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Abstract - Various techniques have been used in the optimization of hybrid renewable energy systems (HRES). The most effective 

are metaheuristic algorithms based on artificial intelligence (AI) because of their ability to handle various parameters such as 

multiple objectives, parallelism features that allow for simultaneous evaluation of multiple schemes, and their ability to obtain 

optimal results that are systematic and deterministic. However, in the application of optimization algorithms regarding the Non-

free lunch theorem, one algorithm performs better than the other in obtaining the best fitness function with convergence time. 

Therefore, the slime mould algorithm (SMA) prowess was tested in HRES optimization against two conflicting multi-objectives. 

The best fitness function for the total annual cost (TAC) was obtained with minimum convergence time, while the relationship 

between TAC and loss of load probability (LOLP) is shown to be proportionate to one another.  The SMA provided optimal sizing 

of solar PV, hydro turbine, and biogas generator to meet the load requirement of the study area. In addition, the result shows 

that SMA is more promising in terms of convergence time. 

 

Keywords - Hybrid Renewable Energy, Lost of load probability, Optimization, Slime mould algorithm, Total annual cost. 

1. Introduction 
Global energy demand is significantly increasing over the 

years due to the increase in population,  urbanization, 

transportation, and industrialization[1]-[4]. Besides, more 

than 80 per cent of today’s world energy supplies are from 

conventional energy resources (fossil fuel), which lead to 

serious greenhouse gas emissions/global warming [5], [6] and 

adversely cause extreme climate change/ weather. To mitigate 

this climate change and increase energy access to the poor and 

isolated areas, there is a need to replace conventional energy 

with clean and affordable RES [7] through optimization. This 

optimization is a means of getting the best result/solution from 

the available set of options by changing the parameters 

through mathematics and science that can be classified into 

classic and modern optimization. Modern optimization, 

especially artificial intelligence, involves mimicking nature-

inspired behaviours to solve complex problems. Furthermore, 

nature-inspired algorithms that are metaheuristics are inspired 

by references to physical laws or biological phenomena and 

self-organize with a population of agents with multiple 

solution vectors. These algorithms excel at revolutionizing 

populations (through mutation, selection, and transition), 

randomizing to create new vectors, and using local and global 

search to select the best solution based on survival of the 

fittest. 

Methods of optimization deployed over the year in HRES 

optima sizing are Probabilistic, Analytical, iterative, 

application of Commercials Optimization Computation Tools 

(COCT), and Artificial Intelligence (AI). In addition, AI can 

be further divided into Fuzzy logic, Expert Systems (Heuristic 

and Metaheuristic: Evolution Computation), and Artificial 

Neural Networks (ANN). The Probabilistic Method can obtain 

the best solution via a constructive random algorithm but 

cannot adequately represent changes in the dynamic nature of 

the HRES framework[8]–[10]. Despite the ability of the 

Analytical optimization method to a long-time climatology 

data and provides viable information for the selection of the 

alternative best solution,  it lacks the system's related 

mathematical position equation coefficient under study[7]-

[10]. More so, the iterative optimization method can solve the 

problem through linear methods but cannot invariably 

determine turbine swept area/height and PV installation 

area/modules angles[9].  Furthermore, many COCTs, such as 

Homer Pro, iHOGA, Hybrid, LINDO, and ARENA, among 

others, are widely used for optimal HRES sizing. 

Consequently, most COCTs have been proven to be less 

superior (or less flexible) to Nature-inspired algorithms 

[10],[13]–[23], which are Heuristic/metaheuristics and 

embodiment of Artificial Intelligence.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Slime mould is a metaheuristic algorithm developed in 

the year 2020 based on the No-free-lunch theorem, which 

encourages the development of new algorithms as a result of 

forewarning that no single algorithm is capable of analyzing 

all optimization problems [24], [25]. This algorithm 

demonstrated excellent exploration capabilities by simulating 

propagating wave feedback through adaptive weighting and 

food harvesting in a bio-oscillator. The superiority of SMA 

has been proved against GWO, MFO, ALO, SSA, MVO, PSO, 

SCA, m_SCA, IWOA, LWOA, FA, BA, PBIL, AGA, CBA, 

DE,  BLPSO, AGA, CBA, CLPSO, CSSA, CDLOBA, RCBA, 

and WOA on the twenty-three (23)branch function and 2014 

CEC IEEE function respectively by Li et al. [26].  This makes 

it an algorithm to be sorted after for RE optima sizing. 

Furthermore, SMA has been used in the energy field for grid 

optimization to resolve the problems associated with the 

optimal flow of electricity, photovoltaic modelling, 

paralleling power design, smart (IoT) electricity distribution, 

and HRES optimum sizing [60]. However, the literature on 

HRES optimization using SMA is still limited to three. In the 

first literature presented by El-Sattar et al. [28], energy cost, 

LPSP, and power supply to a dummy load to optimal were 

considered for sizing of HRES comprised of PV/Biomass 

generator/WT/Battery storage via comparative analysis of 

SMA, GWO, SOA and SCA. SMA is proven more effective 

than others regarding the reliability and cost index used.   In 

the second literature by Gupta et al. [29], a Chaotic particle 

swarm was combined with SMA to form a hybrid algorithm 

(HCPSOSMA). The said HCPSOSMA, compared with Homer 

software in optimizing PV/Biomass/FC, proved more 

effective than Homer Software in terms of cost in optimal 

sizing of HRES.  While in the third literature, a comparative 

analysis of equilibrium optimizer (EO), three (3) variants of 

particle swam algorithms, and SMA in terms of cost reduction 

were presented by Trieu et al. [30]. However, this study failed 

to present the number of components sized for HRES and the 

reliability index used for their comparison study that made EO 

to be superior to others. In place of the above literature, this 

present work aims to investigate the performance of SMA in 

optimal sizing of HRES of solar, hydroelectric, and biogas 

generators to implement cost reduction in clean energy 

technologies, considering two conflicting objective functions: 

economic (TAC) and reliability (LOLP) indices. 

    

Economic, reliability and environmental criteria are 

important indicators to optimize energy at minimum cost and 

determine how visible and reliable a RES project is. Net 

present cost (NPC), net present value (NPV), levelized cost of 

electricity (LCOE), total annual cost (TAC), and life cycle 

cost (LCC) are economic measures available in the literature. 

Some of the most important reliability indices are Loss of 

Load Probability (LOLP) and Loss of Power Supply 

Probability (LPSP). Other reliability studies are also 

considered: Loss of Load Expectancy (LOLE), Expected 

Unsupplied Energy (EENS), System Performance Level 

(SPL),  Loss of Load Duration (LOLD), Forced Out Rate 

(FOR), Power Supply Probability Shortage (DPSP), Loss of 

Load Frequency (LOLF), Loss of Load Risk (LOLR),  and 

Loss of Load Probability (LOLP), [31]–[37]. However, LOLP 

was chosen for this study because it has been considered an 

economic and technical parameter in the most cost-effective 

design and optimization of power plants [38]. LOLP  was used 

by [22] for comparative analysis of the Evolution algorithm 

(EA), iterative sizing algorithm (ISA), and Elephant  Herding  

Optimization (EHO)  in PV/Battery RES standalone optimal 

sizing, EHO being metaheuristic algorithm proved to be more 

efficient than EA and ISA  in term of computation time and 

fitness. However, LOLP was used as a single objective 

function, while the economic index, one of the major parts of 

energy sustainability, was left out.  In [23], LOLP & LCOE 

were used as multi-objective functions for optimal 

sizing/demand side control of Wind/PV/Battery HRES via 

Fuzzy/modified swarm Cuckoo Search. Application of 

economic (LCOE) and reliability (LOLP) indices increase the 

stability of HRES under study. LOLP  and NPC were used as 

multi-objectives for Wind/PV/Battery optimal sizing by [39]. 

LOLP constraints vary from 1-10% to determine system 

stability and to select the best economic system relevant to 

available RE resources via Genetic algorithm, while the trade-

off between economics and reliability for discrete 

optimization problem was presented as inversely but rather 

this relationship between cost and reliability cannot be 

substantiated from their results as presented. The authors 

concluded that as LOLP decreases, the system components' 

operation simultaneously at that time must increase to meet 

the required load because of the sporadical nature of RES.  

Trade-offs between Reliability (Unavailability), economics 

(NPC), and RE integration were considered for Diesel 

generator/battery/PV HRES optimal sizing by [40] via Pareto 

non-dominated-II sorting genetic Algorithm(NSGA-II). The 

result shows that reliability with long-term impacting cost can 

be obtained with high RE penetration and oversizing 

components. This will significantly add to the cost (NPC) and 

result in high-level reliability with 100% RE integration.  

 

Electricity generation, transmission, and distribution are 

grossly inadequate in sub-Sahara Africa, putting the populace 

in untold hardship.  This hardship has caused people to rely on 

self-generated electricity using gasoline generators, which 

invariably release poisonous gases into the atmosphere. [41]. 

The Carbon-monoxide and sulfur released from the generator 

can detach oxygen from oxy-haemoglobin and cause 
suffocation[42]. Continued erratic electricity supply as 

experience can also leads to anxiety disorder[43]. Global 

warming is still a threat to our existence. To avert this ordeal, 

there is a need to employ clean energy technologies capable 

of reducing electricity costs and carbon emissions [44] by 

paralleling/hybridizing two or more RERSs and overcoming 

the problem that might arise from the intermittent nature of 

RES. However, this work will significantly advance 

understanding of HRES optimization by presenting a trade-off 

between two conflicting criteria (TAC and LOLP) as 
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proportionate to one another and integrating multiple 

objective criteria (TAC and LOLP) into a bio-inspired 

algorithm (SMA) to solve complex optimization involving 

Biomass/Hydropower/Photovoltaic with appropriate energy 

management scheme. 

 

The remainder of this paper is structured as thus: the 

second Section (2) covers SMA theory; the third Section (3) 

deals with system design and modelling; the fourth Section (4) 

deals with problem formation; the fifth Section (5) covers 

results & discussion; the sixth Section (6) covers the 

Conclusion & Recommendations. 

 

2. SMA Theory  
       The metaheuristic algorithm is based on slime-mode 

foraging behaviour, where the cytoplasmic flow modifies the 

wave oscillation to approach, surround, and digest food. 

Adaptive weights are used to propagate feedback (positive  

or negative) based on the optimal path to obtain the best 

solution for obtaining food by relatively superior exploration 

of the mining and search space[26]. Plasmodium, the active 

dynamic phase of the SM, is used for algorithm design and 

implementation due to its unique characteristics, the pattern in 

which food sources are sought, and the ability to form a 

network of venous connections between multiple food 

sources. The vascular structures of the SM develop along the 

contractile phase difference, so their morphological changes 

are governed by three (3) correlations, as shown in Figure 1: 

 
Fig. 1 Correlation of morphological changes 

 

3. System Design and Modelling  
      The biomimetics method of SMA is implemented for 

optimum sizing of HRES consisting of solar 

PV/Hydropower/Bio generators.   Solar, hydropower, and bio-

generator systems were modelled as shown in Section 3.1,  3.2 

and 3.3, respectively, and the capacity was calculated using 

available resources for 8760Hr at latitude 7.42; longitude 

4.144. The proposed configuration is shown in Figure 2, where 

Solar/Hydro turbine/Biogas generators are connected in 

parallel to the AC bus while AC transformers are used for load 

matching and distribution. 

       Python codes were utilized via Jupiter Notebook on 64-

bit operating system Laptop-NODENPOH, Intel ® Pentium ® 

CPU 44ISU to evaluate- 𝑃𝐻𝐸 , 𝑃𝑀𝐴𝑋 , 𝑃𝑒−𝑏𝑔 and HRES 

optimum sizing, as shown in Figure 3. The optimization 

problems are formulated using TAC and LOLP as objective 

functions, which are minimized in terms of power budget and 

load constraint, as shown in the previous work. Monte Carlos 

simulation in Python was used to calculate LOLP while 

sensitivity analysis was carried out for various values of LOLP 

ranges from 0%, 1%, 2%, 3%, 4%, 5%, to 10%. The 

simulation is repeated until all conditions stated as constraints 

are met. 

 

 3.1. Solar PV Modelling 

       Single-diode PV was used to model the PV system as 

proposed by [45]–[47]. The current (𝐼) supplied  in the single 

diode model is expressed as the function output voltage(𝑉) 

as shown in equations 1-3 

 

𝐼(𝑉) =  𝐼𝑃𝐻 − 𝐼𝑂 [𝑒𝑥𝑝 (
𝑉+𝐼𝑅𝑆

𝑑
− 1)] − 

𝑉+𝐼𝑅𝑆

𝑅𝑃
                   (1) 

 

𝑃𝑃𝐻 =
𝐺

𝐺0
[𝐼𝑃𝐻−𝑆𝑇𝐶 + 𝐶𝑇(𝑇 − 298)]                  (2) 

 

𝐼0 = 𝐼0−𝑆𝑇𝐶 (
𝑇

298
)
3

[exp
𝑞𝐸𝑔

𝑑𝐾
 (

1

298
− 

1

𝑇
)]       (3) 

 

Where, 

𝑉- PV Voltage, 𝐼-  Current of the PV modules, 𝐼0 is diode 

reverse saturated current, 𝐼0−𝑆𝑇𝐶 is nominal saturated 

voltage, G-    Available solar irradiation, 𝐺𝑂-Nominal solar 

radiation (1000W/m2), 𝑃𝑃𝐻-Photocurrent, 𝑑-ideality factor, 

𝐶𝑇-Cell circuit current temperature coefficient, 𝑅𝑆- series 

resistor, K-Boltzman constant. (1.38 x 10-23 J/K), 𝑅𝑃-parallel 

resistor, q-Electron charge (1.602 x 10-19 C), and 𝐸𝑔-Energy 

gap of a semiconductor. 

 

3.2. Hydropower Modelling 

Linear and nonlinear hydraulic turbine models with 

elastic and inelastic column effects have been defined. 

Considering the river head and flow velocity, the theoretical  

power (P) of the turbine is given in Equations 4 and 5. The 

flow rate of a hydroelectric drainage system of a particular 

catchment with rainfall (hourly, daily, and monthly)  [48],  

[49] is given as follows 

 

𝑄𝑆𝐼𝑇𝐸 = 𝐾 [
𝐴𝑆𝐼𝑇𝐸

𝐴𝐺𝐴𝑈𝐺𝐸
] 𝑄𝐺𝐴𝑈𝐺𝐸         (4) 

 

Hydroelectric power (𝑃𝐻𝐸)  generated by the turbine [49] 

is given as 

𝑃𝐻𝐸 = 𝜂𝑇𝑡 ∗ 𝜌 ∗ 𝑔𝑄𝐻   (5) 

 

𝜂𝑇𝑡(𝜆, 𝑄) = [
1

2
(
90

𝜆𝑖
+ 𝑄 + 0.78) 𝑒𝑥𝑝 (

−50

𝜆𝑖
)] ∗  (3.33𝑄)      (6) 

1

Contraction 
frequency 

changes from 
outside to 

inside while 
the thick vein 

roughly 
formed along 

the radius.

2

Unstable 
contraction 
mode brings 
anisotropy

3

Venous 
structure of 

SM stops 
existing when 

the 
contraction 

pattern failed 
to align with 

time and space
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𝜆𝑖 = [
1

𝜆+0.089
− 0.0035]

−1

        (7) 

 

𝜆 =
𝑅𝐴𝜔

𝑄
           (8) 

Where- 𝑄𝑆𝐼𝑇𝐸 , 𝐾, 𝐴𝐺𝐴𝑈𝐺𝐸   , 𝑄𝐺𝐴𝑈𝐺𝐸 ,  𝜌, 𝜂𝑇𝑡 , 𝑔,  𝑄, 

𝐻, R, A, and 𝜔 is discharged at the site(m3/s), scaling 

function, gauge catchment area (m2), discharge at the gauge, 

power plant catchment area (m2), water density(1000kg/m3), 

turbine hydraulic efficiency, acceleration due to gravity 

(10m/s2),  flow rate,  head, the radius of the hydraulic turbine 

blade (m), swept area of the rotor(m2) and  angular speed of 

rotor respectively 

 

3.3. Bio-Generator Modelling 

Biomass gasification performance depends on the low 

calorific value of biofuel, and its gasification efficiency is 

determined as shown in equation 9. [50] 
 

ηgasification =
MgLHVg

MbLHVbg
       (9) 

 

The output power of biomass generators ( Pe−bg)results 

from Equation 10 

 

Pe−bg(t) =  ηgasification ∗  Qbg ∗ LHVbg     (10) 

 

LHVbg =
Pmethane

100
∗  LHVmethane        (11) 

 

        The hourly energy production of the biomass gasifier is 

as follows[51]. 

 

Qbg =
PW−bg(t)

ηgasificationLHVbg
       (12) 

 

        In addition, the PE−Annualannual electricity production 

from biomass gasification is given as the capacity utilization 

factor (CF). 

 

PE−Annual = PBMG−R ∗ (8760 ∗  CF)      (13) 

 

Energy production per hour is also given as the utilization 

factor. 

 

PE−HR = PBMG−R ∗ ηgasification      (14) 

 

Where                     
         𝜂𝑔𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 is electrical conversion efficiency (25 -

40%), 𝑄𝑏𝑔- flow consumption of biogas (m3/h), 𝐿𝐻𝑉𝑏𝑔- a 

measure of the volume of methane fraction in organic matter 

(36.3MJ/m3 or 10kEh/m3), 𝑃𝑚𝑒𝑡ℎ𝑎𝑛𝑒- the percentage of 

methane in the biomass and 𝑃𝐵𝑀𝐺−𝑅- The rated power output 

of a biogas electricity generator. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Fig. 2 Proposed HRES 
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Table 1. Techno-economic characteristics of HRES components  

Components PV BG hydro Turbine Converter 

The principal cost of Installation ($/kW) 883 2,543 1870 625 

O&M cost (% of the principal cost) 2 2 2 2 

Replacement Cost (% of Principal Cost) 80 80 80 80 

Lifetime 25 25 50 15 

Efficiency 16.8 η
gas

=40 90 98.8 

Project lifetime 25 25 25 25 

Interest rate 5 5 5 5 

Source: [52],  [57]-[59] 

 

3.4. Reliability and Economic Modeling 

A reliability index study is carried out using LOLP. The 

calculation is obtained via Monte Carlos simulation in a 

Python programming environment for optimum sizing of 

PV/Hydro-turbine/Bio-generator HRES while a sensitivity.  

 

The analysis is introduced at the step of 0% to 5% LOLP. 

LOLP have expressed mathematically, as shown below, 

considering the power supply (𝐸𝑡), capacity duration loss (𝑡𝑖), 
and loss of capacity probability (𝜌𝑖)[35], [61] 

 
       𝐸𝑡 = 𝜌𝑖𝑡𝑖     (15) 

 

  𝐿𝑂𝐿𝑃 = ∑ 𝜌𝑖𝑡𝑖
𝑛
𝑖=1                    (16)   

 

𝐿𝑂𝐿𝑃 =  
𝐿𝑂𝐿𝐻

8760
                    (17) 

 

TAC is considered an economic index for this design, 

and it comprises Annual Capital Cost (ACC), Annual 

Operation& Maintenance Cost (AOMC), and Amortization 

factor (AF), as shown in equations 18-24.    

  

𝑇𝐴𝐶 = 𝐴𝐶𝐶 + 𝐴𝑂𝑀𝐶 + 𝐴𝑅     (18) 

 

    𝐴𝐶𝐶 = 𝑇𝐶𝐶 ∗ 𝐴F   (19) 

𝑇𝐶𝐶 = 𝐶𝐶𝐾 ∗ 𝑛𝐾           (20) 

𝐴𝑂𝑀𝐶 = 𝐶𝑜&𝑚 ∗ 𝐴𝐶𝐶                   (21) 

𝐴𝑅𝐶 =  𝐶𝑟 (
𝐿𝐶

𝐿𝑇
−  1) ∗ 𝐴𝐹                        (22) 

AF=
ir* (1+  ir)

LC

(1+ir)LC-1
                   (23) 

Finally,𝑇𝐴𝐶𝑇𝑂𝑇𝐴𝐿 = 𝑇𝐴𝐶ℎ𝑌𝐷𝑅𝑂 + 𝑇𝐴𝐶𝑃𝑉 +

𝑇𝐴𝐶𝐶𝑂𝑁𝑉 + 𝑇𝐴𝐶𝐵𝐼𝑂(24 

4. Problem Formation 
4.1. Objective Function 

To reduce cost and minimize loss of load risk by the 

System, multiple objective functions of LOLP and TAC are 

considered for optimum HRES sizing, as shown in equations 

25 and 26.                                                                                                                                                                                                        

𝑓(𝑋) = ∝1 𝑓1(𝑇𝐴𝐶) +∝2 𝑓2(𝐿𝑂𝐿𝑃)            (25) 

 

𝐹𝑜𝑏𝑗 = 𝑚𝑖𝑚 {∑ (𝑇𝐴𝐶) + (𝐿𝑂𝐿𝑃)𝑛 }           (26) 

Where 𝑛 = 𝐻𝑦𝑑𝑟𝑜, 𝑃𝑉, 𝐵𝑖𝑜𝑔𝑎𝑠    

                

4.2. Power Balance Constraint 

This is used to show the relationship between the RE-

generating plants (𝑃𝐺𝑅𝐸) to the desired/ or expected load 

demand (𝐿𝑃𝐷𝑖). This relationship ensures that power 

generated from all RE plant meet the load demands at all time, 

preventing system failure and attaining reliability of LOLP < 

1. Equation 27 shows the power balance between the 

generating plant the load, and as guided by load constraint and 

energy management. 

 
∑ [𝑃𝐺𝑅𝐸(𝑡)] =  ∑ 𝐿𝑃𝐷𝑖

𝑛
𝑖=1

𝑛
𝑖=1         (27) 

 

4.3. Load Constraint 

Load Constraint is a yardstick to attain system reliability 

in HRES optimum sizing. It depicts (lower and upper) band 

limits for each generating plant which invariable aid in 

obtaining HRES capacity with respect to Table 1. Equation 28 

shows the RE system combination, and equations 29-31 show 

the bands limit assigned for optimum sizing of 

PV/Hydro/Biogas HRES under study.  

 

𝑃𝐻(𝑡) + 𝑃𝑃𝑉(𝑡)  ± 𝑃𝐵𝐺 = 𝑃𝐺𝑅𝐸                            (28) 

 

0 ≤ 𝑃𝑃𝑉(𝑖) ≤ 𝑃𝑃𝑉
𝑀𝐴𝑋                           (29) 
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𝑃𝐻 (𝑖)
𝑀𝐼𝑁  ≤ 𝑃𝐻

𝑀𝐴𝑋                             (30) 

 

0 ≤ 𝑃 𝐵𝐺(𝑖)  ≤   𝑃𝐵𝐺
𝑀𝐴𝑋                           (31) 

 

4.4. Energy Management 

Three scenarios were presented for solar/hybrid/biomass 

energy management. The scenario I considered is a situation 

shown in equation 32, where power generation from 

hydropower (𝑃𝐻) and Photovoltaic is less than load demand 

(𝐿𝑃), and the preferred expected solution to prevent system 

collapse is shown in equation 33. 

 

In scenario II, as shown in equation 34 and 35, equation 

34 shows a situation when power generated from the Hydro 

turbine and Photovoltaic is greater/or equal to load demands, 

while equation 35 present a preferred solution to equation 34 

as utilized in the design and simulation. 

 

Likewise, in scenario III, equation 36 shows the expected 

situation where power from Photovoltaic is zero, while 

equation 37  presents an expected solution, and this particular 

situation is expected every night. This work considers all these 

scenarios in design and optimization, as shown in Figure 1. 
 

Scenario I 
 

 When 𝑃𝐻 + 𝑃𝑃𝑉  < 𝐿𝑃                (32) 
 

Then, 

  𝐿𝑃 =  𝑃𝐻 + 𝑃𝑃𝑉 + 𝑃𝐵𝐺   (33) 

 

Scenario II 

 

When 𝑃𝐻 + 𝑃𝑃𝑉  ≥ 𝐿𝑃   (34) 

 

Then, 

𝐿𝑃 =  𝑃𝐻 + 𝑃𝑃𝑉 − 𝑃𝐵𝐺      (35) 

 

Scenario III 

 

When  𝑃𝑃𝑉 = 0      (36) 

 

Then, 

𝑃𝐻 + 𝑃𝐵𝐺 = 𝐿𝑃      (37) 

 

4.5. Formation of SMA 

 The formation of SMA is based on three(3) morphology 

behaviours [26], [54] as shown mathematically below- 

 

4.5.1. Approach Food 

 SM is attracted to food odour available in the air. This 

approach can be mathematically expressed as 

 

𝑋(𝑡 + 1) ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  =  {
𝑋𝑏(𝑡)⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ + 𝑉𝑏⃑⃑⃑⃑  ⃑. (�⃑⃑⃑� .  𝑋𝐴(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  − 𝑋𝐵(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑) , 𝑟 < 𝑝

𝑉𝑐⃑⃑⃑⃑  . 𝑋(𝑡),⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑  𝑟 ≥ 𝑝
  (38) 

Where 𝑉𝑏⃑⃑⃑⃑  ⃑ −  parameter with a range of [−a, a]   

 𝑉𝑐⃑⃑⃑⃑ − 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑙𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 𝑓𝑟𝑜𝑚 1 𝑡𝑜 0  
 𝑡 − 𝑐𝑢𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

 

𝑋𝑏
⃑⃑ ⃑⃑ − 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑖𝑛 𝑤𝑖𝑡ℎ 𝑎 ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑜𝑑𝑜𝑢𝑟  

𝑐𝑜𝑛𝑐𝑒𝑟𝑏𝑡𝑟𝑡𝑎𝑡𝑖𝑜𝑛 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑓𝑜𝑢𝑛𝑑 
𝑋𝐴 & 𝑋𝐵 − 𝑡𝑤𝑜 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑟𝑎𝑛𝑑𝑜𝑚𝑙𝑦 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑟𝑜𝑚 𝑆𝑀 

 �⃑⃑⃑� − 𝑡ℎ𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑆𝑀  

 

Where, 

P= tanh / s(i)-DF       (39) 

 

 𝑖 ∈ 1, 2, 3, 4………… . . 𝑛, 

 𝑠(𝑖) − 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑋⃑⃑  ⃑, 

 𝐷𝐹 − 𝑏𝑒𝑠𝑡 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑎𝑡𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 

 

𝑉𝑏⃑⃑⃑⃑  ⃑ = [−𝑎, 𝑎]                   (40) 

 

𝑎 = arctanh (− (
𝑡

max _𝑡
) + 1)    (41) 

 

𝑊 (𝑆𝑚𝑒𝑙𝑙 𝑖𝑛𝑑𝑒𝑥 (𝑖))⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ = {
1 + 𝑟. 𝑙𝑜𝑔 (

𝑏𝐹−𝑠𝑖

𝑏𝐹−𝑤𝐹
+ 1)  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

1 − 𝑟. log (
𝑏𝐹−𝑠𝑖

𝑏𝐹−𝑤𝐹
+ 1)  𝑜𝑡ℎ𝑒𝑟𝑠

    (42) 

 

𝑆𝑚𝑒𝑙𝑙 𝑖𝑛𝑑𝑒𝑥 = 𝑆𝑜𝑟𝑡(𝑆)             (43) 

Where  

  𝑠(𝑖) − 𝑟𝑎𝑛𝑘𝑠 𝑓𝑖𝑟𝑠𝑡 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

 

4.5.2. Wrap Food 

       This shows the structure of the contractile mode of SM 

vascular tissue during feeding. The flow rate of the cytoplasm 

generates bio-oscillators, and the thickness of the SM vessel 

is proportional to the nutrient concentration in contact, 

providing negative or positive feedback between vessel 

wildness and nutrient concentration. The mathematical 

relationship of SM in food packages and location updates is as 

follows. 

 

𝑋 = {

𝑟𝑎𝑛𝑑. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑍

𝑋𝑏(𝑡)⃑⃑⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ + 𝑉𝑏⃑⃑⃑⃑  ⃑ . (𝑊 . 𝑋𝐴 (𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ −  𝑋𝐵(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑) , 𝑟 < 𝑝

𝑉𝑐⃑⃑⃑⃑  . 𝑋(𝑡)⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑   , 𝑟 ≥ 𝑝

         (44) 

Where,  

𝑈𝐵 & 𝐿𝐵 − 𝑑𝑒𝑛𝑜𝑡𝑒 𝑈𝑝𝑝𝑒𝑟 & 𝐿𝑜𝑤𝑒𝑟 𝑏𝑝𝑜𝑢𝑛𝑑𝑎𝑟𝑖𝑒𝑠 

 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ𝑟𝑎𝑛𝑑 & 𝑟 − 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑙𝑢𝑒 𝑖𝑛 [0, 1]  
 

4.5.3. Grabble Food/Oscillation  

       SM moves towards better food preservation as it oscillates 

to alter cytoplasmic venous flow by propagating waves. 

Instead of relying on local search for support, venous diameter 

is simulated to determine Vb⃑⃑ ⃑⃑  and Vc⃑⃑⃑⃑ , SM efficiency when 

approaching food slowly or quickly depending on food 

concentration/quality to obtain the optimal solution (food 

source).W⃑⃑⃑  
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Fig. 3 SMA flow chart 

Based on the rule above, Pseudocode is generated as shown 

below 

Enable pop size parameters and Max iterations setting 

  

Initialize & set slime mould position Xi (i = 1, 2,⋯⋯n);  

Run the remaining variable parameters setting; 

While (t ≤ Max iteration)  

Calculating the suitability/fitness functions for each 

slime mould population and ranking each population 

in increasing order of importance;  

 Update the best Fitness functions, Xb; 

 Calculate the �⃑⃑⃑� of each slime mould by Eq.(42);   

Update𝑉𝑐⃑⃑⃑⃑ ,  p, &  𝑉𝑏⃑⃑⃑⃑  ⃑  for  each quest agent; 

 update  𝑋   using Equation (44);  

 Finalize if  

 t = t + 1; 

 Discontinue While 

 Returning optimal best Fitness function, Xb 

5. Result and Discussion   
The following results presented below were obtained 

through modelling, simulation, and optimization of solar, 

hydro, and biomass energy for HRES in Osun State, Nigeria, 

using nature-inspired code in a Python environment. Data 

such as Load demand, Solar radiation, and Hydrology were 

collected from the Distribution Company, NASA website, and 

Osun River basin, respectively. The hourly load data profile, 

hydroelectric power, solar photovoltaic output, and bio-

generator simulation result are shown in Figures 4, 5, 6, and 

7. The minimum and maximum loads for the year are 

69600kWh and 211800kWh respectfully, there was a 

significant load concentrated between 12000kWh and 

16000kWh, as shown in Figure 4.  The PV output for a year, 

for solar panel power per hour in the consideration area in the 

hybrid renewable energy optimization study using the slime 

mould algorithm, are presented in Figure 5; the minimum and 

maximum value ranges between 0 and 204.80743420002682 

W peak, respectively. The outcome simulation of hydropower 

Start 
Initiate 

parameters 
t=1 

Calculate fitness 
value for each SM 

Find the current best 
and update the 

positon (Best & 

Worst) of each SM 

Calculate 
Small index  

(𝑊)⃑⃑⃑⃑ ⃑⃑ ⃑⃑  

Update the best & worst 
positions and fitness 

Update ‘ a’ 

by equation 

41 

Is rand < Z 

? 

Update 𝑋   :    

by eqn 44 Yes 

No 

Is  i = population 

? 

Yes 

Is t = 𝑚𝑎𝑥𝑖𝑡 

? 

No 

Ye
s 

Update        

p, Vb, & Vc 

Is r < 𝑝 ? 

Yes 

Update 𝑋   :    

by eqn 44 

 

Update 𝑋   :    

by eqn 44 

 

Is j < dim   

No 

Yes 

No 

    End 
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generator power is illustrated in Figure 6; the simulation 

hydraulic turbine results range between 353.16 kW and 

15539.04 kW to display the novel of our study. Figure 7 shows 

the simulation result of biomass-generated resources using a 

Bio generator, and biomass can easily be transported around 

the surrounding areas of the generating resources.  The 

simulation outcome from the Biogas generator ranges between 

328.6161919 kW and 328.61619195 kW. TAC includes 

annual capital costs, annual operation, and annual 

maintenance, and annual replacement costs are minimized 

with respect to LOLP<1. The results in Figure 8 show the best 

score of TAC versus iteration, while Table 2 shows TAC 

results for twenty (20) numbers of iterations. The best result is 

obtained at $ 49656401.85 at zero seconds, which proved that 

SMA   converges faster than any other studied algorithm. 

Fig. 4 Hourly load data for a year 

Fig. 5 PV output for a year 

Fig. 6 Hydropower simulation for a years 

Fig. 7 Power-generated Bio-generator 

 
Fig. 8 Convergences curve of TAC Vs iteration 

 

Fig. 9 TAC Vs LOLP 
   

The optimum result obtained from HRES sizing is 

presented in Table 3 with respect to the Techno-economic 

characteristics of the HRES component in Table 1. The 

optimum sizing result obtained using SMA is shown in Table 

3, in which 193200 units of Solar panels, 4 units of hydro-

turbines, 460 units of converters, and 46 units of bio-

generators were proposed to meet the load deficit of the state. 

The capacity of each component was also shown to be 80,000 

kW, 53,130 kW and 46,000 kW for Hydropower, Solar PV, 

and Bio-generator, respectively, as shown in Table 3. 
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Table 2. Iteration Vs TAC ($) 

No of 

iteration 
TAC ($) 

No of 

iteration 
TAC ($) 

0 308522.180 10 71650369.657 

1 4499967.233 11 20690241.494 

2 9384316.670 12 23100075.843 

3 1048530.093 13 66636247.273 

4 63927827.312 14 14033781.251 

5 27115788.201 15 27115788.201 

6 47187261.704 16 57267492.879 

7 70484206.989 17 54769208.000 

8 52382009.064 18 5827685.202 

9 61059914.975 19 10913302.675 

 

The relationship between TAC (Cost) and LOLP 

(Reliability)  at different percentages is shown in Figure 9, the 

result shows that cost is proportionate to the reliability, 

contrary to what was early presented by [55] and [39] that 

shows that reliability(LOLP)  and TNPC (TAC) are inversely 

proportionate to each other in their work. [55] used single 

objective problem formulation contrarily to multi-objective 

problem formulation recommended by [56] for solving 

complex multi-modal problems and to reduce challenges 

associated with optimization techniques in HRES optimal 

sizing.  Furthermore, [39]  conclusion regarding the 

relationship between cost and reliability cannot be 

substantiated by the results presented by the author. From a 

controversial point of view, it is inevitable to know that from 

the point of argument, as shown in Figure 9, TAC (Cost) 

should be proportionate to the reliability because as much 

complex (sophisticated) the system, the higher the cost 

(Installation, O&M and Replacement cost). Finally, the worst 

and best values of TAC are $49658842.88 and 

$49656401.85, respectively, with a proven convergence 

time of less than 1 second. While TAC mean value equals 

$49657622.57. 

 

Table 3. Component optimum sizing and capacity 

Variables Units 
Unit Rating 

(kW) 

Capacity 

(kW) 

𝑁𝐾𝐻 4    20,000 80,000 

𝑁𝐾𝑃𝑉  193200    0.275                         53,130 

𝑁𝐾𝐶𝑂𝑁𝑉       460     100 46,000 

𝑁𝐾𝐵𝐺  46   1000 46,000 

 

6. Conclusion 
Real-time problems are multi-facet and complex, which 

required the usage of multi-objective functions solutions. 

Solving such problems through optimization involves 

formulation of the problem into objective functions and 

setting criteria to obtain the best fitness function. These 

optimization techniques are inherent with demerits, such as 

long convergence time and premature convergence, which can 

be resolved using SMA.  

 

In this work, optimum sizing of HRES consisting of Solar 

PV/Hydropower/Biogas generator was carried out using novel 

SMA in a Python environment considering multiple 

objectives. The best fitness function was obtained at 

microsecond, which confirmed SMA to be a promising 

algorithm in terms of speed. The analysis further shows that 

the reliability and cost of HRES in optimal sizing are 

proportionate to one another. 

 

Finally, the prowess of SMA is presented, and SMA is 

recommended for further development for HRES 

optimization. 
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Abbreviation

SMA Slime Mould Algorithm 𝐾 scaling function 

IoT Internet of things  𝐴𝐺𝐴𝑈𝐺𝐸       gauge catchment area (m2) 

GWO Grey Wolf Optimization 𝐴𝑆𝐼𝑇𝐸,  dis power plant catchment area (m2) 

SOA Seagull optimization algorithm 𝜌 water density 

SCA Sine Cosine Algorithm 𝜂𝑇𝑡 turbine hydraulic efficiency 

MFO Moth Flame Algorithm 𝑔 acceleration due to gravity 

ALO Anti Lion Optimizers 𝑄 flow rate 

SSA Salp Swarm Algorithm 𝐻 Head 

MVO Multi-Verse Optimizer R turbine radius 

PSO Particle Swarm Optimization A rotor swept area 

mSCA       Modified Sine Cosine Algorithm 𝜔 angular speed of rotor 

IWOA       Improved whale optimization   algorithm LOLF     Loss of Load Frequency 

LWOA Levy flight Whale Optimization Algorithm LOLD Loss of Load Duration 

FA Firefly Algorithm LOLH Loss of Load Hour 
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BA Bat Algorithm 𝑃𝐻𝐸  Hydroelectric power 

WOA Whale Optimization Algorithm 𝑄𝑏𝑔 Flow consumption of biogas (m3/h) 

PBIL Population-Based Incremental Learning Pe-bg Power output of Biomass generator  

BLPSO Biogeography-based learning particle swarm 

optimization 
𝑀𝑔 Masses of gas generated by gasification 

CLPSO   Comprehensive Learning Particle Swarm Optimization 

Algorithm 
𝐿𝐻𝑉𝑔 Lower heating value of gas generated by gasifier 

AGA Adaptive Genetic Algorithm 𝐸𝑡 Power supply 

CBA Chaotic Bat Algorithm 𝑡𝑖 Capacity duration 

DE Differential Evolution ACC Annual Capital Cost 

LOLP Loss of load probability AOMC Annual Operation& Maintenance Cost` 

COCT Commercials Optimization computation tools LC Lifetime of the whole system 

TAC Total annual cost  LT lifetime of an individual 

AI Artificial Intelligence 𝐿𝑃𝐷𝑖  Expected load demand 

AC Alternative Current 𝑉𝑐⃑⃑⃑⃑  Decrease linearity 

LOLE Loss of Load Expectancy 𝑋𝑏
⃑⃑ ⃑⃑  Individual location 

LCOE Levelized Cost of Electricity �⃑⃑⃑�  SM weight 

NPC Net Present Cost 𝑠(𝑖) Fitness of 𝑋  

DPSP Power Supply Probability Shortage 𝑈𝐵 Upper boundary 

FOR Forced out Rate RCBA Recursive coordinate bisection algorithm 

EA Evolution algorithm CDLOBA      Ccollaborative and dynamic learning of 

opposite population 

EHO Elephant Herding Optimization 𝑁𝑅𝐶𝑂𝑁 No of converter  

ISA iterative sizing algorithm 𝑁𝐾𝐻  Number of hydro-turbine 

𝑉 PV Voltage RES     Renewable Energy Source 

𝐼    Current of the PV modules  𝜂𝑔𝑎𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛  Gasification electrical conversion efficiency 

𝐼0    diode reverse saturated current 𝐿𝐻𝑉𝑏𝑔 volume of methane fraction in organic matter 

𝐼0−𝑆𝑇𝐶   nominal saturated voltage 𝑃𝑚𝑒𝑡ℎ𝑎𝑛𝑒   % of methane in the biomass 

G             Solar irradiation 𝑀𝑏 masses of biomass 

𝐺𝑂  Nominal solar radiation 𝐿𝐻𝑉𝑏𝑔 lower heating value of biomass 

𝑃𝑃𝐻          Photocurrent 𝑃𝐵𝑀𝐺−𝑅 Rated power output of a biogas generator 

𝑑             ideality factor 𝜌𝑖 Capacity probability 

𝐶𝑇           Cell current temperature coefficient AF Amortization factor 

𝑅𝑆           series resistor TCC Total capital cost  

K            Boltzman constant ir Interest rate 

𝑅𝑃            𝑃arallel resistor 𝑃𝐺𝑅𝐸  RE generating plants 

Q            Electron charge 𝑉𝑏⃑⃑⃑⃑  ⃑ parameter with a rang [-a, a) 

𝐸𝑔            Semiconductor Energy gap 𝑡 current iteration 

𝑄𝑆𝐼𝑇𝐸        discharged at the site (m3/s) 𝑋  Location of SM 

𝐿𝐵            lower boundary 𝑋𝐴 & 𝑋𝐵  randomly selected two individual SM 

CSSA      Charged System Search (CSS) algorithm 𝐷𝐹 best fitness attained in the iteration 

𝑁𝐾𝐺𝐵         No of Bio-generator 𝑁𝐾𝑃𝑉  Number of  Photovoltaic 
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