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Abstract - The problem of moving object data modelling secured a great deal of attention due to the wide acceptance of context-

based computing frameworks and related applications. This digital revolution has geared momentum in spatio-temporal data 

mining and continuous query processing research. Efficient approaches in representation, storage, processing and querying of 

spatio-temporal trajectory are the need of time for providing cost-effective solutions to many problems, especially in 

transportation systems. The mobility data requires additional considerations in storage and processing due to its dynamic 

nature. Besides the explicit geographical and temporal data, the trajectory of a moving object contains crucial information 

about the object's movement and behavior. These semantic features are the factors that connect the meaning and objective of 

the move. The findings arrived at based on explicit data can give better insights into the moving entity. Aggregation is another 

effective approach to make use of in this scenario in order to get the collective behaviour of moving objects or the region of 

travel. In this paper, we propose methods for the convenient representation and effective processing of moving entities.  The 

moving object aggregate queries are grouped into two classes static spatiotemporal aggregate query and continuous 

spatiotemporal aggregate query. Here, we utilize the semantic-based load shedding over the moving object clusters to reduce 

the computational overhead. Shared cluster-based execution is incorporated for the effective computation of moving object 

aggregate queries.  Different data structures for representing moving object clusters are also introduced in this paper.  Various 

evaluations are provided to showcase the effectiveness of the approach.  

Keywords - Data load shedding, Moving object queries, Semantic processing, Spatio temporal knowledge data extraction, 

Trajectory processing.  

1. Introduction  
The world is witnessing an increased diffusion of context-

sensing devices, making continuous monitoring of objects 

along their travel paths a prerequisite for spatiotemporal 

knowledge extraction. Moving object data analysis has 

diverse applications, creating a wider perspective on mobility 

research problems. Location-Based Services (LBS) offer 

several interesting and challenging application areas, such as 

the location-based administration of products, services, 

devices, and people, which are major drivers of m-commerce 

(mobile commerce). For example, analyzing the travel 

patterns of different categories of vehicles over a 

transportation network can provide insights into potential 

bottlenecks, alternative route suggestions, and the 

identification of emergency evacuation routes. In the field of 

tourism, spatiotemporal analysis can be used to prepare travel 

itineraries, identify popular destinations based on user 

priority, and suggest trendy travel sequences. Patient path 

tracing is another relevant area that provides scope for various 

mitigation strategies [1] Spatio; temporal analysis also finds 

applications in many areas, such as intelligent manufacturing 

and animal migration analysis etc. 

 

The moving objects generate a continuous stream of data, 

making it difficult for a traditional database to process.  Heavy 

computational resources are required to process the 

voluminous and high-velocity mobility data. Meanwhile, it is 

evident that in order to get the abstract idea of moving objects, 

complete details of them are not required. In the 

spatiotemporal environment, processing individual tuples is 

not feasible to retrieve the aggregate values for the following 
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reasons [2]. First, personal attributes (registration no. of 

vehicle, personal id etc.) are not tracked due to the policies of 

privacy protection standards. Second, individual records may 

not always be available while following the data. Third, traces 

are generated more frequently according to the capacity of the 

sensors. Hence storage of all individual records is not feasible. 

For example, to analyse the vehicular density in a popular 

area, the non-spatial attributes of individual vehicles 

(registration number, colour etc.) are irrelevant. The 

straightforward technique for the data analysis of moving 

objects is the periodical clustering of spatio-temporal 

variables. While adopting clustering in this context, many 

additional measures must be taken. The selection of clustering 

intervals is crucial. If the interval is short, the process becomes 

expensive and turns down the advantage of periodical 

clustering. For long period intervals, the chances are there for 

the loss of vital information[3].  

 

The blooming of context-aware systems has led to the 

introduction of mobile database systems, which paved the path 

for mobile query processing. With reference to the context, 

queries can be either data queries or location-based queries[3]. 

If the query result is evaluated only once, such queries are 

termed static queries. However, if the results are evaluated 

until a termination condition is reached, they are referred to as 

continuous queries. The termination can be any spatial or 

temporal constraint in a mobile environment.  Continuous 

queries have created a wider perspective on mobility research 

problems. For example, consider a practical scenario a person 

in a moving car issues a query seeking police assistance, "Give 

the details of police vans that are moving towards the outer 

ring road, updated every 10 minutes." In this case, both the 

source and destination entities are moving in a specified 

direction’; also, after issuing the query, it has to be evaluated 

periodically with respect to changing spatial and temporal 

contexts. Particularly, moving object queries are SQL-Like 

queries required to fulfil spatio-temporal attributes. 

Successive processing of all records to answer spatio-temporal 

queries are expensive and unproductive. According to the 

mode of mobility, a moving object query can be in any of the 

three scenarios: moving queries on stationery objects, 

stationery queries on moving objects and moving queries on 

moving objects. While processing each query category, one 

needs to consider the mobility characteristics of different 

environments, the object in motion and the queried domain.  

We find inspiration from the SCUBA method suggested by 

Nehme et al. in [4] for managing moving object queries.  
 

Aggregation is a useful concept that can be applied to 

spatiotemporal data. It aims to represent the collective 

behavior of a group while preserving individual rationality. 

Aggregate queries are useful in uncovering common 

behaviors of moving objects, and their applications can be 

found in various fields such as transportation network design, 

tourism management, battlefield configuration, traffic control 

systems, and logistics management. However, traditional 

methods of spatiotemporal aggregation can be 

computationally intensive, as they require significant 

computational resources to obtain meaningful results using 

conventional database operations [2]. 
 

Our aim is to process the moving object query by 

reducing the communication overhead without compromising 

accuracy. The paper [5] introduces a method to identify vital 

locations using semantic constraints. Here, the query is 

executed over those selected areas, called semantic regions. 

To achieve this, the authors distinguish the set of aggregate 

queries applied to moving objects into two classes Static 

Spatio temporal Aggregate Queries (SAQ) and Continuous 

Spatio temporal Aggregate Queries (CAQ).  The former 

category is analogous to traditional query, which executes the 

query and gets the result, whereas, in the latter, the evaluation 

of queries is continuous until a spatio-temporal limit is 

reached. The scope of CAQ is limited by two parameters such 

as time period and distance. 
 

In a continuously moving environment, the optimization 

of query execution is crucial. This is especially important 

when a large number of queries are targeted at the same 

spatiotemporal domain. It is observed that moving queries can 

be generated from any point in a travel network. Many of the 

complex optimization techniques published suggest works on 

sub-expression levels for achieving better results [6]–[9].  

These works exploit the moving micro-clustering method for 

managing objects and queries. The proposed algorithm 

generates separate clusters of moving queries according to 

their spatial and temporal interests. Also, simple techniques 

are adopted to group aggregate queries applied on similar 

spatio-temporal regions. 
 

To implement the proposed models, two paradigms of 

data mining are utilized. They are semantic load shedding and 

shared cluster-based execution. The concept of load shedding 

has been studied in different contexts, such as networking, 

data stream management etc. [10]–[12]. It is the 

relinquishment of a fragment of raw data while processing the 

queries. There are algorithms to determine what point of data 

to load shedding at each point to reduce the degree of 

inaccuracy in the query output. For the purpose of this 

framework, the concept of semantic load shedding is used 

along with shared cluster-based execution. A number of load-

shedding procedures are employed in data stream 

management systems with minimum loss in result 

accuracy[13]. According to various literature [14], [15], state-

of-the-art load-shedding procedures are classified into random 

load shedding and semantic load shedding. In SCUBA, 

approximation of different object locations is made by 

semantic load shedding by avoiding less important data. It 

keeps track of the relative positions of objects in an area and 

is stored as a cluster nucleus. Based on the accuracy 

requirements, SCUBA adopts three ways of load shedding: 

full, partial, and no load shedding. 
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Shared cluster-based execution is the concurrent 

execution of continuous spatio-temporal queries. This concept 

has been adopted in many query execution models developed 

for diverse environments [16]–[18].   Similar queries are 

grouped together into the same data structure to achieve 

scalability. In the proposed model, query optimization is 

achieved by combining queries of similar spatio-temporal and 

semantic domain environments. While many ongoing research 

efforts focus on extracting knowledge from mobility data, 

integrating query processing with semantic features is a 

relatively underexplored area. To address this research gap, 

we propose an effective query-processing approach for spatio-

temporal data using the SemTraClus model [5] as a baseline 

for our work. To the best of our knowledge, no existing work 

has incorporated semantic load shedding for processing 

moving object queries. We conducted experiments using both 

real and simulated datasets to achieve the following 

objectives. 

• Define different classes of spatio-temporal aggregate 

queries and provide data representations for each. 

• Proposes data structure for the representation of object 

representation in different clusters.  

• Treat moving objects and queries as a single unit by 

implementing a shared cluster-based execution. 

• Implement Semantic-based load shedding for leveraging 

computational overhead. 

• Implementation of cluster-based algorithms to answer 

static and continuous spatio-temporal aggregate queries 

in an efficient manner.   

• Evaluate the model using real-time data set to 

demonstrate the algorithm's efficiency. 

 

The rest of the paper is organized as follows: In section 2, 

we narrate some of the relevant works in the related area; in 

section 3, basic concepts are briefed. Section 4 explains the 

methodology of prosed work; section 5 gives a detailed 

evaluation of various scenarios. In section 6, we conclude the 

topic by providing certain future directions. 

 

2. Related Works  
 

The relevant works in continuous clustering of moving 

entities and querying over spatio-temporal data are examined 

here—clustering groups similar elements together. A set of 

objects that move near in space for a long time period can be 

defined as moving clusters. Continuous clustering or 

incremental clustering is the clustering of elements in an 

interval of time or space. Continuous clustering, also known 

as incremental clustering, involves clustering elements in a 

specific interval of time or space. Micro clustering is a 

density-based algorithm used to obtain groups of strongly 

correlated classes of objects. As a concrete idea [19], this 

method has been exploited in different data management 

techniques like stream clustering. It is a temporal extension of 

cluster features. Moving micro clusters denotes groups of 

objects that are close not only to the current time but to the 

future spatial and temporal scope. Objects in these clusters 

may split or merge during the course. 

 

Moving object clustering needs exceptional approaches 

due to its kinetic characteristic. One challenge is the difficulty 

in organising two-dimensional geographical information 

along with the temporal domain. Incremental clustering is a 

well-known solution in this regard, according to which 

locations are clustered only upon the updation from different 

moving objects. This avoids the re-clustering of the entire 

space-time components at every time unit. Incremental 

clustering desists the necessity of storing all location updates 

that, in succession, reduces storage requirements. Several 

constraints arise at this stage, particularly with the cluster's 

centroid, speed of movement, and termination condition. 

Literatures have suggested various ideas to decipher these 

curbs.  

 

In a study, Jidong Chen et al. [19] argue that unlike the 

methodologies implemented over a static environment, 

additional measures are to be taken to unveil hidden patterns 

in the mobility data. This method, named moving micro 

clusters, is an extension of micro clustering. Here objects so 

close together are clustered, and the group of objects that are 

currently not together but likely to move together in the future 

are also considered. The object's profile is defined by time, 

position and velocity. The K-Means clustering is adopted here 

as objects with similar profile form clusters. It has a 

predefined velocity; if some variations above a threshold are 

defined, the current profile needs to be updated. One of the 

additional features of this method is the management of split 

events for the threshold values of a bounding rectangle. 

 

The framework proposed by R.V Nehme et al. [4], called 

SCUBA, suggests the idea of grouping moving objects and 

queries in a single unit according to its spatial and temporal 

features. SCUBA adopts low-cost moving micro-clusters for 

the evaluation of spatio-temporal queries. The cluster 

memberships of each object are updated incrementally for 

every time unit. As the speed changes during the motion, the 

membership of individual objects in the cluster may vary. To 

retain the performance while processing multiple objects, 

authors have proposed a semantic load-shedding mechanism 

where the insignificant points are neglected. The innovative 

concept in this model is the arrangement of various object 

movements and queries in a single cluster. This method does 

not account for the splitting of moving objects in different 

clusters. 

 

The same authors have put forward another proposal 

called ClusterSheddy [20], a semantic load-shedding-based 

continuous data processing approach. They have considered 

the application scenario of fleet monitoring and assume that 

vehicles move in convoys. In one approach, if the whereabouts 

of vehicles (e.g. vehicles with perishables of high value) is 

known, a record of such object will keep, and that of low 
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priority vehicle will be dropped at the time of load shedding. 

If such data is unavailable, vehicles exhibiting similar 

movement patterns will be accounted for, and their features 

will be constituted to form clusters. 

 

Another method [19] proposes the clustering of moving 

objects in spatial networks. This framework, called CMON, 

performs periodical clustering of moving objects with 

different criteria. In order to preserve the clusters, it proposes 

a structure called cluster block throughout the session. The 

CMON method productively supervises the split and merge of 

cluster blocks. Intermediate destinations are kept in the travel 

path to manage the termination point. When the objects in the 

cluster block reach the destination, it departs from the cluster 

block. In order to reduce the cost of splitting based on the 

direction of movement and speed, the split scheme is 

managed. When neighbouring cluster blocks are moving 

together with a minimum distance threshold, they merge 

together, and that reduces cluster maintenance costs. The 

CMON framework does not manage queries on moving 

objects. 

 

Jensen, C. S et al. [3] propose a  strategy that is capable 

of clustering moving objects in an incremental fashion. The 

key properties of moving object clusters are set and updated 

incrementally by maintaining a special data structure called 

the clustering feature. Compared to the existing approaches, 

this method automatically detects cluster split events that 

eliminate the need to maintain bounding boxes of clusters with 

large amounts of associated violation events. As indicated in 

the introduction, micro clustering is a suitable data mining 

strategy for moving objects. It indicates that a group of objects 

so close to each other probably belongs to one cluster. 

 

Li et al. [21] propose an incremental clustering 

framework called TCMM for a continuously updating system, 

assuming new locations will not affect clusters distant from 

the incoming data. It performs the operation in two phases. 

Initially, the micro clustering phase generates representative 

trajectory line segments by differentiating an incoming 

trajectory from the existing clusters. Similar micro-clusters 

are merged together in a periodical fashion. This helps to 

avoid the maintenance cost of unnecessary micro-clusters. 

Presented by Steven Young et al. [22], a fast and stable 

incremental clustering algorithm enforces a minimum 

memory requirement, utilizing the Winner Take All paradigm. 

This computational model is typically applied in neural 

networks for competitive learning. A supplementary statistical 

measure is taken to stabilize the parameters for the clustering 

process. Based on the parameters used for queries and outputs 

generated, queries are classified into the following categories 

[23]. 
 

2.1. Range Queries 

These are basic operations on the trajectory database  [23] 

that retrieve records within a specific range. Range queries on 

trajectories work on historical spatio-temporal data and count 

the number of distinct trajectories intersecting the query area  

[37]. For example, ‘get the details of containers passed 

through specific region’ or ‘get the list of cars crossed the 

location in a given period’.  
 

2.2. Continuous Queries 

These are issued once and evaluated incrementally until a 

termination criterion is reached. The termination is a spatial or 

temporal threshold or a combination of both. The outcome of 

incremental execution of queries is the same as the result of 

traditional user queries after each database update. But in the 

former case, the computational expense is substantially 

reduced [25]. 
 

2.3. K-Nearest-Neighbour Queries 

Given a set of object locations L and a query Q, a K-

nearest-neighbour query returns k closest locations  

𝑙1, 𝑙2, 𝑙3, 𝑙4 … . . 𝑙𝑘 to Q [26]. For example, a query was issued 

by moving police to get the list of ambulances near it. 

Different alternatives to this have later been introduced. One 

continuous KNN query is a variant that identifies k- interested 

points along a trajectory [27]. For example, get the list of 

ambulances near its location from a source point to the 

destination point. Two, reverse KNN query describes the 

finding of the data objects with the query object in the set of 

their k-nearest neighbours. This is used to point out the 

influence of a query over a data set[28]. 
 

2.4. Aggregate Queries 

Applied on a set of tuples and provide a single value that 

describes the nature of the selected group. The aggregation 

function we considered is SUM, MIN, MAX, AVG and 

COUNT. These fundamental queries are very useful and find 

their applications in understanding the general behaviour of a 

data set. Our model focuses on the effective evaluation of 

spatio-temporal aggregate queries. Considering the final 

inference based on the two abstractions, the clusters and 

aggregate queries provide the general behaviour of a set of 

data. 
 

The discussion of constraint databases and constrained 

queries is relevant here as well. These ideas are not new; 

recently, these concepts have been studied in the context of 

new application domains such as moving object data 

management. A constraint database is an extension of the 

relational model representing a potentially infinite set of 

continuous data through finite combinations of polynomial 

equality and inequality constraints [29]. Different 

classifications are possible while discussing queries in the 

mobile environment, elaborated in the coming section. 

 

3. Basic Concepts  
The term "semantics" typically pertains to linguistic 

analysis and involves the study of the meaning and 

interpretation of words. However, in this context, it is used to 
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refer to the contextual information extracted from the 

trajectories of moving objects, which are referred to as 

"semantic properties." According to various applications, 

these features help us to arrive at many inferences about the 

moving entity and moving path. Here the authors refer to the 

moving entities as moving objects and moving object queries. 

Many works have been published for the extraction of 

semantic location extractions [5], [30]–[32], which all rely on 

application-dependent parameters.  

 

The proposed work exploits semantic features of moving 

clusters and moving queries. Fundamental concepts on 

moving objects, trajectories, semantic properties etc., 

explained in SemTraClus are applicable in this context as well. 

The aim of our proposed work is to manage moving object 

queries efficiently. Concepts such as continuous clustering 

and semantic load shedding are discussed here.  

 
3.1. Continuous Clustering of Moving Entities  

Continuous clustering or incremental clustering is the 

grouping of moving objects with respect to the geographic 

distance over a constrained path. We consider moving objects 

and queries over a constrained path in the proposed model as 

moving entities. 

 

A cluster at time slot tw is represented as 

(Cid, Clat, Clon, Ct, OSpeed , Ceps, Coids, Cqids), where Cid 

uniquely distinguishes instance of a cluster, Clat is the cluster 

latitude, Clon is the cluster longitude, Ct is the time at which 

cluster resides in the space, OSpeed is the speed of each 

object, Ceps is the radius of the cluster, Coids is the set of 

objects in the cluster, and Cqids is the set of queries attributed 

to the specific cluster. 

 

Density-based incremental clustering in specified 

locations with respect to semantic properties such as speed and 

direction is performed[33]. Additionally, the semantic 

features computed from the traces are maintained in semantic 

structures such as Obj_semantics and Clus_semantics. 

 

 
Fig. 1 Scheme of periodic clustering of moving objects and queries 

 

The Spatio-Temporal Aggregate query for a given space-

time constraint can be represented SQ(id, x, y, t, Attr, qtype).  

Given a tuple of attribute values Attr =

 (attr1  attr2 … . . attrd) where attri ∈  dom(Attr), the 

domain value specifies values for a select and conditional 

clause in the query, and it is the unique identification value for 

each query.  Here (x, y) is the spatial component, and t is the 

temporal component, where ti−1 < ti < ti+1. The triplet (x, y, t) 

is termed a query feature. The parameter Attr specifies values 

for select and conditional clauses, and qtype specifies which 

category the query belongs to.   

 

Figure 1 shows a model for the continuous clustering of 

moving entities. The proposed approach employs the 

SemTraClus method to identify cluster locations for clustering 

in different semantic locations. This allows for semantic load 

shedding using only the identified points of interest (POIs) for 

further processing rather than the entire records. Additionally, 

the proposal incorporates a shared cluster-based execution in 

which objects and queries are grouped together in each time 

slot. These two concepts are illustrated in the accompanying 

figure. 

 
3.2. Query Types  

As mentioned, the proposed work focuses on spatio-

temporal aggregate queries. Two classes of spatio-temporal 

aggregate queries applicable to the moving objects are 

identified: Static spatio temporal Aggregate Queries (SAQ) 

and Continuous spatio temporal Aggregate Queries 

(CAQ)[34]. Static aggregate queries are instantaneous 

queries, while continuous aggregate queries require regular 

updating of the responses.  

 

There are two expiration parameters applicable to CAQ, 

time period (Δt) and distance Δd.  There are two expiration 

parameters applicable to CAQs: time period (Δt) and distance 

(Δd). Two different scenarios are illustrated in Figures 2 and 

3.  A query from a moving cab, ‘How long from here to nearby 

hospital’, is an example of a static spatio-temporal aggregate 

query.  

 
Fig. 2 Static spatio temporal aggregate query scenario 
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Fig. 3 Continuous spatio temporal aggregate query scenario 

 

Though the location of querying is important to retrieve 

the answer, the scope of the query ends after responding.  

While the query ‘Update every 30 minutes number of 

emergency vehicles near to me’ from a police cab clearly 

depicts the continuous spatio-temporal aggregate query. The 

execution proceeds until the expiration value is reached. Both 

categories of aggregate queries are executed in either an inter-

cluster or intra-cluster fashion. In the former case, the 

semantic features of the individual moving objects are 

significant. In contrast, in the latter case, the semantic features 

of the cluster as a whole are the driving factor. 

 

Special data structures are devised to store the cluster 

profiles, which monitor different parameters in various time 

slots. Queries are applied to this data structure. The query is 

registered to the pool of queries as soon as it is generated. This 

section groups queries in accordance with the intersection of 

spatial and temporal domains. The generation of static spatio-

temporal aggregate query instances is pictured in Figure 4.  

 
Fig. 4 Generation of static spatio-temporal aggregate queries 

Some of the possible static spatio-temporal aggregate query 

instances 

• Obtain the count of objects travelled between the given 

locations and during the given time 

 
select count (*) from cluster_ds as c 

where c.tim between t1 and t2 

 

• Number of objects proceeding to loc1 travelling with the 

speed of speed 

 
select count (*) from cluster_ds as c 

where c.location = loc1 and  

c.speed <= speed 

 

Some of the possible Continuous Spatio Temporal Aggregate 

Query Instances  

• Obtain the count of objects travelled between the 

locations until time1 

 
select count (*)from cluster_ds as c 

where c.location between loc1 and loc2 

until t1; 

 

• Average speed of objects traveling together between loc1 

and loc2 for the time t. 

 
select count(Objid), slot,  

clusterIndex from clustered_table group by 

slot, clusterIndex; 

 

• Count of objects moving to loc1 with a given speed 
select count(*) from cluster_ds as c 

where c.location between loc1 and loc2 

and c.speed <= speed until c.cur_time+t  

 

• Number of Taxi cabs available in 200 meters with 

distance in next ten minutes between loc1 and loc2 

travelling with the speed of speed.  

 
select count (*), dist from cluster_ds 

as c where c.location between loc1 AND 

loc2 and c.speed <= speed unitl 

c.curr_time + t 
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Fig. 5 Phases of spatio temporal aggregate query processing 

 

4. Methodology  
The queries are executed in a series of two steps. Initially, 

the query processor accesses query features and identifies the 

geographical and temporal sanctity of the query.  

The qtype distinguishes it as inter-cluster or intra-cluster; 

accordingly, Δt expires, or Δd is calculated (as shown in 

Figure 5). Inter-cluster queries are queries that can be 

answered within the purview of clusters. While in the case of 

intra-cluster queries, more than one cluster is involved. 

Another input to the system is the list of semantic locations 

during these points till the expiration values results are 

returned in the case of a Continuous Spatio Temporal 

Aggregate Query. 

 

4.1. Clustering Window  

To process moving entities, we use a simple clustering 

window for a time slot tw. When a new moving entity is 

registered at SemLoc, the semantic attributes of the cluster at 

that point are re-estimated by taking into account the new 

member, such as the average speed of objects in different 

clusters, the number of objects moving together, and the 

maximum speed of an object between specific locations. A re-

clustering is executed for all objects present at that instant. At 

this point, the following possibilities are applicable with 

respect to the time window.  

• New clusters are generated: - If a new object appears or 

an existing object moves away from the cluster.  

• Existing clusters are merged: - When inter-cluster 

distance reduces due to the change of location.  

• Change of the cluster radius: - Cluster radius can be 

increased or decreased according to the geographical area 

within the limit of the maximum threshold. 

 

Consider the illustration given in Figure 6. Here, the 

movement of ten objects is considered, and clustering is 

applied in the specific geographical area (clustering window, 

τ) with time slot tw. Along the path, each object occupies a 

different cluster, which means the object of cluster 

membership varies during the course of the journey. In the 

first slot, six objects are spread among three clusters. Obj_10 

is the sole element in a cluster. Obj_5 leaves the path before 

the next clustering location. More objects are added at the 

second time slot, and the cluster count increases. 

 

 
Fig. 6 Periodic clustering of moving objects and queries 

Update 

Δt, Δd 
Qid, Qtype 

SAQ 

evaluator 

CAQ 

evaluator 

Query Pre-processing 

Semantic location list 

Q(x,y,t,Attr) 

Spatio-Temporal 

Aggregate Query 

results 
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Q is a query generated between two cluster slots. Then the 

system calculates the distance between the current position of 

the query and the immediate cluster window (this could be an 

already generated cluster (previous cluster pc) or a 

forthcoming cluster (next cluster nc) slot). The answer will be 

retrieved from a short distant point and based on the proximity 

thresholds. If the last updated slot and next updated slots are 

above the threshold values, the system alerts for an immediate 

clustering request. 

 

4.2. Semantic Load Shedding and Model for Representing 

Continuous Clusters  

In order to reduce the processing cost of queries and 

manage latency, many solutions, including lazy updates, 

selective reduction of tuples etc., are employed. This 

technique, load shedding, has become a necessary requirement 

where approximate answering of queries is required, like 

dynamic processing of moving object queries. At this point, 

we are providing certain alternative forms of overhead 

deduction with density-based clustering. Object properties in 

semantic locations with a timing window are considered for 

processing. Semantic features of the location are also 

recorded. In order to manage object movement among 

different clusters in semantic load shedding, the entire cluster 

is considered a moving object. 

 

To evaluate continuous spatio-temporal aggregate 

queries, periodical clustering is executed in every semantic 

location in a cluster for a time slot with duration Δtw. 

According to the mobility behaviours, different numbers of 

clusters are generated in each cluster slot. Here the cluster slot 

is an identified semantic location SemLoc(x,y). The cluster 

membership of each object changes from SemLoci to 

SemLoci+1. The transition is accordingly with its semantic 

attributes such as velocity, the structure of the constrained 

path, direction of movement etc. Though objects perform 

constrained movement, their mobility pattern can change 

within limits stipulated by the travel network. These changing 

mobility itself will give the travel patterns of the object. In 

order to represent changing mobility of objects, we represent 

them in a tabular form as modelled in a related study published 

in [35]. 

 

This representation is illustrated by considering the 

movement of ten objects along a path.  O = {o1, o2, o3, o4, 

o5, o6, o7, o8, o9, o10}, these are clustered over four 

consecutive semantic locations. After clustering, the objects 

are scattered in different clusters.  In one such instance let, 

 

SemLoc1 = {(o1,o2,o3), (o4, o5, o6), (o7, o8, o9)}, 

SemLoc2 = {(o1, o3, o5), (o4, o6), (o7, o8), (o2, o9)},  

SemLoc3 = {(o2, o5), (o1, o3, o6), (o7, o8), (o4), (o10)}, 

SemLoc4 = {(o2, o5, o10), (o1, o6), (o3, o7, o8), (o4)}. 

 

Table 1 displays the semantic locations and their 

corresponding clusters, with each row representing an object 

and each column representing a semantic location. The 

variable ‘i’ represents the cluster to which the object belongs 

in the corresponding semantic location. The final column 

shows the feature (F) of the object, which is its cluster in the 

entire movement session. This representation effectively 

tracks the movement of objects across different clusters and 

can be used for analysing spatiotemporal aggregate queries. 

 

The frequency and places of clustering are predetermined 

using the SemTraClus [5] method, identifying potentially 

interesting regions, such as significant traffic junctions, tourist 

spots, and diversions, in the case of a road network. The arrival 

of new objects and the departure of existing ones are noted at 

this stage. 

 
4.3. Shared Cluster-Based Execution  

In a continuously moving environment, optimization of 

query execution is crucial, especially when more queries are 

targeted on the same spatio-temporal domain. It is observed 

that moving queries can be generated from any point in a 

travel network. 

 
Table 1. Cluster membership of different objects in various semantic locations 

Objects SemLoc1 SemLoc2 SemLoc3 SemLoc4 F 

o1 1 1 2 2 1 

o2 1 4 1 1 1 

o3 1 1 2 3 1 

o4 2 2 4 4 2,4 

o5 2 1 1 1 1 

o6 2 2 2 2 2 

o7 3 3 3 3 3 

o8 3 3 3 3 3 

o9 3 4 _ _ 0 

o10 _ _ 5 1 0 
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Many of the complex optimization techniques published 

suggest works on sub-expression levels for achieving better 

results [6]. SCUBA exploits the moving micro-clustering 

method for managing objects and queries. The proposed 

algorithm generates separate clusters of moving queries 

according to their spatial and temporal interest. Also, simple 

techniques are adopted to group aggregate queries applied on 

similar spatio-temporal regions. 

 

Consider Figure 7, where Q1, Q2 and Q3 are different 

aggregate queries generated from various sources that share 

the same temporal domain. As a result, for the time period 

from t2 to t7, all these queries can be grouped together for 

processing. 

 
Fig. 7 State diagram of shared cluster-based execution of spatio-

temporal aggregate queries 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Different states of incoming continuous spatio-temporal aggregate query 
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This is known as shared cluster-based execution, which 

involves concurrently processing continuous spatiotemporal 

queries. This approach has been adopted in many query 

execution models developed for different environments [16], 

[17]. By grouping similar queries together, scalability can be 

achieved. In the proposed model, query optimization is 

achieved by combining queries with similar spatiotemporal 

and semantic domains. If queries with attribute values from 

the same domain are being processed, they are grouped 

together for shared segments. 
 

Figure 8 illustrates the different states of incoming 

continuous spatiotemporal aggregate queries. Queries can be 

received at any time from various sources, and their evaluation 

is abstracted as a spatial join between the objects table and the 

query table. If the response interval is above the threshold 

interval, the query execution is postponed until the next 

immediate clustering location. Otherwise, the query is 

executed based on previous values, representing a 

compromise between performance and response time.  

 

Once a query is registered, three types of validation occur 

in the system: domain validation, spatial range validation, and 

temporal range validation. In the domain validation phase, the 

system checks if the domain of the incoming query is suitable 

for grouping with any of the running instances, considering 

simple query types. In the spatial range validation, the system 

checks the spatial scope of the incoming query by validating 

the spatial expiration distance. The system checks the 

temporal distance expiration value in the temporal range 

validation. Finally, different queries are pooled together and 

executed. 

 

5. Evaluations   
5.1. Environment Setup  

The BerlinMOD[36] synthetic traffic data set and 

Microsoft TDrive real data sets were used in the experiment. 

21 different moving objects along a constrained transportation 

network were considered. The performance of both SAQ and 

CAQ was evaluated using the DBSCAN method tuned for 

incremental clustering. The two key parameters, Eps and 

MinPt, significantly influence the inclusion of points in 

clusters, so choosing optimal values is crucial. A constant 

value for Eps is not feasible as the objects continuously change 

their locations. A low value of the MinPts causes the inclusion 

of noise points in the cluster. For selecting Eps and MinPts, 

this work followed the common notion specified in the 

DBSCAN method. The heuristic approach in [30] was used to 

determine MinPts, which proposes that it should be equal to 

ln(n), where n is the number of points selected for clustering. 

To choose the cluster radius Eps, the sorted distance of each 

point to its k-nearest neighbors was plotted, where k was 

considered to be MinPts. The Eps value was selected from the 

knee point of the graph. The experiment was conducted using 

randomly generated environments of static and dynamic 

spatiotemporal aggregate queries. 

Object traces are stored in MySQL database version 

8.0.14. Aggregate functions in RDBMS are used for providing 

summary data. MySQL defines a number of aggregate 

functions suitable in different data mining environments such 

as MIN (), MAX (), SUM (), AVG (), COUNT (), STD (), 

GROUP_CONCAT (), VARIANCE () etc. In fact, with 

respect to our application domain, we consider the first five 

standard aggregate functions listed here for our application. 

For the implementation purpose, we use spatial extensions of 

MySQL. It provides an SQL environment that has been 

extended with a set of geometry types. This package provides 

data types such as GEOMETRY, POINT, LINESTRING and 

POLY GON and methods such as ST_Contains(), 

ST_Distance() etc. 

 

5.2. Experimentation Statistics  

Table 2 details the evaluation statistics of two different 

scenarios, first, with varying numbers of objects in the 

transportation network (Table 2a). Here the number of 

records, the maximum number of clusters generated and the 

maximum Eps values are listed. A large value in the maximum 

number of clusters depicts a vast geography of the 

transportation network. The maximum number of semantic 

slots is limited to 250 in this context. Consider the instance 

where MaxObjCount = 15, SemLocCount = 250 maximum 

number of clusters formed throughout the journey is 5, found 

in 32 different clustering slots. The maximum number of 

objects that appeared in a cluster is 4. On close monitoring, it 

is found that three objects travelled throughout all the 

clustering locations. Single objects in a cluster are considered 

an outlier and omitted from the further calculation as they do 

not contribute to the result. 

 
Table 2. Data set description and cluster formation statistics 

(a) Cluster slots = 250 

No. Objects 
No. 

Records 

Max. No. 

Clusters 
Eps 

5 3895 2 1.52 

10 13411 3 4.512 

15 22026 5 6.253 

20 39157 7 7.953 

25 45076 9 6.4 
    

(b) Object count = 50 

No. Time Slots 
No. 

Records 
Exec. Time (s) 

Max. No. 

Clusters 

50 3673 0.56 2 

100 7273 0.47 3 

200 14545 3.5 3 

500 35321 17.88 4 

1673 49889 33.52 3 
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Fig. 9 Comparative plot on the execution time for different aggregate queries 

 
Fig. 10 Execution time of SAQ with different Object count, POI = 200 

 

In the second scenario (Table 2b), the details of cluster 

formation and execution time are listed for ten objects and 

varying numbers of semantic slots. The clusters consist of 

varying numbers of objects, and the membership of objects in 

each cluster changes as they move towards their destination. 

Single-object clusters account for no more than 10% of the 

total number of clustering slots. As the number of semantic 

locations for clustering increases, so does the execution time. 
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The number of clusters generated is dependent on the pattern 

of object movement. Fewer groups indicate that the objects 

move closer together and have less variation in speed. The 

number of clusters also depends on the geographic nature of 

the trajectory. During the ride, part of the moving object may 

depart from the path. The cluster structures formed at this 

stage are stored in a database to avoid heavy computation 

processes and to answer queries efficiently. Figure 9 shows 

the time required to execute various aggregate queries with 

varying object counts and cluster slots. In the figure, dashed 

lines indicate the traditional approach, i.e., the application of 

queries on entire data, while the solid line indicates our 

approach. 

 

 
Fig. 11 Execution time for aggregate queries for various numbers of semantic locations 



A. Nishad et al. / IJETT, 71(6), 152-168, 2023 

 

164 

5.3. Varying Object Count  

The performance of our approach is analysed with 

different numbers of objects monitored in the transport 

network. Figure 10 plots the execution time required for three 

aggregate queries in the proposed approach (solid lines) and 

traditional method (dashed lines). In order to incorporate the 

traditional method, the whole trajectory points were 

considered for executing the query. All queries consume 

comparatively the same amount of time for execution.  

 

5.4. Varying Semantic Location Count  

Another analysis to showcase the performance of the 

approach is based on the execution of different queries with 

different numbers of semantic locations. Figure 11 illustrates 

the execution of queries in varying clustering locations with a 

constant object count. Here the impact of varying the number 

of semantic locations in spatio-temporal aggregate queries is 

analyzed. It can be done in two ways, either by increasing the 

cluster frequency or increasing the trajectory length. For the 

inclusion of better cases, the authors simulated a mixed 

scenario. As mentioned above, the framework addresses inter-

cluster and intra-cluster queries—increasing the number of 

clustering locations. The comparative plot of query execution 

time for SAQ and CAQ conveys the same meaning; hence, the 

experimentation of SAQ is only included here. 

 

5.5. Execution Time CAQ  

Figure 12 provides a comparative plot for a set of CAQs. 

It is clear from the plots that as we increase the width of the 

slot, the time of execution also increases. Accuracy also 

increases accordingly with tw up to a point. In this experiment, 

the configuration with slot width = 200 performs better as it is 

the maximum point of the steady increase in time, after which 

a spike in the execution time can be seen for all the query 

types. Here, the non-clustering approach indicates the 

traditional way of query evaluation, but no clustering is 

performed. So the model accounted for all the location points 

up to a location for analysing the incoming query. It takes 

cumulative time to process. While the clustering method 

shows steady progress in the execution time compared to the 

non-clustering method, it is cheap with less cost of accuracy. 

Cluster radius is a crucial parameter that determines the 

accuracy of aggregate query results. The queries fetch data 

based on the semantic properties of objects and locations. 

These are generated using the SemTraClus algorithm. The 

parameters are dynamically fetched from their semantic 

properties. At run time, the cluster parameters are computed 

based on the semantic properties of the road network and the 

number of objects. The data structure is constantly updated 

with the spatio-temporal values and other parameters of the 

moving objects and the queries. However, having a large 

number of clusters can negatively impact the accuracy of the 

object mobility pattern, which can also depend on the width of 

the transportation network. 

 

5.6. Aggregate Query Comparison  

Another performance evaluation is illustrated in Table 3.  

As explained in the previous section, two factors are involved 

in the execution, namely, the time required for clustering and 

the query execution time. In our method, the clustering is 

performed in predefined locations called slots. The method 

reduces the overhead of managing entire points of the object 

movement that is added to the database. Consider a case of 

objctCnt = 10 and POI = 200; the cluster time for an individual 

slot is .0031 seconds, query execution time for Max = 

.0017339 s total time is 0.0048339, without clustering method 

has query execution time itself is 0.0097216seconds, which 

itself is 50% more than with clustering method. Another 

measure to indicate the effectiveness is detecting the objects' 

ceased/joined rate; Table 4 shows that out of a maximum of 

ten objects that participated in the process, only four objects 

proceeded till the end of the journey. Six objects either joined 

after the journey's beginning or ceased movement before 

reaching the destination. Our study could spot only five of 

these objects which exhibited this nature. The information loss 

is measured by detecting the ceased /joining rate of objects. 

As we are applying clustering on vital semantic locations, only 

that less number of objects ceased /joined the travel network 

without being noticed. 

 

5.7. Detection of Objects in Various Slots  

Table 5 gives the statistics of object occurrence in 

different clusters. Consider the instance with cluster width 

250; different attributes of the same object are considered 11 

times (maximum case) and 2 (minimum case); most 

occurrences are 7 at this particular slot. As the width of the 

cluster window increases, more instances of the same objects 

are included in a slot. Hence the accuracy also increases. 

However, increasing the slot width beyond a point is not 

feasible, as it is considering the semantic nature of a location. 

 

It will also reduce the benefit of the incremental clustering 

approach. If more number of dynamic queries are reported 

from a non-semantic location, and if the next semantic 

location is not so near, the algorithm will execute with short 

width. Even though clustering is applied to semantic points, 

we have to filter out the locations based on performance 

evaluation. From the table, it is clear that if the cluster interval 

is increased after a certain point, the time required for 

execution increases, which costs the performance an optimum 

value considered as the clustering period. Another evaluation 

is based on the number of queries pooled for the execution.
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Fig. 12 Execution time for spatio-temporal continuous queries with varying slot width 

 
Table  3. Execution time required for two types of queries objCnt = 10 

Query 

Type 

Clustering 

Slots 

Execution Time (s)                                         

Witclusteringg  

Execution Time (s)            

Withouclustering Percentage of 

variance  
Query Exec. Clustering Total  Query Exec  Total  

MAX 200 0.0017339 0.0031 0.0048339 0.0097216 0.0097216 50.27670342 

SUM 50 0.000949438 0.0063 0.007249438 0.0141021 0.0141021 48.59320598 

Table 4. Detection rate of joining-attrition of objects 

No. 

Objects 

No. of objects detected                 

(Ceased/ Joined) 
Rate of variation 

With 

Clustering 

Without 

Clustering 

10 5 6 0.166666667 

15 11 13 0.153846154 

20 15 15 0 

25 21 22 0.04545454 

30 23 26 0.115384615 

 

 

Table 5. Number of objects repeated in slots for different width 

Slot Width 
No. of occurrence of objects in a slot  

Min Max  Mod 

50 2 6 2 

100 2 6 2 

150 1 6 2 

200 10 20 4 

250 11 2 7 
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5.8. Shared Cluster-based Execution for CAQ  

Queries aimed at similar spatial and temporal domains are 

grouped together after performing a series of validations. 

Figure 13 shows the number of queries received at a point and 

the actual number of queries executed after the clustering 

process. The difference between the two lines is the number 

of queries saved from execution due to concurrent execution. 

If more than one query on the same geographic location arises, 

such queries are pooled based on the domain. During 

execution, the authors omitted slots with single objects. Such 

instances are more while the slotting window is very low 

value. As the minimum number of objects in a cluster is set to 

ln (object_count), such slots do not add anything to the 

information. It is also noted that the execution time slightly 

varies in different slots according to the number of objects 

present at that particular instance.  

 

 
Fig. 5 Concurrent execution of queries in a shared environment 

 

6. Conclusion  
The clustering of moving object data is receiving more 

and more research attention as numerous applications generate 

vast amounts of spatio-temporal data from various location 

sensing devices. Query processing in a spatiotemporal 

environment has a different dimension from that of traditional 

processing. Fetching of summarized information about 

moving objects finds scope in a large number of applications 

like traffic summarization, for instance, the number of 

gasoline containers passing through a residential area in a 

specified time. The proposed algorithm is designed to handle 

spatio-temporal aggregate queries effectively. The algorithm 

relies on confirming that inferences derived from clustering 

and processing of aggregate queries yield the same insights. 

Utilizing an incremental density-based clustering process, the 

approach can efficiently answer spatio-temporal aggregate 

queries without needing to process the entire trajectory record. 

This approach accounts for moving objects' spatial, temporal, 

and semantic aspects. Evaluations of algorithms using various 

parameters are also detailed. Continuous queries are an 

effective way of extracting information from the mobility data 

set. Unlike traditional queries, it keeps on generating answers 

until a given criteria is met. Processing moving objects' data is 

a need of time due to the wide acceptance of context-sensing 

devices. In order to evaluate continuous dynamic queries, 

processing of entire GPS records is not feasible where time 

plays a crucial role. Here queries and objects are combined 

together with spatial and temporal abstraction. Density-based 

clustering is executed at semantic areas so that the aggregate 

values of points with potential interests can be easily 

ascertained. The authors also suggested pooling moving 

object queries working on the same spatio-temporal domain. 

Experiments show that incremental queries can be efficiently 

evaluated using the proposed methods. 
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