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Abstract - This paper establishes an effective and reliable algorithm for solving the second type of FIE based on the first-order 

piecewise polynomial and the first-order quadrature method. The algorithm, which is called Composite Trapezium (CT), is 

generally used to discretize any integral term. This paper also aims to derive a Composite Trapezium (CT) with first-order 

piecewise polynomial and first-order quadrature linear collocation approximation equation generated from the discretization 

process of the proposed problem by considering the distribution of node points with vertex-centered. Accordingly, we built a 

system of CT linear collocation approximation equations using collocation node points over the approximation equation for 

linear collocation. The coefficient matrix is large and dense. In addition, this research also considered the effective Refinement 

Successive Over-Relaxation (RSOR) algorithm to obtain the piecewise linear collocation solution of this linear problem. In 

order to test the proposed iterative methods, three tested examples were solved. The results were subsequently obtained based 

on three parameters, including the iterations (I), execution period (s), and the maximum absolute error, which was all recorded 

and further compared with two iterations, SOR and RSOR. 

 

Keywords - Piecewise, Collocation, Successive Over-Relaxation (SOR) method, and Refinement Successive Over-Relaxation 

(RSOR) method. 

  

1. Introduction  
Integration has a concept in which an integral equation 

is structured as an equation where it can be seen as an 

unknown function 𝑢(𝑥) that needs to be resolved under the 

integral sign [1]. Based on the historical background, the first 

produced integral equation comes from a curve graph with 

heavy particles connected and sliding down in descending 

order without any friction to the lowest position (see Figure 

1). In this case, the curve graph can form many equations, 

especially in potential and kinetic energy; thus, the evolution 

of science will lead to the new formation of physical laws 

over time and will frequently appear in many fields such as 

engineering, quantum mechanics, medical, image, and others 

[2, 3, 4]. The integral equation is also a beneficial tool in 

many areas of study, and it has huge applications in most 

physical problems. Such problems are applicable in image, 

engineering, and mechanic quantum fields as a main idea in 

the studies. The implications of the integration in those fields 

are commonly used to solve and improve the efficiency of 

numerical results. One of the examples is its implication in 

Electrocardiographic Imaging to improve the efficiency of 

numerical results [5]. However, there are several 

classifications of the integral equation, which can include 

linear and nonlinear integral, and the frequently used integral 

equations are Volterra, Fredholm, integro-differential, and 

singular integral equations. 

 

 
Fig. 1 Integral curve graph 
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The following entails how these four major types of 

integral equations can be distinguished: 
 

Volterra integral equations [6]: 
 

𝜗(𝑥)𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎
       (1.1)  

 

Fredholm integral equations [7]: 
 

𝜗(𝑥)𝑢(𝑥) = 𝑔(𝑥)    (1.2) 
 

Singular integral equations [8]: 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆∫ 𝑢(𝑡)𝑑𝑡
∞

−∞

 

𝑓(𝑥) = ∫
1

(𝑥−𝑡)𝛼
. 𝑢(𝑡)𝑑𝑡,

𝑥

0
 0 < 𝛼 < 1                            (1.3) 

 

Integro-differential equations [9]: 
 

𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅𝐼 +

1

𝑐
∫ 𝐼(𝜏)𝑑𝜏
𝑡

0
= 𝑓(𝑡), 𝐼(0) = 𝐼0                      (1.4) 

 

𝐿 = Inductance, 𝑅 = Resistance, 𝐶 = Capacitance 
 

In reference to Eq. (1.2), the original formula of 

Fredholm integral equations denotes the third type of 

equation. If the function is 𝜗(𝑥) = 1,  then (1.2) will turn 

into  

𝑢(𝑥) + 𝑔(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)
𝑏

𝑎
                     (1.21) 

 

and the equations named Fredholm integral equation of the 

second type when ϑ(x) = 0 then (1.21) yields  
 

𝑔(𝑥) + 𝜆 ∫ 𝐾(𝑥, 𝑡)𝑢(𝑡)
𝑏

𝑎
𝑑𝑡 = 0,                 (1.22) 

  

which is named the Fredholm integral equation of the 

first type. 
 

2. Research Gap 
Fredholm integral equation of the second type (1.21) is 

the main problem in this study. As the study aims to obtain 

the approximate equations, several methods were listed, such 

as the Galerkin method, the Cauchy method, the B-Spline 

method, and many more [10, 11, 12]. However, previous 

studies have shown that the collocation method is simple and 

easy for generating the network grid on the domain solutions 

[13]. Moreover, the collocation method has less complexity 

compared to other methods, such as the Galerkin method. 

Therefore, this study has selected the most reliable and 

suitable approach to obtain the approximation equations. 

Besides, this study was also inspired by the most recent 

studies where the quadrature methods of Newton Cotes rules 

have been applied in various cases, particularly to obtain the 

approximation equations and produce the corresponding 

linear system [14]. In line with the recent studies mentioned, 

operating the linear system using the quadrature method has 

proven excellent efficiency in results, and it can be stated that 

the results showed good agreement. 

 

Therefore, this study focuses on solving FIE of the 

second type by applying first-degree piecewise polynomial 

and the first-degree quadrature scheme of the Trapezium 

method to obtain the approximate equations by imposing the 

collocation method in the discretization process to generate 

the corresponding linear system.   

 

Since the smooth kernel FIE of the second type is the 

main problem highlighted in this study, let the characteristic 

of Eq. (1.21) be described where 

 

𝑢(𝑥) = an unknown function 

𝑔(𝑥) = the provided function  

𝜆 = lambda parameter. 

 

3. Discretization Process of Piecewise 

Polynomial Collocation on FIE of the Second 

Type  
3.1. Discretize 

Based on the study by [15], the Trapezium method is 

one of the first-order quadrature methods of Newton Cotes, 

which is involved with the two points. 

 

3.1.1. Trapezium Rule 

Basic formula:  

𝐼 = ℎ(𝑦0 +
𝛥𝑦0

2
) = ℎ(

𝑦0+𝑦1

2
) =

ℎ

2
[𝑓(𝑎) + 𝑓(𝑏)]   (2.0) 

 

n-equal interval, such that   

𝑥0 = 𝑎, 
𝑥1 = 𝑎 + ℎ, 
𝑥2 = 𝑎 + 2ℎ, 

𝑥𝑛 = 𝑎 + 𝑛ℎ = 𝑏. 

𝐼 = (
ℎ

2
)[(𝑦0 + 𝑦𝑛) + 2(𝑦1 + 𝑦2 +⋯+ 𝑦𝑛−1)]        (2.1) 

 

𝐼 = (
ℎ

2
)[(𝑓(𝑎) + 𝑓(𝑏)) + 2(𝑓(𝑥1) + 𝑓(𝑥2) + ⋯+ 𝑓(𝑥𝑛−1)]    

(2.2)  

   

∫ 𝑓(𝑥)𝑑𝑥 =
ℎ

2

𝑏

𝑎
(𝑓0 + 2∑ 𝑓𝑖 + 𝑓𝑛

𝑛
𝑗=0 )       (2.3) 

 

The above figure is called Trapezium rule as it 

approximates the small curve part of the function by a straight 

line and interprets the area under the curved part as the area 

of the Trapezium, as shown in Fig. 2. The basic formula of 

the quadrature method will be applied in the discretization 

process on Fredholm integral equation of the second type. 

The quadrature method will then take part in integration 

calculation to speed up the iteration process. This will be 

further elaborated on, step by step, in the next section.
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Fig. 2 Geometrical interpretation of Trapezium Rule 

 
In this part, the study introduced the domain solutions of 

integral I = [a, b], which is uniformly divided with n-

subintervals where the node points of the domain solutions 

with xi i = ,1,2,3,… , n, n + 1 can be viewed as  

 

𝑎 = 𝑥1, 𝑥2 < ⋯ < 𝑥𝑛 < 𝑥𝑛+1 = 𝑏. 
 

The definition of 𝒉 cannot be neglected as it is always 

needed to calculate the length size of the subinterval of I =
[a, b]. The formula of 𝒉 is depicted in Eq. (2.4); for a better 

view, see Fig. 3, the domain solutions of I. 
 

h =
b-a

n
            (2.4) 

 
Fig. 3 Interval domain of I = [a, b]  on Fredholm integral equation of 

the second type. 

 

To describe Fig. 3, the domain solutions denote an edge-

vertex type with a first case, which entails a full-sweep 

network in the MATLAB version. All the node points were 

the approximate points to be counted in the iteration process 

later. Consider the distribution for full-sweep node points.  

 

𝑥𝑖 = 𝑎 + 𝑖ℎ, 𝑖 = ,1,2,3, … , 𝑛, 𝑛 + 1.             (2.5) 

 

To solve Eq. (1.21), we must perform the discretization 

process, which includes first-degree polynomials piecewise. 

Systematically, the first-degree polynomial piecewise 

approximation will be generated first before it further 

combines the first-degree quadrature method and the 

collocation scheme on the domain solutions. The following 

equation outlines the first-degree polynomial piecewise 

approximation function of the full-sweep case:  

 

𝑈(𝑡) = ∑ 𝐻𝑖(𝑥). 𝛿𝑖(𝑥)
𝑛
𝑖=1 , 𝑥 ∈ [𝑎, 𝑏],              (2.6) 

 

The process of discretization starts by applying Eq. (2.6) 

to Eq. (1.21) in order to generate the corresponding 

approximation equations, as shown in Eq. (2.7): 

𝑈(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡)∑ 𝑅𝑖(𝑥). 𝛿𝑖(𝑥)𝑑𝑡 = 𝑔(𝑥),𝑛
𝑖=1

𝑏

𝑎
             (2.7)                        

 

By expanding Eq. (2.7), we obtain the following 

equations: 

 

⇒ 𝑈(𝑥) + 𝜆∫ 𝑘(𝑥, 𝑡)𝑅1(𝑡). 𝛿1(𝑡)𝑑𝑡 +
𝑏

𝑎

𝑅2(𝑡). 𝛿2(𝑡)𝑑𝑡 + ⋯

+ 
𝑅𝑛(𝑡). 𝛿𝑛(𝑡)𝑑𝑡 = 𝑔(𝑥),                                 

(2.8) 

⇒ 𝑈(𝑥) + 𝜆∫ 𝑘(𝑥, 𝑡)𝑅1(𝑡). 𝛿1(𝑡)𝑑𝑡
𝑏

𝑎

+𝜆∫ 𝑘(𝑥, 𝑡)𝑅2(𝑡). 𝛿2(𝑡)𝑑𝑡 +
𝑏

𝑎

 

⋯+ 𝜆∫ 𝑘(𝑥, 𝑡)𝑅𝑛(𝑡). 𝛿𝑛(𝑡)𝑑𝑡
𝑏

𝑎
= 𝑔(𝑥),  (2.9) 

∵ 𝑎 = 𝑥1, 𝑏 = 𝑥𝑛+1 

⇒ 𝑈(𝑥) + 𝜆∫ 𝑘(𝑥, 𝑡)𝑅1(𝑡). 𝛿1(𝑡)𝑑𝑡
𝑥𝑛+1

𝑥1

+𝜆∫ 𝑘(𝑥, 𝑡)𝑅2(𝑡). 𝛿2(𝑡)𝑑𝑡
𝑥𝑛+1

𝑥1

 

+⋯+ 𝜆∫ 𝑘(𝑥, 𝑡)𝑅𝑛(𝑡). 𝛿𝑛(𝑡)𝑑𝑡
𝑥𝑛+1

𝑥1

= 𝑔(𝑥), 

                                     … (2.10) 

 

δi(t)  is defined as  

𝛿𝑖(𝑥) = {
1, 𝑥𝑖−1 < 𝑥 < 𝑥𝑖
0, 𝑜𝑡ℎ𝑒𝑟𝑠

, 𝑖 = 2,3⋯ , 𝑛, 𝑛 + 1. 

 

Thus, the new equation satisfies the piecewise constant 

function; refer to Eq. (2.11): 

⇒ 𝑈(𝑥) + 𝜆∫ 𝑘(𝑥, 𝑡)𝑅1(𝑡). 𝛿1(𝑡)𝑑𝑡
𝑥2

𝑥1

+𝜆∫ 𝑘(𝑥, 𝑡)𝑅2(𝑡). 𝛿2(𝑡)𝑑𝑡
𝑥3

𝑥2

 

+⋯+ 𝜆∫ 𝑘(𝑥, 𝑡)𝑅𝑛(𝑡). 𝛿𝑛(𝑡)𝑑𝑡
𝑥𝑛+1

𝑥1

= 𝑔(𝑥), 

                                                (2.11) 

 ∵ 𝐻𝑝(𝑥𝑖) ∫ 𝑘(𝑥𝑖 , 𝑡)𝑅𝑝(𝑡)𝑑𝑡,
𝑥𝑝+1
𝑥𝑝

 

𝑝 = 1,2, . . . , 𝑛, 𝑖 = 1,2, . . . , 𝑛 + 1. 
 

Let 𝐻 be in Eq. (2.12) before detailing each part, as we 

will apply the first-degree polynomial piecewise in this part 

𝐻𝑝(𝑥𝑖)∫ 𝑘(𝑥𝑖 , 𝑡)𝑅𝑝(𝑡)𝑑𝑡,
𝑥𝑝+1

𝑥𝑝

 

𝑝 = 1,2, . . . , 𝑛, 𝑖 = 1,2, . . . , 𝑛 + 1. 
                  (2.12) 

The first-degree polynomial piecewise is defined below. 

 

∴ 𝑅𝑝(𝑡) = (
𝑥𝑝+1 − 𝑡

ℎ
)𝑢(𝑥𝑝) +

𝑡 − 𝑥𝑝

ℎ
𝑢(𝑥𝑝+1) 
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∴ Hp(xi) = ∫ k(xi, t)[(
xp+1-t

h
)u(xp)

xp+1
xp

+ (
t_xp

h
)u(xp+1)]dt 

= [
1

h
∫ k(xi, t)(xp+1-t)dt

xp+1

xp

]u(xp) + 

[
1

h
∫ k(xi, t)(t-xp)dt]u
xp+1
xp

(xp+1)                    (2.13) 

 

Before that, the application of composite Trapezium rule will 

be applied to the integral part where it is used in an iteration 

process. Based on Eq. (2.3), the coefficient of 𝐴𝑗, 𝑗 =

1,2,3,4, . . . , 𝑛 in the Trapezium, the rule can be defined as  

 

𝐴𝑗 = {
ℎ, 𝑗 = 0, 𝑛
2ℎ, 𝑜𝑡ℎ𝑒𝑟𝑠

 

 
The discretization process is continued by applying the 

collocation method to all the node points in the 

approximation equations. Finally, Eq (1.21) will generate a 

linear system equation of  

𝐺𝑈 = 𝑔                                                                         (2.14) 

where 

 

𝐺 = [
1 + 𝐺(𝑥1, 1) ⋯ 𝐺(𝑥1, 𝑛 + 1)

⋮ ⋱ ⋮
𝐺(𝑥𝑛+1) ⋯ 1 + 𝐺(𝑥𝑛+1, 𝑛 + 1)

]

(𝑁+1)(𝑁+1)

 

 

1)1(
)(

)(

)(

1

2

1

+




















=

+
N

nxU

xU

xU

U


𝑔 = [

𝑔(𝑥1)
𝑔(𝑥2)
⋮

𝑔(𝑥𝑛+1)

]

(𝑁+1)×1

 

 
Resultantly, the linear system shows that it has a huge-

scale and dense matrix after applying first-degree polynomial 

piecewise on Fredholm integration of the second type. 

 

4. Derivative Method : Modification of 

Relaxation Iterative Method (SOR) into 

Refinement Successive Over (RSOR)  
This section focuses on obtaining the numerical solution 

of the linear system (2.14), which is generated as a result of 

the discretization procedure used on the given problem. In 

general, there are direct approaches and iterative methods that 

can be taken into consideration to solve the linear system. 

Nonetheless, it is clear that the coefficient matrix 

characteristics are massive and dense. As a result, a family of 

iterative approaches must be taken into account while 

developing an acceptable solution for such a linear system. 

 

The Gauss-Seidel method is one of the often-used classic 

iterative methods, as the algorithm itself was inspired by the 

Jacobi iterative method. Besides, the Gauss-Seidel method 

has better performance than the Jacobi method. However, 

Gauss-Seidel is slower than the Successive Over-Relaxation 

(SOR) method since SOR has a relaxation factor in the 

algorithm [17, 18, 19, 30]. Consider the linear system of 

 

𝐺𝑈 = 𝑔 

 

𝐺 ∈ 𝑀𝑎𝑥𝑛×𝑛, 𝑔 ∈ ℜ
𝑛

 

and let 

 

𝐺 = 𝐷 − 𝐿 − 𝑈 

 

 be the decomposition of G, with Das as the diagonal 

matrix, 𝐿 as lower triangular, and 𝑈 as the upper triangular 

matrix. 

 

However, in view of the matter of high-speed 

convergence test, this study considers the RSOR iterative 

method as the best method among those presented methods 

in this study [20]. The following equation shows the SOR 

iterative method that was derived from the linear system:  

 
𝑈(𝑘+1) = (𝐷 − 𝜔𝐿)−1[(1 − 𝜔)𝐷 + 𝜔𝑈]𝑈(𝑘) + 𝜔(𝐷 −

𝜔𝐿)−1𝑔                                       

(3.0) 

 

Based on a recent study, the application of the refinement 

theory into the iterative method of SOR has modified the 

equation to have a better algorithm since it has a faster 

convergence speed than SOR in many applications [21]. Eq. 

(3.1) shows the RSOR iterative method where 𝒌 is the 

number of iterations and 𝝎 ∈ (𝟎, 𝟐) is the relaxation factor: 

 

𝑈(𝑘+1) = {(𝐷 − 𝜔𝐿)−1[(1 − 𝜔)𝐷 + 𝜔𝑈]}𝑈(𝑘) + 
𝜔{𝐼 + (𝐷 − 𝜔𝐿)−1[(1 − 𝜔)𝐷 + 𝜔𝑈)]}(𝐷 − 𝜔𝐿)−1𝑔 

         (3.1) 

 

Algorithm of the RSOR Iterative Method 
a. Set the initial value, 𝛿 = 10−10, 𝑈0 = 0, 𝑘 = 0. 
b. For 𝑘 = 0,1, . . . 𝑛 Calculate. 

I. 𝑈(𝑘+1) = {(𝐷 − 𝜔𝐿)−1[(1 − 𝜔)𝐷 +
𝜔𝑈]}𝑈(𝑘) + 
𝜔{𝐼 + (𝐷 − 𝜔𝐿)−1[(1 − 𝜔)𝐷 + 𝜔𝑈)]}(𝐷

− 𝜔𝐿)−1𝑔 
 

II. Do the convergence test. If 

‖U(k+1)-Uk)‖
∞
≤ δ = 10-10 is satisfied, 

then go to step c. Otherwise, go to step b. 

c. Display the numerical solutions. 

 

5. Numerical Example   
5.1. Problems 

This part theoretically explains the process of solving the 

numerical solution of the Fredholm integral equation of the 

second type. Three examples were proposed to test the 

effectiveness of the presented methods, which include the 
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Successive Over-Relaxation (SOR) method and the 

Refinement Successive Over-Relaxation (RSOR) method. 

These methods have been applied in this experiment by 

considering the optimal parameter of 𝜔 as the optimal point 

for SOR and RSOR. The experiment was executed by using 

MATLAB software. This study has carried out the numerical 

experiment, and all results have been tabulated with three 

parameters such as iterations, execution period, and 

maximum absolute error with five sizes of mesh size starting 

with 2n, n = 8,9,10,11,12. The results are shown in Table 1 

to Table 3. In the process of gaining all the results, this study 

considered the most crucial part, which is the optimal value 

needed to meet all the characteristics of the convergence test 

in reference to Eq. (4.0). The definition of any experiment is 

aimed at possibly meeting the convergence test where every 

𝑒(𝑘)  must approach zero. 
 

Theorem [22]  

                   e(k) = max s |x(k+1)-x(k)| < ε           (4.0) 

   

In addition, to test the efficiency, one of the iterative 

methods, the SOR method, was set as the control method to 

record the reduction percentages of iterations and execution 

periods in all the examples tested in this experiment. Hence, 

the formula is shown in Eq. (4.1) [31] 

 

                           Ω = τ × 100                               (4.1)                   

where 

 

𝜏 =
𝑆𝑂𝑅 − 𝑅𝑆𝑂𝑅

𝑆𝑂𝑅
 

 

In reference to Eq. (4.1), the formula will be applied in 

three examples, as follows: 

   

Example 1 [24]: 
 

y(x) = x + ∫ 4xt-x2y(t)dt
1

0
                               (4.2)                                

 

The exact solution of (4.2) is given as 

y(x) = 24x-9x2. . 
Example 2 [25]: 
 

y(x) = x + ∫ (xt2 + tx2)y(x)dt,
1

0
                         (4.3)              

 

The exact solution of (4.3) is given as 

 

  y(x) =
80

119
x2 +

180

119
x.  

Example 3 [26]: 
 

y(x) = sin( 2πx) + ∫ cos( x)ydt,
1

0
                                        (4.4) 

 

The exact solution of (4.4) is given as 

 

y(x) = sin( 2πx).  

5.2. Results 
Table 1. Iterations for three examples of FIE second type 

Example M 
Iteration (I) 

SOR RSOR 

 

1 

 

256 43 (w=1.546) 22 (w=1.559) 

512 44 (w=1.553) 22(w=1.555) 

1024 44 (w=1.551) 22(w=1.551) 

2048 45 (w=1.552) 23 (w=1.551) 

4096 45 (w=1.551) 23(w=1.551) 

2 

256 14 (w=1.121) 8 (w=1.141) 

512 14 (w=1.121) 8 (w=1.141) 

1024 14 (w=1.121) 8 (w=1.142) 

2048 14 (w=1.121) 8 (w=1.147) 

4096 14 (w=1.121) 8 (w=1.111) 

3 

256 27 (w=1.361) 14 (w=1.366) 

512 27 (w=1.361) 14 (w=1.366) 

1024 28 (w=1.361) 14(w=1.361) 

2048 28 (w=1.361) 15(w=1.352) 

4096 28  (w=1.361) 15(w=1.359) 

 
Table 2. Execution periods for three examples of FIE second type 

Example n 
Execution period (s) 

SOR RSOR 

 

1 

 

256 0.5657 0.3059 

512 2.5425 1.4730 

1024 10.5422 7.6244 

2048 46.4116 41.3226 

4096 252.4253 247.5704 

2 

256 0.5990 0.5538 

512 2.5568 2.5482 

1024 10.5866 10.4701 

2048 46.5324 46.4234 

4096 262.1220 249.2334 

3 

256 0.6360 0.3544 

512 2.7732 1.6414 

1024 8.9257 8.4417 

2048 49.6225 44.2933 

4096 275.8081 261.1481 
 

Table 3. Max. Abs. Error for three examples on FIE second type 

Example M 
Max. abs. Error (Max. R) 

SOR RSOR 

 

1 

 

256 3.96E-04 3.96E-04 

512 9.90E-05 9.90E-05 

1024 2.48E-05 2.48E-05 

2048 6.19E-06 6.19E-06 

4096 1.55E-06 1.55E-06 

2 

256 3.09E-06 3.09E-06 

512 7.72E-07 7.72E-07 

1024 1.93E-07 1.93E-07 

2048 4.82E-08 4.82E-08 

4096 1.20E-08 1.21E-08 

3 

256 1.68E-12 1.09E-12 

512 1.70E-12 1.04E-12 

1024 9.16E-13 9.19E-13 

2048 9.20E-13 2.57E-13 

4096 9.21E-13 1.27E-13 
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Table 4. Reduction percentages for three examples on FIE second type 

Example 
Iterations 

(I)% 

Execution period 

(s)% 

1 
48.84 

- 

51.11 

10.96 

- 

45.93 

2 
 

42.86 

0.23 

- 

7.56 

3 
46.43 

- 

50.00 

5.32 

- 

44.28 

 

 
Fig. 4 Iteration over Problem 1 

 
Fig. 5 Execution period over problem 1 

 

 
Fig. 6 Iteration over Problem 2 

 
Fig. 7 Execution period over problem 2 

 

 
Fig. 8 Iteration over Problem 3 

 

 
Fig. 9 Execution period over problem 3 

 

5.3. Discussion 

Based on Table IV, there are significant differences in 

iterations (I) and execution period (s). The formula implied 

in the current study has portrayed that the reduction 

percentages of iterations (I) and execution period (s) recorded 

from the RSOR iterative method were 48.84%-51.11%, 

42.86%, and 46.43%-50.00%, respectively. Meanwhile, the 

execution period (s) constituted 10.96%-45.93%, 0.23%-

7.56%, and 5.32%-44.28%, respectively.  These numerical 

computational results on the SOR and RSOR family in Tables 

1-3 showed that the RSOR iterative method had small 

iterations (I) and execution period (s) compared to the RSOR 

iterative method due to the modification of its algorithms. 
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RSOR 22 22 22 23 23
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6. Conclusion  
The conclusion drawn from numerical computations on 

FIE of the second type with first-degree polynomial 

piecewise and a combination of first-degree quadrature with 

the RSOR iterative method is that it is superior to SOR in 

terms of iterations (I) and execution period (s) due to lower 

operational complexity because of the modification and 

implication of the refinement theory on SOR formula, which 

was modified to increase the rate of convergence of the 

iteration process. Thus, the RSOR iterative method is better 

than the SOR iterative method. Overall, future works can be 

discussed in a higher-order quadrature scheme, where we can 

expand the Fredholm integral of the second type in the closed 

Newton-Cotes family [27, 28]. Future works can also involve 

the new modification of the RSOR family [25, 29]. 
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