreast dataset is a 

collection of mammograms from 115 cases, with a total of 410 

images.  

 
      It includes mammograms in both CC and MLO views and 

depicts various abnormalities such as masses, calcifications, 

asymmetries, and distortions. Of the 410 mammograms in the 

dataset, 108 are related to masses. The mammograms are in 

dicom format and have varying resolutions. The INbreast 

dataset is commonly used to develop and evaluate ML 

techniques for mammogram analysis, aiming to improve the 

accuracy and efficiency of a breast cancer diagnosis. It is a 

useful resource for researchers due to its diverse range of 

abnormalities and views and its larger size compared to the 

Mini-MIAS dataset. 

3.2. Image Preprocessing 

Image preprocessing is an essential step in the analysis of 

medical images, as it can help to enhance the quality and 

clarity of the images and improve the performance of 

subsequent ML and DL methods. Mammograms from CBIS-

DDSM, Mini-MIAS and INbreast are combined. The 

combined data is divided into 2 sets, CC views and MLO 

views. In the first step of the proposed approach, artifacts are 

removed from mammograms; in the second step, pectoral 

muscle is removed from mammograms. Masses are 

segmented using thresholding techniques. 

 

3.3. Segmentation 

Thresholding is a process in image processing that 

involves dividing an image into two or more classes 

(foreground and background) based on the intensity values of 

the pixels. It is often used to segment objects in an image by 

setting a threshold value and assigning all those with values 

above a certain limit(threshold) are assigned to one class, and 

those with values below the limit are assigned to another class. 

The thresholding techniques are used to extract mass from 

super-resolution mammograms and high-resolution 

mammograms. 

 
Fig. 1 Architecture for training discriminator 
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Fig. 2 Architecture for training generator 

 

 3.4. SRGAN 

The GAN provides a novel approach to generating images 

and serves as a foundation for building high-resolution image 

models. SRGAN [8] has introduced a generative adversarial 

network into super-resolution, which has acquired superior 

visual clarity and realism in the finely-detailed image with 

intricate features and nuances. SRGAN mainly consists of two 

sections generator and a discriminator. HR images and 

generated HR images are given to SRGAN during training, 

as presented in Fig. 1. Generator generates HR images from 

LR images and passes these generated images to the 

discriminator. Discriminator distinguishes the generated HR 

images from the original HR images and the adversarial loss 

is computed. The perceptual loss is calculated on feature maps 

of the VGG network. This combined loss is passed to the 

generator, as shown in Fig. 2. 

 

        The architecture of SRGAN is coded as in [8]. 16 residual 

blocks are used in the generator; the features of images are 

extracted from the 10th layer of the VGG19.  To obtain super-

resolution images from SRGAN, it has been trained with 

32X32 LR images and 128X128 HR images for 100 epochs, 

with Adam optimizer and learning rate 10-4. The quality of 

super-resolution images is measured with PSNR and SSIM 

measures. PSNR, which stands for Peak Signal-to-Noise 

Ratio, is a metric used to evaluate the fidelity of a 

reconstructed image in comparison to the original image. This 

measure is obtained by dividing the maximum power that a 

signal can achieve by the power of the noise or error that has 

been introduced during the transmission of the image. 

Structural Similarity Index Measure (SSIM) is a method used 

to calculate the similarity between two images. The findings 

(PSNR and SSIM results) show that the super-resolution 

images contain significantly more high-frequency information 

compared to images generated by traditional methods. High-

resolution images are generated using SRGAN. 

3.5. Augmentation 

As mammograms are medical images, the DL models 

may use the size and shape of the mass in diagnosing breast 

cancer, so only specific augmentation techniques are used. 

The numbers of benign mammograms are 1006, and 

malignant is 888. Every image in the dataset is rotated in [20, 

40, 60, 80, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 

320, 340], shifted vertically and horizontally.  Super-

resolution images are augmented after augmentation total 

number of images is around 37,940. 

 

3.6. EfficientNet Models 

The architecture of EfficientNet[30] models is based on 

combining a few key ideas: compound scaling, depthwise 

separable convolutions and Squeeze-and-excitation blocks. 

Compound scaling is a method of scaling up the model's 

dimensions by a fixed scaling coefficient. This scaling 

coefficient, denoted as "alpha," is used to scale up all model 

dimensions uniformly. The goal of compound scaling is to 

maintain a good balance between representation capacity and 

computational cost as the model scales up. It allows the model 
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to improve its performance on a given task by increasing the 

capacity of the model while simultaneously controlling the 

computational cost. Table 2. presents the scaling of 

EfficientNet models. 

        

 To enhance the efficiency of a model, depthwise 

separable convolutions are employed. These convolutions 

utilize a technique that breaks down a conventional 

convolution into two distinct operations: a depthwise 

convolution and a pointwise convolution. The depthwise 

convolution operates on each input channel independently, 

applying a different filter to each channel. This can be 

implemented efficiently using a single convolutional kernel 

with a shape that is the same as the input channel size (e.g., 

3x3 for an input with 3 channels). The depthwise convolution 

has a computational cost that is linear in the number of input 

channels, making it much more efficient than a standard 

convolution, which has a cost that is quadratic in the number 

of input channels. 

 

       The pointwise convolution combines the output of the 

depthwise convolution using a set of 1x1 convolutional 

kernels. This allows the model to learn more complex 

relationships between the input channels. The pointwise 

convolution has a linear computational cost in the number of 

input and output channels, making it more efficient than a 

standard convolution, which has a quadratic cost in the 

number of input and output channels. Overall, depthwise 

separable convolutions are able to achieve good performance 

with significantly fewer parameters and FLOPS compared to 

standard convolutions in Fig 3. Sections 3 and 6 are for 

depthwise and pointwise convolutions. 

 

       Squeeze-and-excitation (SE) functions are a type of 

attention mechanism that can be used to improve the 

performance of convolutional neural networks. The idea 

behind SE functions is to use a "squeeze" operation to 

aggregate the spatial information from all channels at each 

position in the feature map and an "excitation" operation to 

use this aggregated information to weight the channels at each 

position. This allows the model to adaptively re-calibrate the 

feature maps and improve the representation power of the 

model. In Fig. 3, section 5 is for SE. 

        

 Skip connections in the EfficientNet models allow 

information to bypass one or more layers in the neural 

network, effectively allowing the network to learn a shortcut 

that can improve the flow of information and ultimately 

improve the model's accuracy. This can also help to reduce the 

risk of overfitting by allowing the model to access lower-level 

features more easily. All these features made EfficientNet 

models more robust and highly efficient.  In Fig.3, the layer 

Add is for skip connections. Fig. 4  represents the architecture 

of the EfficientNetB0 model. 

 

 

3.7. Transfer Learning 

Transfer learning in deep learning models involves 

utilizing pre-trained neural networks as a starting point for a 

new task rather than training a model from scratch. This 

approach leverages the knowledge acquired during the 

training of the original model, allowing for faster convergence 

and improved performance on the new task. Knowledge 

transferability depends on the degree of similarity between the 

new task and the task for which the pre-trained model was 

trained. This technique is particularly useful for tasks with 

limited data availability, as it allows for the utilization of large 

amounts of pre-existing data to improve the new model's 

performance.  
 

There are several benefits of using transfer learning in deep 

learning models: 
 

• Faster convergence: By starting with a pre-trained model, 

the training process can converge faster, as the model 

already has a good understanding of the underlying 

features in the data. 

• Improved performance: Transfer learning can improve 

the new model's performance, as it allows the model to 

leverage the knowledge acquired during the training of 

the original model. 

• Handling limited data availability: Transfer learning is 

particularly useful for tasks with limited data availability, 

as it allows the utilization of large amounts of pre-existing 

data to improve the new model's performance. 

• Wide range of applications: Transfer learning has been 

shown to be effective in various fields such as NLP, CV 

and speech recognition. 

• Cost-effective: Using pre-trained models can save time 

and resources, as the model has already been trained on a 

large dataset. This makes it more cost-effective than 

training a model from scratch. 

• Reusability: Pre-trained models can be reused multiple 

times, which makes it more efficient in terms of time and 

resources. 
 

Transfer learning was applied in training EfficientNet 

Models with SR mammograms. 
 

3.8. The Proposed Model 

The proposed model aims to improve upon traditional 

breast cancer detection methods by using deep learning 

techniques to extract more relevant features from medical 

images, specifically mammograms. Instead of using features 

from a general image database (Imagenet), this model uses 

features from a medical image database specifically for 

mammograms. Additionally, the model uses features 

extracted from convolutional layers, which have a wider range 

of feature extraction capabilities, rather than dense layers. By 

training the last few layers of the deep learning model using a 

mammogram dataset, the model can learn features specific to 

mammogram masses. 
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Fig. 3 Sections and modules of the EfficientNet model 

 
Fig. 4 Architecture of EfficientNetB0 model

Table 2. Architecture details of EfficientNet Models 

Model/ Block 
Family of EfficientNet Models 

B0 B1 B3 B4 B5 B6 B7 

Stem Module 1 Module 1 Module 1 Module 1 Module 1 Module 1 Module 1 

Block1 Module 2 
Module 2 Module 2 Module 2 Module 2 Module 2 Module 2 

Module 3 Module 3 Module 3 Module 3x2 Module 3x2 Module 3x3 

Block2 
Module 5 Module 5 Module 5 Module 5 Module 5 Module 5 Module 5 

Module 7 Module 7x2 Module 7x2 Module 7x3 Module 7x4 Module 7x5 Module 7x6 

Block3 
Module 5 Module 5 Module 5 Module 5 Module 5 Module 5 Module 5 

Module 7 Module 7x2 Module 7x2 Module 7x3 Module 7x4 Module 7x5 Module 7x6 

Block4 
Module 5 Module 5 Module 5 Module 5 Module 5 Module 5 Module 5 

Module 7x2 Module 7x3 Module 7x4 Module 7x5 Module 7x6 Module 7x7 Module 7x9 

Block5 
Module 6 Module 6 Module 6 Module 6 Module 6 Module 6 Module 6 

Module 7x2 Module 7x3 Module 7x4 Module 7x5 Module 7x6 Module 7x7 Module 7x9 

Block6 
Module 5 Module 5 Module 5 Module 5 Module 5 Module 5 Module 5 

Module 7x3 Module 7x4 Module 7x5 Module 7x7 Module 7x8 Module 7x10 Module7x12 

Block7 Module 6 
Module 6 Module 6 Module 6 Module 6 Module 6 Module 6 

Module 7 Module 7 Module 7 Module 7x2 Module 7x2 Module 7x3 

Last Module 8 Module 8 Module 8 Module 8 Module 8 Module 8 Module 8 
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One potential solution to the limited data problem in 

medical image analysis is to augment available datasets and 

combine them to create a larger training set. This approach, 

known as multi-dataset training, helps increase the robustness 

and generalizability of the model. However, in 

mammography, the small size of masses captured in images 

can lead to loss of detail and introduction of artifacts when the 

masses are resized for input into a deep learning model.  

 

GAN (SRGAN) was used to generate super-resolution 

images of the masses to address this issue. These images have 

a higher pixel density and more detailed information, which 

can increase the model's accuracy by reducing false negatives 

and false positives. The increased resolution of the training 

images allows the model to identify better and classify the 

features present in the image. 

 

Fig.5 presents a flow chart of the proposed approach, and 

Fig.6 presents the architecture of the proposed model. 

Algorithm provides a succinct overview of the model's 

process.  

 

4. Experiments and Results 
        In this paper, to improve the resolution and clarity of 

preprocessed mammograms, first mammograms are used to 

train the super-resolution generative adversarial network 

(SRGAN) model. The model is trained with 7965 images for 

100 epochs; a model is saved for every 10 epochs.  The models 

are evaluated and computed PSNR and SSIM values which are 

presented in Table 3.  

 

The 100 epoch model values suggest the image quality is 

relatively high, as both(PSNR and SSIM) values are relatively 

close to the maximum possible value of 50 for PSNR and 1 for 

SSIM. The trained SRGAN model was then utilized to 

generate high-resolution mammograms of size 600X600. The 

generated SR images are enhanced and augmented and then 

applied to EfficientNet models. 

 

Transfer learning with finetuning is applied on all 

EfficientNet Models; all the layers in the last 3 blocks of every 

EfficientNet model(block 5, block 6, block 7) are trained. The 

list of layers trained in EfficientNet models is presented in 

Table 4.  Every EfficientNet model is trained with 70% of the 

data, validated with 10% of the data and evaluated with 20% 

of the data. Every model is trained for 20 epochs with batch 

size ranging from 4-16, ‘Adam’ optimizer and learning rate(lr) 

10-4 

Fig. 5 Flowchart for the proposed model 

 

Split dataset(37,940) for 

training(70%, validation (10%) 

and testing (20%) 

EfficientNet B0, B1, B3, B4, 

B5, B6, B7, models are trained 
for epochs 20, learning rate 

0.0001, batch size (4...16), last 

few layers are trained in all 

models 

Evaluated models with test set 

Training and Evaluating Models 

Dataset: CBIS-DDSM, 

Mini-MIAS, INbreast 

Total: 1897 images 
Benign: 1009 samples 

Malignant: 888 samples  

Remove artifacts 

Remove Pectoral Muscle 

Segmentation of masses 

from mammograms 

Resize Mammograms to 
128x128 maintaining 

aspect ratio 

LR(32X32) from HR 
using bilinear 

interpolation 

 

Augmenting (LR,HR)(vs, 

hs, 90°,270°) 

Training SRGAN 

(LR,HR) Trained for 100 

epochs, batch size 1, 
learning rate 0.0001, 7585 

mammograms, testing on 

380 mammograms 

Generating SR images 
(1897), input size 

150X150, output size 

600X600 

 

Enhancing SR images using 

Histogram equalization 

Augmenting images (20°, 40°, 

60°, 80°, 100°, 120°, 140°, 
160°, 180°, 200°, 220°, 240°, 

260°, 280°, 300°, 320°, 340°, 

vs, hs) 

Enhancing and Augmentation SR images generation Pre-Processing 

Dataset 
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Algorithm: SRGAN with EfficientNet to reduce FPR and FNR 

 

rt-removal of artifacts, pm-removal of the pectoral muscle, rs-resize, seg-segmentation, he-histogram equalization, aug-

augmentation, m-model, (d1, d2, d3, ... are datasets in different stages in the preparation of dataset to train the model) 

Input: Dataset- [CBIS-DDSM, Mini-MIAS, INbreast mammograms]  

Output: [confusion matrix, accuracy, precision, recall, specificity] 

Step 1: Load Dataset 

Step 2: Preprocessing of Dataset 

              2.1: d1 = rt (Dataset) 

              2.2: d2 = pm(d1) 

Step 3: Segmentation of mass 

              3.1: d3 = seg(d2) 

Step 4: LR and HR images 

              4.1: HR = rs(d3) 

              4.2: LR = rs(HR) 

Step 5: Process to get super-resolution images 

              5.1: m = training (SRGAN, LR, HR) 

              5.2: sr = m(d3) //sr dataset of super-resolution images 

Step 6: Process to enhance images 

              6.1: hsr = he(sr)  

Step 7: Augmentation 

              7.1: augs = aug(hsr) 

Step 8: split dataset(augs) for training, testing and validation 

Step 9: train pretrained models (efficientnetb0, b1, b3, b4, b5, b6, b7) 

              9.1: finetune model parameters (freezing, training layers, epochs, learning rate, batch size) 

              9.2: testing the models 

Step 10: compute [confusion matrix, accuracy, precision, recall, specificity] 

Step 11: evaluation and analysis 

 

 
Fig. 6 Architecture of the proposed model

4.1. Comparing the Family of EfficientNet Model’s 

Performance in Reducing False Negatives 

One of the points that the present study focused on was 

minimizing the rate of false negatives in breast cancer 

detection. The values in Table 5 and the graph in Fig.8. 

illustrate the rate of false negatives achieved by the family of 

EfficientNet Models with high-resolution images obtained 

from SRGAN(SM); The findings reveal a consistent reduction 

in false negatives as the combination of SM with EfficientNet 

models advanced from the less complex EfficientNetB0 to the 

more sophisticated EfficientNetB7. 

This trend suggests that the higher capacity models within 

the EfficientNet family can extract more relevant features 

effectively from the SR images, leading to a high accuracy rate 

in the classification of breast cancer cases. The observed 

improvement in the rate of false negatives indicates the higher 

capability of the EfficientNet models in identifying cases that 

may have been missed by lower capacity models, potentially 

leading to improved patient outcomes and early detection of 

breast cancer. Fig.10 presents the confusion matrix of 

EfficientNetB0 to EfficientNetB7 models. 
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Table 3. PSNR and SSIM values obtained by the SRGAN model 

No. of Epochs PSNR SSIM 

10 16.51 0.62 

20 19.46 0.72 

30 23.99 0.73 

40 26.73 0.78 

50 28.33 0.84 

60 29.21 0.85 

70 30.34 0.85 

80 32.63 0.86 

90 34.22 0.86 

100 36.52 0.87 

 
                Table 4. The layers trained in EfficientNet models      

Model 
No. of 

layers 

Starting 

Layer 

No. of layers 

trained 

EfficientNetB0 237 120 118 

EfficientNetB1 339 177 163 

EfficientNetB3 384 192 193 

EfficientNetB4 474 237 238 

EfficientNetB5 576 294 283 

EfficientNetB6 666 339 328 

EfficientNetB7 813 411 403 

 
Table 5. Results obtained by EfficientNet models 

  Super Resolution Images 

Models Accuracy % 

False 

Negative 

Rate 

False 

Positive 

Rate 

EfficientNetB0 98.69 0.0110 0.0160 

EfficientNetB1 99.24 0.0061 0.0093 

EfficientNetB3 99.29 0.0078 0.0063 

EfficientNetB4 99.39 0.0075 0.0048 

EfficientNetB5 99.53 0.0038 0.0056 

EfficientNetB6 99.65 0.0032 0.0039 

EfficientNetB7 99.71 0.0029 0.0029 

 
Table 6. Results obtained by EfficientNet Models 

  Super Resolution Images 

Models Accuracy % 
Recall 

% 

Precision 

% 

EfficientNetB0 98.69 98.94 98.59 

EfficientNetB1 99.24 99.39 99.19 

EfficientNetB3 99.29 99.22 99.45 

EfficientNetB4 99.39 99.25 99.49 

EfficientNetB5 99.53 99.62 99.50 

EfficientNetB6 99.65 99.68 99.62 

EfficientNetB7 99.71 99.75 99.71 

  
4.2. Comparing the Family of EfficientNet Model's 

Performance in Reducing False Positives 

The other point which present study focused on was 

minimizing the rate of false positives in breast cancer 

detection. The graph in Fig.7 and the values in Table 5. 

illustrates the rate of false positives achieved by the family of 

EfficientNet Models with high-resolution images obtained 

from SRGAN(SM). The results demonstrate a consistent 

reduction in false positives as it progresses from 

EfficientNetB0 to EfficientNetB7 when combined with SR 

images. This trend suggests that the higher capacity models 

within the EfficientNet family are able to extract more 

relevant features effectively from the SM, leading to a high 

accuracy rate in the classification of breast cancer cases. The 

observed improvement in the rate of false positives indicates 

the higher capability of the EfficientNet models in identifying 

cases that may have been missed by lower capacity models, 

potentially leading to improved patient outcomes and early 

detection of breast cancer. Fig.10 presents Confusion matrices 

of EfficientNetB0 to EfficientNetB7 models. 

4.3. Comparing the Family of EfficientNet Model's 

Performance in Increasing Accuracy 

        Incorporating EfficientNet models in the analysis of 

super-resolution mammograms resulted in a substantial 

decrease in both false positive and false negative rates, thereby 

illustrating a significant improvement in diagnostic accuracy. 

Fig.9 gives the rate of loss and accuracy obtained by 

EfficientNetB7 when it was trained. Table 6 presents the 

accuracy, precision and recall achieved by EfficientNetB0 to 

B7 and a graphical representation is presented in Fig.11; Table 

7 and Table 8 present the results in comparison with the 

proposed system to previous research. The false positive and 

false negative rate acheived by our proposed model is 0.0029, 

which is almost equal to zero, and the accuracy achieved is 

99.71%. 

 

 
Fig. 7 False positive rate obtained by EfficientNet models 
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Fig. 8 False negative rate obtained by EfficientNet models 

 

4.4. Overall Analysis 

Upon applying super-resolution images to the family of 

EfficientNet models, which possess a high degree of 

scalability, have shown a progressive increase in accuracy and 

a concomitant decrease in false negatives and false positives. 

This balanced optimization of performance metrics was not 

consistently replicated when utilizing other model 

architectures. This can be attributed to the unique design 

principles and optimization techniques employed in the 

EfficientNet models, which enable a more finely tuned and 

holistic enhancement of model performance. 
 

 

The EfficientNet models demonstrate a superior ability to 

learn complex image features robustly and effectively, 

resulting in a more consistent and reliable improvement in 

results. Selecting an appropriate model for a given task is 

crucial for achieving optimal performance. The characteristics 

of the data, such as its size, type, and distribution, must be 

carefully considered when selecting a model, which can lead 

to superior performance and yield valuable insights from the 

data. 
 

4.5. Strategies Employed to Reduce FPR and FNR in this 

Research 

 Several strategies were employed to reduce and balance 

the FPR and FNR through the proposed model. Firstly, high-

resolution images were used instead of low-resolution images 

to extract more relevant features for better decision-making. 

By doing this, more details could be extracted from the 

images, which could help the model make better decisions. 

Secondly, a GAN model, a powerful deep learning technique 

for image generation, was applied to produce high-quality 

super-resolution images that could provide more details to aid 

in making accurate decisions. GANs possess the capability to 

comprehend intricate patterns within image data and create 

lifelike images that are challenging to differentiate from 

genuine ones. 

 
9(a) 

 
9(b) 

Fig. 9 Presents the rate of  (a) loss while training EfficientNetB7   (b) 

accuracy while training EfficientNetB7. 

       In addition to these strategies, the model's ability to 

generalize was enhanced by merging three distinct datasets 

The combination of different datasets provided a wider range 

of variations in the data, which helped the model to learn more 

robust and diverse features. Various transformations, such as 

flipping and rotating, were applied to augment the dataset and 

enhance the model's robustness. The quantity of training data 

is increased through the application of data augmentation.
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Fig. 10 Presents confusion matrices of all EfficientNet models from B0 to B7 

 

 
Fig. 11 Presents accuracy, precision, and recall obtained by all EfficientNet models from B0 to B7 

 
Table 7. Presents accuracy, precision, and recall obtained by all EfficientNet models from B0 to B7 

S.No Article Accuracy % Sensitivity % Specificity % 

1 Ragab DA [26] 87.20 86.20 87.70 

2 Pak F [22] 91.43 87.15 93.58 

3  Zeiser FA [28] 85.95 92.32 80.47 

4 Al-Antari MA [27] 95.64 97.14 92.41 

5 Pratheep Kumar P [31] 96.00 97.00 98.00 

6 Proposed Model 99.71 99.75 99.71 
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 Table 8. Comparison of results with previous research in SR 

S.No Article PSNR 
SSIM/MSS

IM 

1 Zheng J [13] 35.74 0.81 

2 Umehara K [14] 
34.50 ± 3.44 

dB 

0.785 ± 

0.103 

3 Shahidi F [15] 28.74 0.96 

4 Wang Z [17] 34.53 0.93 

5 Zhang M [18] 25.98 0.78 

6 Davradou A [19] 45.00 0.95 

7 Proposed System  36.52 0.87 

 

      Available to the model, leading to improved performance 

and reduced overfitting. 

  To further improve the performance of the models, 

EfficientNet models were used to train the SR images. 

EfficientNet models comprise a group of NN devised to 

achieve state-of-the-art performance on image classification 

tasks with fewer parameters than traditional deep learning 

models. The EfficientNet models have a unique architecture 

that allows them to achieve high accuracy with a smaller 

number of parameters, making them more efficient and faster 

to train. By using EfficientNet models, higher accuracy was 

achieved in the models while keeping the number of 

parameters low. 

 

 Finally, the models were finetuned by tuning the 

hyperparameters after many experiments to achieve the best 

possible performance. The model's performance could be 

optimized by tuning the hyperparameters, and better results 

could be achieved. The last three blocks of every model were 

also trained to finetune the models further and achieve better 

results. 

 

 Overall, using high-resolution images, utilizing a GAN 

model, combining different datasets, augmenting the dataset, 

using EfficientNet models, and finetuning the models through 

hyperparameter tuning and last-block training, the FPR and 

FNR in the models were reduced and balanced. 

 

5. Conclusion and Future Work 
The present study aimed to reduce false negatives and 

false positives in the classification of mammograms using 

super-resolution images and deep learning techniques. To this 

end, an approach was proposed that used the capabilities of a 

GAN to synthesize SR images from a small, artifact-free 

dataset of mammograms.  

 

The results demonstrated that the use of SR images, 

particularly when paired with the most effective medical 

image classification model, resulted in a significant reduction 

in false negatives and false positives. These findings suggest 

that using GAN-based super-resolution, combined with 

appropriate deep learning architectures, holds promise for 

improving the accuracy and reliability of mammogram 

analysis. 

 

One potential approach to address the challenge of limited 

data availability in the medical image domain is to leverage 

the power of generative models, such as GAN. These models 

have the ability to synthesize highly realistic images by 

learning the underlying distribution of a given dataset. By 

training GANs on a small dataset of real medical images, it 

may be possible to generate a larger augmented dataset, which 

can be utilized to train DL models. This approach has the 

potential to greatly enhance the generalization capacity of the 

trained models and improve their performance on unseen data. 

 

One important point is that the quality and realism of the 

synthesized images generated by GANs depend on the 

capacity and training of the model, as well as the diversity and 

complexity of the underlying dataset. Therefore, it will be 

crucial to carefully evaluate the effectiveness of different 

GANs for use in downstream tasks. This will be pursued in 

future initiatives. 
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