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Abstract - This paper aims to introduce a novel approach for minimizing the order of time-invariant SISO & MIMO high-order 

systems. A novel mixture of two methods is proposed to acquire the preferred approximated stable model, which conserves the 

basic structures of the high-order actual plant. The suggested approach retains the original plant dominant poles to acquire 

approximated model denominator using the advantages of the reciprocal transformation. However, the numerator of ROM is 

acquired by diminishing the inaccuracy between the transitory part of responses of HOS and the reduced model using the 

particle swarm optimization algorithm (PSO). Particularly the proposed reduction method is appropriate to the systems which 

are controlled by large magnitude poles as the usual dominant pole retention methods will lead to bad approximant in such 

cases. Further, the compensation is designed using the approximated reduced model acquired from the advised reduction 

methodology for controlling the high-order plant using a new algorithm. The efficacy of the suggested methodology is confirmed 

by matching responses of time & frequency of the larger and the reduced order models. The suggested technique’s accuracy is 

verified by calculating performance error indices. Taking into account three standard examples, the performance, usefulness 

and accuracy of work suggested to reduce system order were validated and also showed that the suggested reduction 

methodology is suitable for the design of compensation.  

 

Keywords - Reduced order model, Compensator, Particle swarm optimization algorithm, Dominant pole, Reciprocal 

transformation.

1. Introduction  
In present days, system analysts and control engineers are 

facing a great challenge while dealing with physical dynamic 

systems such as aviation systems, chemical plants, power 

system networks, multi-layer systems, digital communication 

networks, and control systems etc. To get the simple, 

illustrative and appreciable interpolation and estimation of 

these processes, it is essential to convert these systems into 

mathematical models. This mathematical modelling involves 

several number of simultaneous equations of higher order with 

constant coefficients. The analysis, synthesis and designing of 

the controller of such higher-order systems are both tedious 

and costly and time-consuming economically and 

computationally. Also, because of the complexity, it gets hard 

to gain a good acceptance of the behaviour of large-scale 

systems. Hence, working on this high-dimensional system in 

its original form is very difficult. Thus, to save costs and 

design time and simplify implementation, low dimensional 

system models are very desirable for engineers to use for the 

synthesis and control purpose of higher dimensional Plants. 

The higher order system(HOS) should be approximate as it 

must retain the basic features of the full order plant. MOR 

techniques are widely used in engineering and science to 

simplify higher-dimensional systems [1,2,3,4,5,6,7]. Two 

approaches have been used for approximating the large-scale 

linear systems. The reduction of the transfer function that 

takes place is called the frequency domain method, whereas in 

other approaches, the higher order state space model is 

reduced, called the time domain method.  

In the time domain approach, several model order 

reduction (MOR) methods are proposed, such as the 

Aggregation method, Singular Perturbation method given by, 

Modal analysis, Minimum realization algorithm, Balanced 

Realization Approach, Hankel Norm Approximation, etc., for 

reducing large-scale system [8,9,10,11,12]. Among these, the 

balance realization technique is usually used to reduce high-

scale original systems. This method truncated the smallest 

state of controllability and observability to find the reduced-

order model (ROM). At times there is no matching between 

the stable state response of the ROM acquired by this approach 

with the actual model. Thus, various MOR methods were 

proposed to solve this problem [13].  

https://www.internationaljournalssrg.org/
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In the frequency domain approach, initially [12] 

introduced the reduced technique for the dynamic linear 

system. Techniques like Pade approximation, Routh method, 

pole clustering [14,15,16,17,18,19,20] etc., are commonly 

applied methods for reduction in the frequency domain. It has 

been experienced that these methods have some boundaries, 

like the pade method may provide an unstable compact model 

even if the actual plant of order high is stable. There is a 

similar problem found in the continued fraction expansion 

method, which also does not provide the assurance of the 

steadiness of ROM, although the actual plant is steady and 

also not able to approximate the transient response very well. 

The moment matching method had not given a satisfactory 

performance of transient response in ROM, and there is no 

guarantee of stability of ROM.  The Routh approximation 

method does not produce a good result for order reduction of 

the non-strictly transfer function. The retention of the 

dominant pole for a non-minimum phase system is not 

possible in the case of the method of Routh stability. The 

method of stability equation has not given the appropriate 

result for the reduction of non-minimum phase large models. 

Therefore, a combined procedure was used to overcome these 

limitations. In this technique, using the methods of preserving 

stability, the denominator of the low-order model is achieved, 

whereas using the classic reduction methods, low-order 

numerator coefficients are determined. Several methodologies 

have been proposed using different combinations of two 

methods for simplification of the high-scale system such as 

[21] suggested the mixed reduction technique of the mixture 

of stability equation and Genetic Algorithm methods, [22] has 

made the grouping of pade approximation for numerator 

reduction whereas stability equation for denominator 

reduction, [23] has used the combination of eigen permutation 

algorithm and improved approximations. [24] proposed the 

new combination of the clustering method and pade 

approximation. Model order reduction is also made using the 

eigen algorithm and factor division methods [25]. Further, 

[26] has also done the reduction using an improved pole 

cluster method for denominator and pade for numerator 

reduction.[27]  applied the same modified clustering method 

in combination with an evolutionary algorithm to obtain better 

results. Then, [20] made the improvement in the pole 

clustering method and reduced the large order system. Further 

[28] has made a reduction by conserving the dominant poles 

in the ROM. [29] has also applied the order reduction 

technique on the SISO and discrete large order systems by 

conserving the dominant poles effect in the ROM. More new 

combinations have been introduced for the reduction of order. 

[30]. 

Among these methodologies, mostly MOR approaches 

are found based on conserving poles of the dominant nature of 

the large order plant in the minimized order model; for 

example, [45,46], the dynamical systems having the dominant 

poles are accountable to lead oscillation behavior and non-

dominant poles also called insignificant poles 

are accountable to the speedy decomposition of time-

response. Hence it is concluded that the stability of plants 

affects by dominant poles. The mixed combination proposed 

by [29,33,34] has given a good approximation to the original 

model but cannot be sight-seen in the controller design field. 

 

This paper has introduced a novel combination of 

approximation methods by preserving the poles of the 

dominant nature of the large system in the approximate model 

along with the particle swam optimization (PSO) algorithm 

for obtaining the preferred stable reduced model. Further, this 

approximated system from the proposed reduction 

methodology is used for the controller design. The novelty of 

the suggested technique is that it provides a good 

approximation to the systems controlled by large magnitude 

poles, as the usual dominant pole retention methods will lead 

to bad approximant in such cases. The dominant poles of the 

original plant are preserved in the suggested approach by 

using the advantages of reciprocal transformation to achieve 

the denominator coefficient. Whereas the ROM numerator is 

acquired by diminishing the inaccuracy between the transitory 

response part of HOS and low order model by applying the 

algorithm of particle swam optimization (PSO). The author 

tested the proposed methodology on the SISO and MIMO 

large-scale plants to achieve the approximated low-order 

system, which retains the basic features of the real-order plant. 

The paper is ordered as follows: Segment 2 consists of the 

statement of SISO and MIMO problems. A description of the 

reduction approach used in this paper to get the preferred 

approximated system is given in segment 3. In segment 4, the 

procedure of designing a compensator is explained. In 

segment 5, one standard numerical SISO and one numerical 

MIMO are considered from the literature to authenticate the 

advised reduction method. Segment 5 also includes one 

example of the SISO system to validate the suitability of the 

advised method for the compensator design. Finally, in 

segment 6 conclusion of the paper is mentioned. 

 

2. Statement of SISO and MIMO Problem 
2.1. SISO-System  

The nth order transfer function be considered as  

 

𝐺(𝑠) =
𝑌(𝑠)

𝑋(𝑠)
=

𝑏0 + 𝑏1𝑠 + ⋯ + 𝑏𝑛−1𝑠
𝑛−1

𝑐0+𝑐1𝑠 + 𝑐2𝑠 … + 𝑐𝑛𝑠𝑛
                      (1) 

 

The key purpose of the paper is to decrease the order of 

the high-scale system G(s) into a simple reduced model Gr(s) 

through construction that does not cause significant harm to 

accuracy and, however, preserves the primal structures of the 

real high-order plant.  

ROM transfer function is 

 

𝐺𝑟(𝑠) =
𝑌𝑟(𝑠)

𝑋𝑟(𝑠)
=

𝑣0 + 𝑣1𝑠 + ⋯+ 𝑣𝑟−1𝑠
𝑟−1

𝑢0+𝑢1𝑠 + 𝑢2𝑠
2 …+ 𝑢𝑟−1𝑠

𝑟−1 + 𝑢𝑟𝑠
𝑟
   (2) 
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2.2. Multi-Variable System 

The  nth order multi-variable system transfer matrix  is 

considered as 

[𝐺(𝑠)] =1/𝐷𝑛(s) [

ℎ11(𝑠) ℎ12(𝑠) … ℎ1𝑙(𝑠)

ℎ21(𝑠) ℎ22(𝑠) … ℎ2𝑙(𝑠)
⋮ ⋮ ⋮

ℎ𝑚1(𝑠) ℎ𝑚2(𝑠) … ℎ𝑚𝑙(𝑠)

]       (3) 

[𝐺(𝑠)] = [𝑔𝑖𝑗(𝑠)]𝑚×𝑙
            (4) 

Where i=1,2,3,…….. 𝑚; j=1,2,3,…………., 𝑙 

and 𝑙 is the input variable, whereas 𝑚 is the output variable, 

respectively. The  [𝑔𝑖𝑗(𝑠)]   is written as  

                              

     𝑔𝑖𝑗(𝑠) =
𝐻𝑖𝑗 (𝑠)

𝐷𝑛(𝑠)
                         (5) 

                               

The goal is to achieve the approximate model of the rth 

order (r‹ n) as given in equation (5) from the system mentioned 

in equation(3)  can be expressed by the transfer matrix  

given as 

[𝐺𝑟(𝑠)] = 1/𝐷𝑟(s) [

𝑟11(𝑠) 𝑟12(𝑠) … 𝑟1𝑙(𝑠)

𝑟21(𝑠) 𝑟22(𝑠) … 𝑟2𝑙(𝑠)
⋮ ⋮ ⋮

𝑟𝑚1(𝑠) 𝑟𝑚2(𝑠) … 𝑟𝑚𝑙(𝑠)

]            (6) 

 

Where [𝐺𝑟(𝑠)] = [𝑔𝑟𝑖𝑗
(𝑠)] is a 𝑚 ×  𝑙 transfer matrix  

and 𝑔𝑟𝑖𝑗
(𝑠) is expressed as: 

 

𝑔𝑟𝑖𝑗
(𝑠) =

𝑁𝑖𝑗(𝑠)

𝐷𝑟(𝑠)
                                         (7) 

 

𝑤ℎ𝑒𝑟𝑒  𝑖 = 1, 2, 3, …… 𝑚  𝑎𝑛𝑑 𝑗 = 1, 2, 3, … . . 𝑙 

 

3. Illustration of the Suggested Reduction 

Methodology 
The proposed method includes a modified dominant pole 

technique applied to identify the reduced denominator using 

the benefits of reciprocal transformation. Reciprocal 

transformation allows high and low-magnitude poles to be 

kept in reduced-order models. This method is fitted to the 

systems having the dominance of large magnitude poles 

because the normal dominant pole approach will not provide 

a good approximant in such cases. Whereas the reduced 

numerator is determined by ISE error minimization using the 

particle swarm optimization (PSO) method. 

3.1. Finding of Coefficient of Denominator Polynomial of 

ROM by Modified Dominant Pole Retention Method  

Step 1: Write down a characteristic equation of G(s) of order 

‘n’and find its roots 

𝑋(s) = (s + λ1)(s + λ2)(s + λ3) … . (s + λn)                     (8) 

 

Step 2: By applying reciprocal transformation in the 

denominator  X(s)  to get the  reciprocate denominator  as 

X(s)̃ = (λn s + 1)(λn−1s + 1)… … . (λ1s + 1)                    (9) 

 
Step 3: Select the r1 number of dominant poles from 

equation(8) represented by Xr1(s) and the r2 number of 

dominant poles from (9) represented by Xr2(s), to find the 

desired ‘rth’ order denominator polynomial Xr(s) given as 

Xr(s) = 𝑋𝑟1
(s)𝑋𝑟2

(s) where r = r1 + r2                         (10)  

     = u0 + u1s + u2s
2 … .+ur−1s

r−1 + urs
r 

 

where Xr2(s)is reciprocal of Xr2̃(s) 

 

3.2. Calculation of Coefficient of the Numerator of ROM by 

Minimizing Error using PSO 

Step 1: The step response of unity feedback original system in 

s domain is given as: 

𝑌(𝑠) =
𝑏𝑛−1𝑠

𝑛−1 + ⋯+ 𝑏1𝑠 + 𝑏0

𝑠(s + λ1)(s + λ2)(s + λ3) … . (s + λn)
 

𝑌(𝑠) =
𝑘0

𝑠
+

𝑘1

s + λ1

+
𝑘2

s + λ2

+ ⋯
𝑘𝑛−1

s + λn−1

+
𝑘𝑛

𝑠 + λn

    (11) 

 

Step II: The reduced order step response having unity 

feedback in the s domain is given as: 

𝑌𝑟(𝑠) =
𝑣𝑟−1𝑠

𝑟−1 + ⋯+ 𝑣1𝑠 + 𝑣0

𝑠(s + λ1)(s + λ2)(s + λ3)… . (s + λr)
 

𝑌𝑟(𝑠) =
𝑘0

′

𝑠
+

𝑘1
′

s + λ1

+
𝑘2

′

s + λ2

+ ⋯
𝑘𝑟−1

′

s + λr−1

+
𝑘𝑟

′

𝑠 + λr

  (12) 

 

Step III: Taking the inverse Laplace transform of equations 

equation(11) and equation(12) gives  

𝑦(𝑡) = 𝑘0 + 𝑘1𝑒
−𝜆1𝑡 + ⋯+ 𝑘𝑛−1𝑒

−𝜆𝑛−1𝑡 + 𝑘𝑛𝑒−𝜆𝑛𝑡       (13) 

𝑦𝑟(𝑡) = 𝑘0
′ + 𝑘1

′𝑒−𝜆1𝑡 + ⋯+ 𝑘𝑟−1
′𝑒−𝜆𝑟−1𝑡  

+ 𝑘𝑟
′𝑒−𝜆𝑟𝑡                                                 (14) 

Where 𝑦(𝑡) =  unit step responses of HOS 

       𝑦𝑟(𝑡) = unit step response of ROM 

𝑘0 𝑎𝑛𝑑 𝑘0
′ are the steady state part of responses of HOS and 

ROM, respectively, and the remaining terms represent the 

transitory part of the system output. The HOS and ROM 

steady state output matching, condition 𝑘0 = 𝑘′
0 must be 

satisfied. 
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Step IV:  Integral Square error (ISE) of transient responses 

are determined by applying the expression of error index ‘E’ 

as 

𝐸 = ∫ [𝑦(𝑡) − 𝑦𝑟(𝑡)]
2𝑑𝑡                           (15)

∞

0

 

 

This ‘E’ is the function of the unknown coefficient ′𝑣𝑖 ′of 

reduced numerator polynomial. 

 

Step V: Consider the numerator structure of ROM as 

 𝑣𝑖𝑠 + 𝑣0  . 

 

Also, consider 𝑣0equal to 𝑘0 = 𝑘0
′ to match the steady 

state response of HOS and ROM. 

 

Then determine the numerator coefficient ′𝑣𝑖 ′ of ROM  

in order to get the minimum value of error index E, which 

would be done by applying an artificial intelligence technique 

called particle swarm optimization.  

 

Consider the PSO fitness function given as 

 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑖𝑛(𝐼𝑆𝐸)                                      (16) 

 

The following steps of the PSO algorithm, as shown in 

Figure 1, are the unknown numerator coefficient ‘𝑣𝑖’of ROM 

is obtained. 

 

Step VI: Hence the desired ROM  numerator polynomial is 

found as 𝐺𝑟(𝑠) = 𝑣𝑖𝑠 + 𝑣0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Algorithm of PSO 
 

 

 

 

Start 

Define objective function and set PSO 

parameters 

Initialize position and velocity of 

swarms 

In the present population, evaluate 

objective function and determine the 

fitness value of each particle 

Compute PBEST & GBEST 

As per fitness values, update the 

particle PBEST & GBEST 

Iteration› Max Iteration 

Iteration= 

 Iteration Plus 1 

Display PBEST and GBEST 

Then update the position and velocity 

of the particles 
STOP 

Iteration =1 
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Fig. 2 Overall closed loop controlled unity feedback system with reduced order compensator 

 

4. Compensator Design 
The large-scale dynamic system involves many 

differential equations, leading to a rise in system order. In such 

cases, the task of analyzing, designing a controller and 

modeling a large-scale system is a very tedious job. This 

problem can be solved by approximating it into lower order 

because it reduces computational efforts, cost savings and 

design time. A lower-order controller has been designed to 

efficiently control the large dimensional system using the 

order reduction technique. The complete system obtained is of 

low order and is simple to recognise [35,36,37]. Also, in HOS, 

for designing the feedback compensator, a huge number of 

sensors are desirable to detect state variables of the real high-

order plant. Therefore, series controllers are recommended for 

feedback controllers.  A reference model R(s) must be 

developed based on certain specifications to acquire the 

desired performance of the real-time dynamical arrangement. 

It is necessary that the unit feedback closed loop-controlled 

system response must match with the considered reference 

model response. As per the desired specification, the 

computing procedures of the reference system in more detail 

are given in [38,39]. The approach followed for designing the 

compensator is, firstly, to design the reduced order 

compensator 𝐶𝑟(𝑠)  using the ROM 𝐺𝑟(𝑠)  acquired by the 

suggested reduction method as it reduces the mathematical 

computation and simulation time. Then, according to the 

block diagram shown in Figure 2, the overall controlled unit 

feedback system was obtained. 

4.1. Steps to design a compensation Model 

Step I: The compensator structure is considered as  

𝐶𝑟(𝑠) =
𝐾(1 + 𝐾𝐴𝑠)

𝑠(1 + 𝐾𝐵𝑠) 
                                         (17) 

 

Step II:  Open-loop reference model 𝑅(𝑆)̅̅ ̅̅ ̅̅  is determined 

from 𝑅(𝑠) for designing the compensator. 

𝑅(s)̅̅ ̅̅ ̅̅ =
𝑅(s)

1 − 𝑅(s)
                                             (18) 

 

Step III: To obtain the controlled parameters K, KA and KB, 

matching between the response of the open loop controlled 

system shown in Figure 2 with the open loop reference model 

obtained by equation(18) needs to be done. Therefore 

𝑅(s)̅̅ ̅̅ ̅̅ = 𝐺𝑟 
(s ) 𝐶𝑟(s)                                                   (19) 

𝐶𝑟(𝑠) =
𝑅(S )̅̅ ̅̅ ̅̅ ̅

𝐺𝑟(S )
= ∑𝑒𝑖𝑠

𝑖

∞

𝑖=0

                                        (20) 

 

The  power series expansion coefficients are 

𝑒𝑖  where, 𝑖 =  0, 1, 2 are  about s = 0. Using the pade sense 

of approximated model matching given by [40], the unknown 

power series coefficients are obtained. 

 

Step IV: Compute the compensator parameters K, KA and KB 

after finding the power series coefficient and substituting them 

in equation(20) and comparing them with equation(17). The 

desired reduced order compensator structure is determined. 
 

After getting the desired reduced order compensator 

structure, as shown in fig. 2, it has been directly applied to the 

original plant G(s) to get the closed system Gcl(s) transfer 

function obtained as 

𝐺𝑐𝑙 (𝑠) =
𝐺(S)𝐶𝑟(S)

1 + 𝐺(S)𝐶𝑟(S)
                                     (21) 

 

5. Illustrative Examples  
Performance indices are measured for the ROMs obtained 

from the suggested scheme and other known MOR schemes 

from the literature to confirm the performance of the advised 

scheme by using the formulas given as  

 

𝐼𝐴𝐸 = ∫ |𝑦(𝑡𝑖) − 𝑦𝑟(𝑡𝑖)|𝑑𝑡                                             (22)
∞

0

 

𝐼𝑆𝐸 = ∫ [𝑦(𝑡𝑖) − 𝑦𝑟(𝑡𝑖)]
2𝑑𝑡                                           (23)

∞

0

 

 

where IAE= Integral square Error 

ISE= Integral Square Error 

 𝑦(𝑡𝑖) = HOS unit step response at time ti. 

     𝑦𝑟(𝑡𝑖) = ROM unit step response at time ti. 

 

Example 1: Consider 6th order SISO system [35], the 

proposed MOR method is illustrated as 

𝐺(𝑠) =
2𝑠5 + 3𝑠4 + 16𝑠3 + 20𝑠2 + 8𝑠 + 1

2𝑠6 + 33.6𝑠5 + 155.94𝑠4 + 209.46𝑠3

+102.42𝑠2 + 18.3𝑠 + 1

           (24) 

5.1. Determination of Denominator Polynomial of ROM  

By following section 3.1, the denominator of ROM is 

obtained as follows: 

C,(s)Compensator 

obtained by reduced 

model 

G(5) Original Plant 
V(s) 

E(s) U(s) Y(s) 

+ 
- 
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Step 1: Characteristic equation is obtained from equation(24) 

is, 2𝑠6 + 33.6𝑠5 + 155.94𝑠4 + 209.46𝑠3 + 102.42𝑠2 +
18.3𝑠 + 1 = 0 

Roots of the characteristic equation are: 

𝑠1 = −0.1, 𝑠2 = − 0.2, 𝑠3 = − 0.5, 𝑠4  − 1, 𝑠5 = −5, 𝑠6 −
10                                         (25)                                

Step 2: The reciprocal transformation of the denominator of 

G(s) is given as: 

 

𝐺(𝑠)̅̅ ̅̅ ̅̅ = 𝑠6 + 18.3𝑠5 + 102.42𝑠4 + 209.46𝑠3 + 155.94𝑠2

+ 33.6𝑠 + 2 

= (s1+10) (s2 +5) (s3 +1) (s4 +0.5) (s5 +0.2) (s6+0.1)  (26)    

                                                                              

Step 3. By following step 3 of section 3.1 and using 

equation(10), the denominator of 2nd order (r = 2) reduced 

model is obtained for various values of r1 and r2 as 

 

for r1 = 1, r2 = 1,  𝑋 2(𝑠)1 = 𝑠2 + 0.2𝑠 + 0.01    (27) 

            

for r1 = 2, r2 = 0,  X2(s)2 = 𝑠2 + 0.3𝑠 + 0.02     (28)                 

 

5.2. Numerator ROM is determined as:  

In the following section 3.2, the numerator is obtained as 

follows: 

Step 1: Using equation(11), the step response of unity 

feedback original system in the time domain is obtained as: 

 

𝑦(𝑡) = 1 − 1.1002𝑒−0.1𝑡 + 0.1687𝑒−0.2𝑡 − 0.0487𝑒−0.5𝑡 −
0.0772𝑒−𝑡 + 0.2794𝑒−5𝑡  − 0.2219𝑒−10𝑡        (29)  

                      

and using equation(12), the unit step response of ROM in the 

time domain is obtained as 

 

for r1 =1 and r2=1,  
yr (t)1 = 1 + (0.101v1 − 1.01)e−0.1t + (0.01 − 0.101v1)e

−10t 

(30)  

for r1 =2 and r2 =0, 

𝑦𝑟(𝑡)2 = 1 + (10𝑣1 − 2)𝑒−0.1𝑡 + (1 − 10𝑣1)𝑒
−0.2𝑡      (31) 

 

where 𝑦(𝑡) = step response of HOS with unity feedback , 

 𝑦𝑟(𝑡) = step response of ROM with unity feedback  

Step 2: Using equation (15), the corresponding error index E 

is evaluated as: 

 

for r1 =1 and r2=1,  

𝐸1 = 0.0495𝑣1
2 − 1.916𝑣1 − 5.0104         (32) 

 

for r1=2 and r2=0, 

𝐸2 = 73.34𝑣1
2 − 15.806𝑣1 + 2.80654       (33) 

 
Step 3: Numerator polynomial structure is chosen as 𝑣1𝑠 +
𝑣0, where 𝑣1 is the unknown coefficient and 𝑣0  is taken as 

𝑘𝑜 = 𝑘𝑜′ for matching the steady output of the HOS and 

ROM. 

 

Step 4:The unknown numerator coefficient   𝑣1 of ROM has 

been evaluated, by applying the PSO algorithm shown in 

Figure 1, considering  the design parameters as 

No. of variables = m = 1(swarms) 

Population size = n = 500 

wmax= 0.9 where  wmax is Inertia weight maximum 

wmin =0.4 where wmin is Inertia weight minimum 

Correction factor c1 and c2 = 2.05 

Max iteration=100 

Lower Bound & Upper Bound variables are 

LB= [0] and  UB= [100], respectively. 

 

Hence,  𝑣1 = 0.1 is obtained with the fitness function as 

shown in Figure 3a for r1 =1 and r2 =1and 𝑣1 = 0.1078  is 

obtained with the fitness function, as shown in Figure 3b for 

r=2 and r2 = 0. 

 

Step 5: The ROM numerator is obtained as  

 

𝑌2 (𝑠)1 = 0.11𝑠 + 1, for r1 = 1and r2 = 1,       (34)                 

                          

𝑌2 (𝑠)2 = 0.10781𝑠 + 0.02 for r1 = 2 and r2 = 0   (35) 

                

Therefore, the wanted 2nd order reduced system is found 

using (27), (28), (34) and (35) as  

    

        𝐺2 (𝑠)1
=

0.1𝑠 + 1

𝑠2 + 10.1𝑠 + 1
                                         (36) 

    

𝐺𝑟  (𝑠)2 =
0.10781𝑠 + 0.02

𝑠2 + 0.3𝑠 + 0.02
                                       (37) 

   

 
Fig. 3a. PSO Convergence Graph for example 1 (r1 =1, r2= 1) 

 

 
Fig. 3b. PSO Convergence Graph for example 1 (r1 =2, r2= 0) 
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Fig. 4 Example 1- Response of SISO system for a step input 

 

    
Fig. 5 Example 1 -Bode Plot of SISO system 

 
Table 1. Example 1- Comparison of transient response specifications, gain and phase margin

  

Table 2. ISE and IAE comparison of example 1 

 

 

 

 

Reduction Method 
Transient Response Specification Gain Margin Phase Margin 

Tr Ts Mp TP   

Original System 22.71 40.48 0 75.42 Inf 180° 

Proposed Method (for r1 = 1, r2= 1) 21.97 39.12 0 105.46 Inf 180° 

Proposed Method (for r1 = 2, r2= 0) 21.23 38.33 0 68.62 Inf 180° 

Prajapati and Prasad, 2020a [41] 21.87 39.23 0 71.58 Inf 180° 

Tiwari & Kaur, 2020 [42] 20.621 37.218 0 68.7262 22.1 178° 

Gutman, Mannerfelt & Molander, 1982 [43] 10.01 17.9 0 63.66 Inf 180° 

Prajapati & Prasad,2019b [44], 

Prajapati & Prasad, 2019c [2] 
22.1 37.07 0.0144 75.99 Inf 180° 

Hutton and Friedland, 1975 [16] 22.12 37.09 0.0143 76.45 Inf 180° 

Reduction Technique Reduced Order System 
Performance Indices 

ISE IAE 

Proposed Method (for r1 = 1, r2= 1) 
 

0.00092 0.076 

Proposed Method (for r1 = 2, r2= 0) 
 

0.0055 0.22 

Prajapaand Prasad, 2020a [41] 
 

0.00178 0.12 

Tiwari & Kaur, 2020 [42] 
 

0.023 0.38 

Gutman, Mannerfelt & Molander, 1982 [43] 
 

0.623 2.38 

Prajapati & Prasad,2019b [44], 

Prajapati & Prasad, 2019c [2] 

 
0.0046 0.20 

Hutton and Friedland, 1975 [16] 
 

0.0047 0.20 

576𝑠 + 360

2458𝑠2 + 2196𝑠 + 360
 

0.0880𝑠 + 0.011

𝑠2 + 0.2012𝑠 + 0.011
 

0.0879𝑠 + 0.011

𝑠2 + 0.2012𝑠 + 0.011
 

0.1𝑠 + 1

𝑠2 + 10.1𝑠 + 1
 

0.1078𝑠 + 0.02

𝑠2 + 0.3𝑠 + 0.02
 

0.0913𝑠 + 0.0209

𝑠2 + 0.30663𝑠 + 0.0209
 

−0.4809𝑠 + 0.6396

𝑠2 + 0.1070𝑠 + 0.6393
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The step and bode responses of the proposed ROM (r1 =1 

& r2=1) are compared with the case r1= 2 & r2= 0 and also 

compared with the real system and ROM's acquired from the 

methods offered by [38, 39, 40, 41, 2, 13] are shown in Figure 

4 and Figure 5, respectively and hence found the better 

response. The transient response specification, gain margin 

and phase margin are obtained and compared, as shown in 

Table 1, to check the steadiness of the approximated and the 

original systems. In Table 2, ISE and IAE are calculated and 

compared for the authentication of the suggested method. 

Hence all the analyses proved the effectiveness of the 

suggested method for the case  r1 = 1 & r2 = 1. 

 
Example 2: To illustrate the extent of the suggested reduction 

procedure, the example of a MIMO  6th order system given 

by the transfer matrix is considered from [25],  

As 

[𝐺(𝑠)] =

[
 
 
 
 

2(𝑠 + 5)

(𝑠 + 1)(𝑠 + 10)

(𝑠 + 4)

(𝑠 + 2)(𝑠 + 5)
(𝑠 + 10)

(𝑠 + 1)(𝑠 + 20)

(𝑠 + 6)

(𝑠 + 2)(𝑠 + 3)]
 
 
 
 

                 (38) 

 

                =
1

𝐷(𝑠)
[
ℎ11(𝑠) ℎ12(𝑠)
ℎ21(𝑠) ℎ22(𝑠)

]                                        (39) 

where 
𝐷(𝑠) = s6 + 41s5 + 571s4 + 3491s3 + 10060s2 +
13100s + 6000                                                           (40)      

 
And ℎ11(𝑠) = 2𝑠5 + 70𝑠4 + 762𝑠3 + 3610𝑠2 + 770 

+6000                                     (41) 

ℎ12(𝑠) = 𝑠5 + 38𝑠4 + 459𝑠3 + 2182𝑠2 + 4160𝑠
+ 2400                                                   (42) 

ℎ21(𝑠) = 𝑠5 + 30𝑠4 + 331𝑠3 + 1650𝑠2 + 3700𝑠
+ 3000                                                       (43) 

 ℎ22(𝑠) = 𝑠5 + 42𝑠4 + 601𝑠3 + 3660𝑠2 + 9100𝑠 +
6000                                                                                            (44) 

 

Following the steps described in section 3.1, the reduced 

denominator is obtained  as 

 for r1 =1 , r2 = 1, 𝐷 2(𝑠)1 = 𝑠2 + 21𝑠 + 20              (45) 

  

 for r1 = 2, r2 = 0, D2(s)2 = 𝑠2 + 3𝑠 + 2                   (46)                         

 

As per the steps explained in section 3.2, the lower order 

numerator unknown coefficients are obtained with the fitness 

function shown in Figure 6 for the cases r1 =1 and r2 =1 and 

r1 =2 and r2 =0. Therefore, the reduced numerator is obtained 

as 

 for r1 = 1, r2 = 1, [
0.1𝑠 + 20 3.8438𝑠 + 8

1.002𝑠 + 10 4.5928𝑠 + 20
]    (47)    

 

for r1 = 2, r=0, [
1.5563𝑠 + 2 1.0530𝑠 + 0.8
3.9904𝑠 + 1 2.3214𝑠 + 2

]       (48)    

using equation (45) & equation (47), the desired reduced 

system for r1 = 1, r2 = 1 is obtained as  

 

[𝐺𝑟(𝑠)]1 =
[

0.1𝑠 + 20 3.8438𝑠 + 8
1.002𝑠 + 10 4.5928𝑠 + 20

]

𝑠2 + 21𝑠 + 20                
              (49)   

 

using equation (46) & equation (48), the  desired reduced 

system for r1 = 2, r2 = 0  is obtained as 

 

[𝐺𝑟(𝑠)]2 =
[
1.5563𝑠 + 2 1.0530𝑠 + 0.8
3.9904𝑠 + 1 2.3214𝑠 + 2

]

𝑠2 + 3𝑠 + 2                
        (50) 

 

Responses obtained by the proposed methodology and 

the reduction schemes suggested by [3,41,18,45] for step 

input are shown in Figure 7. It has been seen that the output 

for the case r1 = 1 and r2 =1 is nearer to the given higher-order 

plant output than the case r1 = 2 and r2 = 0 and also shows 

better results than the other standard methods. The same was 

also determined in the frequency response characteristics, 

which are shown in Figure 8. From Tables 3 and 4, it has been 

shown that the ROM found by the suggested method for the 

case r1 = 1 and r2 = 1 is very close to the higher dimensional 

system specification with the minimum value of ISE and IAE. 

 

Example 3:  A 4th order system is considered with the 

reference model is given in [41] for compensator controller 

design. 

𝐺(𝑠) =
𝑠3 + 12𝑠2 + 54𝑠 + 72

𝑠4 + 18𝑠3 + 97𝑠2 + 180𝑠 + 100
                       (51) 

 

By following the steps given in Section 3, the ROM is 

obtained as 

 

𝐺𝑟(𝑠) =
0.2970𝑠 + 7.2

𝑠2 + 11𝑠 + 10
                                                      (52) 

 

The design of the compensator is done according to the 

steps mentioned in section 4 as follows:  

Step I: Considered the compensator structure as given in 

equation (17)  

𝐶𝑐(𝑠) =
𝐾(1 + 𝐾𝐴𝑠)

𝑠(1 + 𝐾𝐵𝑠) 
 

 
Step II: Reference model considered as 

𝑅(𝑠) =
4

𝑠2 + 4𝑠 + 4
                               (53) 

  

The open-loop reference model is  

𝑅(𝑠)̅̅ ̅̅ ̅̅ =
𝑅(𝑠)

1 − 𝑅(𝑠)
=

4𝑠2 + 16𝑠 + 16

𝑠4 + 8𝑠3 + 20𝑠2 + 16𝑠
              (54) 
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Fig. 6 PSO Convergence graph of example 2

 
 

 

 

         
 

 

Fig. 7 Example 2- Step Responses 
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Table 3. Comparison of example (2) original system with different reduction technique based on IAE 

 

Table 4. Comparison of example (2) original system with different minimization techniques with respect to ISE 

 

By using reduced model Gr(s), the parameters of the 

compensator are obtained as follows 

 

𝐶𝑟(𝑠) =
𝑅(𝑠)

𝐺𝑟 
(𝑠)

̅̅ ̅̅ ̅̅ ̅̅
=

𝑒0 + 𝑒1𝑠 + 𝑒2𝑠
2

𝑠
                                (55) 

=
1.3889 + 1.1227𝑠 − 0.2023𝑠2

𝑠
                                (56) 

 

Therefore, the compensator parameters calculated are 

K= 1.3889, KA= 0.9885, KB = 0.1802 

 

 

 

Putting the values of K, KA and KB in equation(17), the 

desired reduced order compensator structure is obtained as 

 

𝐶𝑟(𝑠)

=
1.3889(1 + 0.9885𝑠)

𝑠(1 + 0.1802𝑠)
                                                          (57) 

 

𝐺𝑐𝑙 (𝑠) =
𝐶𝑟(𝑠)𝐺(𝑠)

1 + 𝐶𝑟(𝑠)𝐺(𝑠)

=
1.373 𝑠 4 +  17.86 𝑠3  +  90.81 𝑠 2 +  173.9 𝑠 + 100

0.1802 𝑠 6 +  4.244 𝑠5  +  36.85 𝑠4  +  147.3 𝑠3 
+ 288.8 𝑠2  +  273.9 𝑠 +  100

(58) 

                

 
 

Reduction Technique r11(s) r12(s) r21(s) r22(s) 

Proposed method (for r1=1, 

r2=1) 
0.145 0.093 0.0001 0.24 

Proposed method (for r1=2, 

r2=0) 
0.181 0.0167 0.728 0.327 

Narwal and Prasad, 2016 

[34] 
0.3101 0.207 0.136 0.317 

Sikander and Prasad, 

2015[3]  
0.283 0.2014 0.1253 0.3143 

Prajapati and Prasad, 

2019b[44] 
0.1793 0.1545 0.0729 0.1971 

Parmar, Prasad and 

Mukherjee, 2007  [21] 
0.2794 0.206 0.1214 0.2974 

Reduction Technique r11(s) r12(s) r21(s) r22(s) 

Proposed method (for r1=1, 

r2=1) 
0.0096 0.0032 4.76x10-9 0.0173 

Proposed method (for r1=2, 

r2=0) 
0.0106 9.72*10^-5 0.1764 0.0467 

Narwal and Prasad, 2016 [34] 0.1615 0.0897 0.0296 251.36 

Sikander and Prasad, 2015[3]  0.1672 0.0958 0.0312 0.2004 

Prajapati and Prasad, 

2019b[44] 
0.0765 0.0595 0.0115 0.0808 

Parmar, Prasad and 

Mukherjee, 2007 [21] 
0.1471 0.0884 0.0258 0.1598 
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Fig. 8 Bode response of example 2 

 

 
Fig. 9 Example3- Response comparison for a step input  

 

 
Fig. 10 Example 3-Frequency response comparison 

Table 5. Comparison in terms of transient response specifications, Gain Margin & Phase margin of example 3 

 

Reduction 

Technique 
Reduced Order System 

Compensator 

(K, KA, KB) 

Transient Response 

Specification 
Performance Indices 

Tr Ts Mp Tp 
Gain 

Margin 

Phase 

Margin 

_ Reference Model  1.679 2.92 0 4.69 Inf 180° 

_ Original System 
1.3889,1.0302,0

.2302 
1.713 2.83 0 4.503 Inf 180° 

Proposed method 

with r1=1, r2=1 

 1.3889,0.9885,0

.1802 
1.793 2.95 0.039 4.582 Inf 180° 

Gutman, 

Mannerfelt and 

Molander, 

1982[43] 

 1.3889,0.6521,0

.2521 
1.713 5.30 6.155 3.583 Inf 140° 

(Prajapati and 

Prasad, 

2019b[44],Prajapa

ti and Prasad, 

2019c[2] 

 1.3892,1.2122,0

.4131 
1.503 2.29 0.311 2.978 Inf 180° 

Hutton and 

Friedland, 

1975[16] 

 1.3882,0.9493,0

.1478 
1.849 2.98 0.229 4.812 Inf 180° 

0.297𝑠 + 7.2

𝑠2 + 11𝑠 + 10
 

216𝑠 + 864

194𝑠2 + 1080𝑠 + 1200
 

1.774𝑠 + 8.719

𝑠2 + 15.18𝑠 + 12.11
 

0.6207𝑠 + 0.8276

𝑠2 + 2.069𝑠 + 1.149
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Table 6. Error comparison of example 3 

 
 The compensator is designed using  ROM found by the 

proposed reduction methodology and the other lower-order 

models obtained from the methods given in the literature 

[43,44,2,16]. The simulation result confirms that the proposed 

method's compensator works finely in transient and steady-

state conditions compared to the other methods. The transient 

response specification, gain margin and phase margin are 

calculated and compared, as shown in Table 5, to check the 

steadiness of the ROM and the higher-scale system. The step 

& frequency response comparison of the reference model with 

different controlled systems obtained by reduced 

compensators is shown in Figures 9 & 10, respectively. 

 
 Table 6 shows the quantitative investigation on the basis 

of ISE and IAE values. From the analysis, it has been 

concluded that the offered scheme is more acceptable as 

compared to the other methods as it gives the minimum values 

of error indices. It has also been found that compensator 

design using ROM is easier than designing compensation 

with a HOS. Therefore, the suggested reduction method is 

used to design compensation to achieve the basic performance 

of dynamic systems.   

 

6. Conclusion  
This paper offers a low-order approximation 

methodology for LTI SISO and MIMO systems. A new 

grouping of two methods is applied to minimize the 

complexity of a large-order actual system.  The numerator of 

ROM is obtained by using the PSO technique. Whereas high-

order plant dominant poles retain in the ROM and take 

advantage of reciprocal transformation, the denominator of 

ROM is obtained. The acquired ROM by the suggested 

technique is compared with the ROMs computed from the 

other existing latest and standard model reduction techniques 

available to analyze the suggested technique's usefulness, 

efficacy and accurateness. The suggested scheme gives the 

assurance of steadiness of the ROM if the HOS is steady and 

retains the basic properties of the HOS in the approximated 

low-dimensional model. From the responses of the time and 

frequency domain, it has been observed that the suggested 

methodology gives a nearer approximation to the full-order 

system. 

 

Furthermore, the  ISE and IAE are calculated and compared 

with the existing reduction methodologies shown in Tables (2, 

3, 4 and 5) to confirm the superiority of the suggested method. 

It has been concluded that the proposed technique is simple to 

implement, easy to program and requires less execution time 

as compared to HOS. Furthermore, the compensator is 

designed using a reduced approximated system. It is directly 

functional on the original system to provide the minimum 

value of ISE and IAE compared to other existing 

compensators obtained by well-known existing reduction 

techniques. The proposed methodology is applied to three 

standard examples to illustrate and verify the proposed 

technique's accuracy. This proposed work may also be 

extended to systems of high order having complex conjugate 

poles & discrete systems. 

 

References 
[1] G. Parmar, S. Mukherjee, and R. Prasad “System Reduction Using Factor Division Algorithm and Eigen Spectrum Analysis,” Applied 

Mathematical Modelling, vol. 31, no. 11, pp. 2542–2552, 2007. [CrossRef] [Google Scholar] [Publisher Link] 

[2] Arvind Kumar Prajapati, and Rajendra Prasad, “Reduced-Order Modelling of LTI Systems by Using Routh Approximation and Factor 

Division Methods,” Circuits, Systems, and Signal Processing, vol. 38, no. 7, pp. 3340–3355, 2019. [CrossRef] [Google Scholar] [Publisher 

Link] 

Reduction Technique Reduced Order System 

Performance Indices 

ISE IAE 

_ Original System 0.0015 0.020 

Proposed method with r1=1, r2=1 
 

0.0005 0.037 

Gutman, Mannerfelt and Molander, 1982[43] 
 

0.233 0.322 

(Prajapati and Prasad, 2019b[44],Prajapati and Prasad, 

2019c[2] 

 
0.27 0.103 

Hutton and Friedland, 1975[16] 
 

0.011 0.058 

0.297𝑠 + 7.2

𝑠2 + 11𝑠 + 10
 

216𝑠 + 864

194𝑠2 + 1080𝑠 + 1200
 

1.774𝑠 + 8.719

𝑠2 + 15.18𝑠 + 12.11
 

0.6207𝑠 + 0.8276

𝑠2 + 2.069𝑠 + 1.149
 

https://doi.org/10.1016/j.apm.2006.10.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=System+reduction+using+factor+division+algorithm+and+eigenspectrum+analysis&btnG=
https://www.sciencedirect.com/science/article/pii/S0307904X06002411
https://doi.org/10.1007/s00034-018-1010-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reduced-Order+Modelling+of+LTI+Systems+by+Using+Routh+Approximation+and+Factor+Division+Methods%E2%80%9D&btnG=
https://link.springer.com/article/10.1007/s00034-018-1010-6
https://link.springer.com/article/10.1007/s00034-018-1010-6


Pragati Shrivastava Deb & G. Leena / IJETT, 71(6), 221-234, 2023 

 

233 

[3] Afzal Sikander, and Rajendra Prasad, “Linear Time-Invariant System Reduction Using a Mixed Methods Approach,” Applied 

Mathematical Modelling, vol. 39, no. 16, pp. 4848–4858, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[4] C.B. Vishwakarma, and R. Prasad, “MIMO System Reduction Using Modified Pole Clustering and Genetic Algorithm,” Modelling and 

Simulation in Engineering, vol. 2009, no. 1, pp. 1-5, 2009. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Satya Srinivas Maddipati, and Malladi Srinivas, “Efficient Dimensionality Reduction using Improved Fuzzy C-Means Entropy Approach 

with CapsTripleGAN for Predicting Software Defect in Imbalanced Dataset,” International Journal of Engineering Trends and 

Technology, vol. 70, no. 7, pp. 1–9, 2022. [CrossRef] [Publisher Link] 

[6] Shen Wang et al., “Model Order Reduction for Water Quality Dynamics,” Water Resources Research, vol. 58, no. 4, 2022. [CrossRef] 

[Google Scholar] [Publisher Link] 

[7] Bui Huy Hai, “Applying Model Order Reduction Algorithm for Control Design of the Digital Filter,” International Journal of Engineering 

Trends and Technology, vol. 70, no. 11, pp. 288–294, 2022. [CrossRef] [Publisher Link] 

[8] B. Moore, “Principal Component Analysis in Linear Systems: Controllability, Observability, and Model Reduction,” IEEE Transactions 

on Automatic Control, vol. 26, no. 1, pp. 17-32, 1981. [CrossRef] [Google Scholar] [Publisher Link] 

[9] S. Kung, and D. Lin, “Optimal Hankel-Norm Model Reductions: Multivariable Systems,” IEEE Transactions on Automatic Control, vol. 

26, pp. 832–852, 1981. [CrossRef] [Google Scholar] [Publisher Link] 

[10] M. Aoki, “Control of Large-Scale Dynamic Systems by Aggregation,” IEEE Transactions on Automatic Control, vol. 13, no. 3, pp. 246–

253, 1968. [CrossRef] [Google Scholar] [Publisher Link] 

[11] P.V. Kokotovic, R.E. O'Malley, and P. Sannuti, “Singular Perturbations and Order Reduction in Control Theory - An Overview,” 

Automatica, vol. 12, no. 2, pp. 123–132, 1976. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Edward J. Davison, “This Week’s Citation Classic,” 1983.  

[13] Arvind Kumar Prajapati, and Rajendra Prasad, “Model Order Reduction by Using the Balanced Truncation and Factor Division Methods,” 

IETE Journal of Research, vol. 65, no. 6, pp. 827–842, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Y. Shamash, “Linear System Reduction Using Pade Approximation to Allow Retention of Dominant Modes,” International Journal of 

Control, vol. 21, no. 2, pp. 257–272, 1975. [CrossRef] [Google Scholar] [Publisher Link] 

[15] T.C. Chen, C.Y. Chang, and K.W. Han, “Model Reduction Using the Stability-Equation Method and the Continued-Fraction Method,” 

International Journal of Control, vol. 32, no. 1, pp. 81–94, 1980.[CrossRef] [Google Scholar] [Publisher Link] 

[16] M. Hutton, and B. Friedland, “Routh Approximations for Reducing Order of Linear, Time-Invariant Systems,” IEEE Transactions on 

Automatic Control, vol. 20, no. 3, pp. 329–337, 1975. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Y. Shamash, “Failure of the Routh-Hurwitz Method of Reduction,” IEEE Transactions on Automatic Control, vol. 25, no. 2, pp. 313–314, 

1980. [CrossRef] [Google Scholar] [Publisher Link] 

[18] V. Krishnamurthy, and V. Seshadri, “Model Reduction Using the Routh Stability Criterion,” IEEE Transactions on Automatic Control, 

vol. 23, no. 4, pp. 729–731, 1978. [CrossRef] [Google Scholar] [Publisher Link] 

[19] Jay Singh, C.B. Vishwakarma, and Kalyan Chattterjee, “Biased Reduction Method by Combining Improved Modified Pole Clustering 

and Improved Pade Approximations,” Applied Mathematical Modelling, vol. 40, no. 2, pp. 1418–1426, 2016. [CrossRef] [Google Scholar] 

[Publisher Link] 

[20] Chhabindra Nath Singh, Deepak Kumar, and Paulson Samuel, “Improved Pole Clustering-Based LTI System Reduction Using A Factor 

Division Algorithm,” International Journal of Modelling and Simulation, vol. 39, no. 1, pp. 1–13, 2019. [CrossRef] [Google Scholar] 

[Publisher Link] 

[21] G. Parmar, R. Prasad, and S. Mukherjee, “Order Reduction of Linear Dynamic Systems Using Stability Equation Method and GA,” 

International journal of Electrical, Robotics, Electronics and Communication Engineering, vol. 1, no. 2, pp. 243–249, 2007. [Google 

Scholar] [Publisher Link]  

[22] T.C. Chen, C.Y. Chang, and K.W. Han, “Model Reduction Using the Stability-Equation Method and the Padé Approximation Method,” 

Journal of the Franklin Institute, vol. 309, no. 6, pp. 473–490, 1980. [CrossRef] [Google Scholar] [Publisher Link] 

[23] Jay Singh, Kalyan Chatterjee, and C.B. Vishwakarma, “System Reduction by Eigen Permutation Algorithm and Improved Pade 

Approximations,” World Academy of Science, Engineering and Technolog, International Journal of Mathematical and Computational 

Sciences, vol. 8, no. 1, pp. 124–128, 2014. [Google Scholar] [Publisher Link] 

[24] C.B. Vishwakarma, and Rajendra Prasad, "Clustering Method for Reducing Order of Linear System Using Pade Approximation,” IETE 

Journal of Research, vol. 54, no. 5, pp. 326–330, 2008. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Jay Singh, Kalyan Chatterjee, and C.B. Vishwakarma, “Model Order Reduction Using Eigen Algorithm,” International Journal of 

Engineering, Science and Technology, vol. 7, no. 3, pp. 17–23, 2015. [CrossRef] [Google Scholar] [Publisher Link] 

[26] Jay Singh, Kalyan Chatterjee, and C.B. Vishwakarma, “Biased Reduction Method by Combining Improved Modified Pole Clustering and 

Improved Pade Approximations,” Applied Mathematical Modelling, vol. 40, no. 2, pp. 1418–1426, 2016. [CrossRef] [Google Scholar] 

[Publisher Link] 

 

https://doi.org/10.1016/j.apm.2015.04.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Linear+time-invariant+system+reduction+using+a+mixed+methods+approach%E2%80%9D&btnG=
https://www.sciencedirect.com/science/article/pii/S0307904X15002504
https://doi.org/10.1155/2009/540895
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MIMO+system+reduction+using+modified+pole+clustering+and+genetic+algorithm%E2%80%9D&btnG=
https://dl.acm.org/doi/abs/10.1155/2009/540895
https://doi.org/10.14445/22315381/IJETT-V70I7P201
https://ijettjournal.org/archive/ijett-v70i7p201
https://doi.org/10.1029/2021WR029856
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+Order+Reduction+for+Water+Quality+Dynamics%2C&btnG=
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021WR029856
https://doi.org/10.14445/22315381/IJETT-V70I11P231
https://ijettjournal.org/archive/ijett-v70i11p231
https://doi.org/10.1109/TAC.1981.1102568
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Principal+Component+Analysis+in+Linear+Systems%3A+Controllability%2C+Observability%2C+and+Model+Reduction%E2%80%9D%2C+&btnG=
https://ieeexplore.ieee.org/abstract/document/1102568
https://doi.org/10.1109/TAC.1981.1102736
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+Hankel-Norm+Model+Reductions%3A+Multivariable+Systems%E2%80%9D%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/1102736
https://doi.org/10.1109/TAC.1968.1098900
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Control+of+Large-Scale+Dynamic+Systems+by+Aggregation&btnG=
https://ieeexplore.ieee.org/abstract/document/1098900
https://doi.org/10.1016/0005-1098(76)90076-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Singular+perturbations+and+order+reduction+in+control+theory+-+An+overview&btnG=
https://www.sciencedirect.com/science/article/abs/pii/0005109876900765
https://doi.org/10.1080/03772063.2018.1464971
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+Order+Reduction+by+Using+the+Balanced+Truncation+and+Factor+Division+Methods%E2%80%9D&btnG=
https://www.tandfonline.com/doi/abs/10.1080/03772063.2018.1464971
https://doi.org/10.1080/00207177508921985
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Linear+system+reduction+using+pade+approximation+to+allow+retention+of+dominant+modes&btnG=
https://www.tandfonline.com/doi/abs/10.1080/00207177508921985
https://doi.org/10.1080/00207178008922845
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+reduction+using+the+stability-equation+method+and+the+continued-fraction+method&btnG=
https://www.tandfonline.com/doi/abs/10.1080/00207178008922845
https://doi.org/10.1109/TAC.1975.1100953
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Routh+Approximations+for+Reducing+Order+of+Linear%2C+Time-Invariant+Systems%22&btnG=
https://ieeexplore.ieee.org/abstract/document/1100953
https://doi.org/10.1109/TAC.1980.1102271
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Failure+of+the+Routh-Hurwitz+Method+of+Reduction&btnG=
https://ieeexplore.ieee.org/abstract/document/1102271
https://doi.org/10.1109/TAC.1978.1101805
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+Reduction+Using+the+Routh+Stability+Criterion%22&btnG=
https://ieeexplore.ieee.org/abstract/document/1101805
https://doi.org/10.1016/j.apm.2015.07.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Biased+reduction+method+by+combining+improved+modified+pole+clustering+and+improved+Pade+approximations&btnG=
https://www.sciencedirect.com/science/article/pii/S0307904X15004400
https://doi.org/10.1080/02286203.2018.1459373
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+pole+clustering-based+LTI+system+reduction+using+a+factor+division+algorithm%22&btnG=
https://www.tandfonline.com/doi/abs/10.1080/02286203.2018.1459373
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Order+reduction+of+linear+dynamic+systems+using+stability+equation+method+and+GA%22&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Order+reduction+of+linear+dynamic+systems+using+stability+equation+method+and+GA%22&btnG=
https://www.researchgate.net/profile/Girish-Parmar-3/publication/285117384_Order_reduction_of_linear_dynamic_systems_using_stability_equation_method_and_GA/links/5bb84e10299bf1049b70156f/Order-reduction-of-linear-dynamic-systems-using-stability-equation-method-and-GA.pdf
https://doi.org/10.1016/0016-0032(80)90096-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+reduction+using+the+stability-equation+method+and+the+Pad%C3%A9+approximation+method%22&btnG=
https://www.sciencedirect.com/science/article/abs/pii/0016003280900964
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=System+Reduction+by+Eigen+Permutation+Algorithm+and+Improved+Pade+Approximations%22%2C+&btnG=
https://d1wqtxts1xzle7.cloudfront.net/89428303/pdf-libre.pdf?1660062667=&response-content-disposition=inline%3B+filename%3DSystem_Reduction_By_Eigen_Permutation_Al.pdf&Expires=1685945238&Signature=LexTKFwoUEiLtdvScQ-zemZNZaeJzxNnxKefwEJXxxaLaIUWe4X-VrLPr0e1-ZWHBEXf-GDPIhSEdt4FBDVkdcJsIg1x-BKavHImr3Wj~FJSTIJpGN3MwHW~mJGss--Bx2db20nQYfNBdKWQHvvhlUWvErKhE66QN4K91a9Edgmk-F2H-k5dd32uFRMFJx1eP7Vic5Qhx1qt8Ew7oKdue~mtRNS7NUdaRzxkxadnCOWuNlNvF6zSx~2o1LNB1hTT9a9vwsNkJnvWzyW0KJOKcDw1sLcVRW1Hu0gvFr1AFsCfpF2KwXkL~TQeLMyDmR7kBVczUCc6KckK3boi4~9EXg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA
http://dx.doi.org/10.4103/0377-2063.48531
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clustering+method+for+reducing+order+of+linear+system+using+pade+approximation%22&btnG=
https://www.tandfonline.com/doi/abs/10.4103/0377-2063.48531
https://doi.org/10.4314/ijest.v7i3.3S
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model+order+reduction+using+eigen+algorithm%22&btnG=
https://www.ajol.info/index.php/ijest/article/view/147117
https://doi.org/10.1016/j.apm.2015.07.014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Biased+reduction+method+by+combining+improved+modified+pole+clustering+and+improved+Pade+approximations&btnG=
https://www.sciencedirect.com/science/article/pii/S0307904X15004400


Pragati Shrivastava Deb & G. Leena / IJETT, 71(6), 221-234, 2023 

 

234 

[27] Amit Narwal, and Rajendra Prasad, “Optimization of LTI Systems Using Modified Clustering Algorithm,” IETE Technical Review 

(Institution of Electronics and Telecommunication Engineers, India), vol. 34, no. 2, pp. 201–213, 2017. [CrossRef] [Google Scholar] 

[Publisher Link] 

[28] Arvind Kumar Prajapati, and Rajendra Prasad, “Reduced Order Modelling of Linear Time Invariant Systems Using the Factor Division 

Method to Allow Retention of Dominant Modes,” IETE Technical Review (Institution of Electronics and Telecommunication Engineers, 

India), vol. 36, no. 5, pp. 449–462, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[29] Pragati Shrivastava Deb, and G. Leena, “Order Reduction of Linear Time Invariant Large-Scale System by Preserving the Impact of 

Dominant Poles in the Reduced Model,” International Journal of Modelling and Simulation, vol. 42, no. 3, pp. 506-517, 2021. [CrossRef] 

[Google Scholar] [Publisher Link] 

[30] Pragati Shrivastava Deb, and G. Leena, “Order Reduction of Linear Time Invariant Large-Scale System by Improved Mixed 

Approximation Method,” Springer, Modeling, Simulation and Optimization, vol.206, pp. 635-644, 2021.[CrossRef] [Google Scholar] 

[Publisher Link] 

[31] Nguyen Phung Quang, Vo Thanh Ha, and Tran Vu Trung, “A New Control Design with Dead-Beat Behavior for Stator Current Vector in 

Three-Phase AC Drives,” SSRG International Journal of Electrical and Electronics Engineering, vol. 5, no. 4, pp. 1-8, 2018. [CrossRef] 

[Google Scholar] [Publisher Link] 

[32] Huong T.M. Nguyen, and Mai Trung Thai, “Black box Modeling of Twin Rotor MIMO System by Using Neural Network,” SSRG 

International Journal of Electrical and Electronics Engineering, vol. 8, no. 6, pp. 15-22, 2021. [CrossRef] [Publisher Link] 

[33] Arvind Kumar Prajapati, and Rajendra Prasad, “Reduced Order Modelling of Linear Time Invariant Systems by Using Improved Modal 

Method,” International Journal of Pure and Applied Mathematics, vol. 119, no. 12, pp. 13011–13023, 2018. [Google Scholar] [Publisher 

Link] 

[34] Amit Narwal, and B. Rajendra Prasad, “A Novel Order Reduction Approach for LTI Systems Using Cuckoo Search Optimization and 

Stability Equation,” IETE Journal of Research, vol. 62, no. 2, pp. 154–163, 2016. [CrossRef] [Google Scholar] [Publisher Link] 

[35] S.R. Desai, and R. Prasad, “PID Controller Design using BB-BCOA Optimized Reduced Order Model,” Special Issue of International 

Journal of Computer Applications, on Advanced Computing and Communication Technologies for HPC Applications, 2012. [Google 

Scholar] [Publisher Link] 

[36] Arvind Kumar Prajapati et al., "A New Technique for the Reduced-Order Modelling of Linear Dynamic Systems and Design of 

Controller,” Circuits, Systems, and Signal Processing, vol. 39, no. 10, pp. 4849–4867, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[37] Arvind Kumar Prajapati, and Rajendra Prasad, “New Model Reduction Method for the Linear Dynamic Systems and Its Application for 

the Design of Compensator,” Circuits, Systems, and Signal Processing, vol. 39, no. 5, pp. 2328–2348, 2020. [CrossRef] [Google Scholar] 

[Publisher Link] 

[38] W.C. Peterson, and A.H. Nassar, “On the Synthesis of Optimum Linear Feedback Control Systems,” Journal of the Franklin Institute, 

vol. 306, no. 3, pp. 237-256, 1978. [CrossRef] [Google Scholar] [Publisher Link] 

[39] Denis R Towill, Transfer Function Techniques for Control Engineers, Iliffe Books, London, 1970. [Google Scholar] [Publisher Link] 

[40] Retallack, G., J Macfarlane, A.G. and Shamash, Y., "Pole shftlng bchniques for multivariable feedback systems L31 P. Murdocb ‘Pole 

and zero assignment by proportional feedback", IEEE Stable Reduced-Order Models Using Pad6-Type Approximations, Proceeding of 

Institution of Electrical Engineers, 1971. 

[41] Arvind Kumar Prajapati, and Rajendra Prasad, “A New Model Order Reduction Method for The Design of Compensator by Using Moment 

Matching Algorithm,” Transactions of the Institute of Measurement and Control, vol. 42, no. 3, pp. 472–484, 2020. [CrossRef] [Google 

Scholar] [Publisher Link] 

[42] Sharad Kumar Tiwari, and Gagandeep Kaur, “Improved Reduced-Order Modeling Using Clustering Method with Dominant Pole 

Retention,” IETE Journal of Research, vol. 66, no. 1, pp. 42–52, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[43] P. Gutman, C. Mannerfelt, and P. Molander, “Contributions to the Model Reduction Problem,” IEEE Transactions on Automatic Control, 

vol. 27, no. 2, pp. 454–455, 1982. [CrossRef] [Google Scholar] [Publisher Link] 

[44] Arvind Kumar Prajapati, and Rajendra Prasad, “Order Reduction of Linear Dynamic Systems by Improved Routh Approximation 

Method,” IETE Journal of Research, vol. 65, no. 5, pp. 702–715, 2019. [CrossRef] [Google Scholar] [Publisher Link] 

[45] Maryam Saadvandi, Karl Meerbergen, and Elias Jarlebring, “On Dominant Poles and Model Reduction of Second Order Time-Delay 

Systems,” Applied Numerical Mathematics, vol. 62, no. 1, pp. 21–34, 2012. [CrossRef] [Google Scholar] [Publisher Link] 

[46] Maryam Saadvandi, Karl Meerbergen, and Wim Desmet, “Parametric Dominant Pole Algorithm for Parametric Model Order Reduction,” 

Journal of Computational and Applied Mathematics, vol. 259, pp. 259–280, 2014. [CrossRef] [Google Scholar] [Publisher Link] 

 

 

https://doi.org/10.1080/02564602.2016.1165152
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimization+of+LTI+Systems+Using+Modified+Clustering+Algorithm%22&btnG=
https://www.tandfonline.com/doi/abs/10.1080/02564602.2016.1165152
https://doi.org/10.1080/02564602.2018.1503567
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reduced+Order+Modelling+of+Linear+Time+Invariant+Systems+Using+the+Factor+Division+Method+to+Allow+Retention+of+Dominant+Modes&btnG=
https://www.tandfonline.com/doi/abs/10.1080/02564602.2018.1503567
https://doi.org/10.1080/02286203.2021.1934796
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Order+reduction+of+linear+time+invariant+large-scale+system+by+preserving+the+impact+of+dominant+poles+in+the+reduced+model&btnG=
https://www.tandfonline.com/doi/abs/10.1080/02286203.2021.1934796
https://doi.org/10.1007/978-981-15-9829-6_50
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Large-Scale+System+by+Improved+Mixed+Approximation+Method%27%2C+Smart+Innovation%2C+Systems+and+Technologies&btnG=
https://link.springer.com/chapter/10.1007/978-981-15-9829-6_50
https://doi.org/10.14445/23488379/IJEEE-V5I4P101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+New+Control+Design+with+Dead-Beat+Behavior+for+Stator+Current+Vector+in+Three-Phase+AC+Drives%2C%22&btnG=
http://www.internationaljournalssrg.org/IJEEE/paper-details?Id=181
https://doi.org/10.14445/23488379/IJEEE-V8I6P103
https://www.internationaljournalssrg.org/IJEEE/paper-details?Id=344
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reduced+order+modelling+of+linear+time+invariant+systems+by+using+improved+modal+method&btnG=
https://acadpubl.eu/hub/2018-119-12/articles/5/1182.pdf
https://acadpubl.eu/hub/2018-119-12/articles/5/1182.pdf
https://doi.org/10.1080/03772063.2015.1075915
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+order+reduction+approach+for+LTI+systems+using+cuckoo+search+optimization+and+stability+equation%22%2C+&btnG=
https://www.tandfonline.com/doi/abs/10.1080/03772063.2015.1075915
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PID+Controller+Design+using+BB-BCOA+Optimized+Reduced+Order+Model&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PID+Controller+Design+using+BB-BCOA+Optimized+Reduced+Order+Model&btnG=
https://www.researchgate.net/profile/Rajendra-Prasad-2/publication/260348005_PID_Controller_Design_using_BB-BCOA_Optimized_Reduced_Order_Model/links/580baced08aecba93500d052/PID-Controller-Design-using-BB-BCOA-Optimized-Reduced-Order-Model.pdf
https://doi.org/10.1007/s00034-020-01412-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%22A+New+Technique+for+the+Reduced-Order+Modelling+of+Linear+Dynamic+Systems+and+Design+of+Controller&btnG=
https://link.springer.com/article/10.1007/s00034-020-01412-y
https://doi.org/10.1007/s00034-019-01264-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=New+Model+Reduction+Method+for+the+Linear+Dynamic+Systems+and+Its+Application+for+the+Design+of+Compensator&btnG=
https://link.springer.com/article/10.1007/s00034-019-01264-1
https://doi.org/10.1016/0016-0032(78)90033-9
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+the+Synthesis+o+Optimum+Linear+Feedback+cf+ontrol+Systems.+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/0016003278900339
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Transfer+function+techniques+for+control+Engineers+&btnG=
https://cir.nii.ac.jp/crid/1130000798312783744
https://doi.org/10.1177/0142331219874595
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+model+order+reduction+method+for+the+design+of+compensator+by+using+moment+matching+algorithm%22%2C+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+model+order+reduction+method+for+the+design+of+compensator+by+using+moment+matching+algorithm%22%2C+&btnG=
https://journals.sagepub.com/doi/abs/10.1177/0142331219874595?journalCode=tima
https://doi.org/10.1080/03772063.2018.1465365
https://scholar.google.com/scholar?q=%22Improved+Reduced-Order+Modeling+Using+Clustering+Method+with+Dominant+Pole+Retention%22&hl=en&as_sdt=0,5
https://www.tandfonline.com/doi/abs/10.1080/03772063.2018.1465365
https://doi.org/10.1109/TAC.1982.1102930
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Contributions+to+the+Model+Reduction+Problem%22%2C+IEEE+Transactions+on+Automatic+Control%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/1102930
https://doi.org/10.1080/03772063.2018.1452645
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Order+Reduction+of+Linear+Dynamic+Systems+by+Improved+Routh+Approximation+Method%22%2C&btnG=
https://www.tandfonline.com/doi/abs/10.1080/03772063.2018.1452645
https://doi.org/10.1016/j.apnum.2011.09.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+dominant+poles+and+model+reduction+of+second+order+time-delay+systems%22&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0168927411001681
https://doi.org/10.1016/j.cam.2013.09.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Parametric+dominant+pole+algorithm+for+parametric+model+order+reduction%22&btnG=
https://www.sciencedirect.com/science/article/pii/S0377042713004603

