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Abstract - Thyroid disease is a common ailment that arises when the thyroid gland produces an inadequate amount of thyroid 

hormone. The challenge in diagnosing thyroid disease is that its symptoms resemble those of other conditions, making it 

difficult to detect. One of the most effective ways to diagnose thyroid problems is through blood tests, which measure the 

amount of thyroid hormones in the bloodstream. However, interpreting the complex data generated by these tests can be 

challenging. Early detection of thyroid issues is crucial to prevent complications and reduce mortality rates. To improve 

decision-making systems, medical data mining is increasingly using deep learning models. This study proposes a novel 

stacked residual long-short memory architecture (SR-LSTM) with an attention mechanism for predicting thyroid disease. The 

model employs an attention mechanism and layer stacking to enhance the accuracy of prediction. Additionally, this work is 

optimized using the Giant Trevally Optimizer (GTO) metaheuristic optimization algorithm. The performance results of the 

proposed model achieve outstanding performance in precision, recall, F1, and accuracy, with scores of 99.836%, 99.839%, 

99.837%, and 99.931% than traditional methods. 

Keywords - Thyroid, GTO, LSTM, Prediction.  

1. Introduction  
Thyroid disease is a widespread health condition 

globally, affecting a significant proportion of the 

population. In India alone, it has been estimated that 

approximately 42 million individuals suffer from thyroid-

related illnesses such as iodine deficiency, thyroid goiter, 

and thyroid cancer [1][2]. The prevalence of thyroid 

diseases highlights the urgent need for advanced diagnostic 

technologies in the medical field to identify and prevent the 

onset of these conditions. 

 

The thyroid gland is an endocrine gland found in 

vertebrates that produces two important hormones: total 

serum thyroxine (T4) and total serum triiodothyronine (T3). 

These hormones play a crucial role in regulating the body's 

metabolism, influencing processes such as body 

temperature, heart rate, and bone growth. When the thyroid 

gland malfunctions, it can lead to thyroid disease. Thyroid-

related diseases are classified into three categories based on 

hormone levels: euthyroidism, hyperthyroidism, and 

hypothyroidism. Euthyroidism refers to the normal 

functioning of the thyroid gland. Hyperthyroidism occurs 

when the thyroid gland is overactive, producing excessive 

amounts of hormones. On the other hand, hypothyroidism 

is a condition characterized by an underactive thyroid gland 

that fails to produce an adequate amount of hormones. 
 
 

The timely prediction and diagnosis of thyroid disease 

is of utmost importance to patients, as it can help them 

receive prompt treatment and minimize medical expenses 

[3]. In recent times, machine learning and deep learning 

algorithms have gained popularity for their intelligent 

approach towards the early diagnosis and classification of 

thyroid disease. Additionally, the Internet of Things (IoT) 

has brought forth innovative solutions to the healthcare 

industry, such as data mining and big data analytics. Data 

mining techniques have played a crucial role in assessing 

patient risks and supporting health-related decision-making. 

As a result, healthcare professionals strive to categorize 

diseases in their early stages to ensure that patients receive 

suitable treatment as soon as possible. This proactive 

approach can go a long way in minimizing the negative 

impact of the disease and improving patient outcomes. 

 

The problem addressed in this work is the data mining-

based thyroid prediction presented. Thyroid disease is a 

common medical condition that can have serious health 

consequences if not detected and treated early. However, 

diagnosing thyroid disease is challenging due to its complex 

symptoms and the need for specialized blood tests to 

confirm the diagnosis. The use of data mining techniques 

can help analyze the large and complex data sets involved 

in thyroid disease diagnosis, leading to more accurate 

predictions and earlier interventions. The proposed 

approach in this work aims to improve the accuracy of 

thyroid disease prediction using a deep learning model with 

an attention mechanism and the Giant Trevally Optimizer 

for parameter tuning. The paper is structured as follows: 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Section II provides an overview of existing machine 

learning and deep learning-based prediction models. 

Section III introduces the proposed work. The experimental 

results and information about the dataset used in Section IV 

are presented. Finally, Section V summarizes the 

conclusions drawn from the study. 

 

2. Related Works 
This section carried the thyroid prediction based on 

various methodologies referred to by different scholars.  
 

In A. R. Rao et al.'s study [4], thyroid disease 

classification was addressed using the ML algorithms 

Decision Tree ID3 and Naive Bayes. The authors treated the 

thyroid disease classification as a binary classification issue 

and the Decision Tree method to achieve better prediction. 
 

In [5], the authors evaluated the K-Nearest Neighbors 

(KNN) classifiers, Support Vector Machine (SVM), and 

regression for thyroid disease classification. Among these 

algorithms, SVM exhibited higher accuracy. A thyroid 

disease classification model was developed in [6] by 

employing Adaboost and Bagging techniques. Additionally, 

the authors introduced a novel pre-processing technique to 

handle noise in the dataset. 
 

In [7], the Ensemble model was compared is evaluated 

in this work in terms of classification metrics and proved its 

effectiveness. 
 

S. Kurnaz et al. [8] explored a genetic method for 

thyroid disease prediction. The study highlighted the 

significance of feature selection in determining 

classification performance. 
 

However, the stacked ensemble learning model is 

presented by M. Karmeni et al. [9] for thyroid classification. 

This model surpassed that of individual ML algorithms, 

contributing to improved classification outcomes. For 

cardiovascular disease prediction, a deep neural network 

model with an attention mechanism was introduced in [10]. 

This model, named cardiovascular disease, demonstrated 

accurate handling of medical data. 
 

Y. An et al. [11] analyzed time-aware performance for 

medical data. This method incorporated factors such as 

patient age, elapsed time between visits, and disease 

progression patterns to predict risks. 

 

A graph learning model for disease prediction was 

proposed in [12], effectively utilizing information from 

various modalities. 

 

In [13], a hybrid ML method model is presented for 

thyroid prediction. This model enhanced the classification 

accuracy compared to using an individual model. Y. Shen et 

al. [14] presented a score selection method to identify a 

suitable boosting feature through score calculation and its 

evaluation on three public datasets related to human 

microbiome profiling. 

X. Li [15] introduced a dual-ranking algorithm for 

complex disease analysis. This algorithm incorporated data 

heterogeneity to improve the performance of risk prediction 

models, considering the influence of heterogeneous medical 

data on disease diagnosis and treatment.X. Zhang et al. [16] 

applied the concept of recurrent neural networks (RNNs) to 

Electronic Health Records (EHRs) for health risk 

prediction. RNNs were advantageous in retaining temporal 

information from the data, and context-aware information 

was also incorporated for risk prediction.  

 

3. SR-LSTM MODEL 
LSTM networks are a type of recurrent neural network 

(RNN) that have shown great effectiveness in processing 

long-term temporal dependencies. However, LSTM 

networks can face challenges when it comes to handling 

temporal irregularities and dependencies. 

To address these challenges, a novel model called SR-

LSTM has been investigated. The SR-LSTM model builds 

upon the LSTM architecture by introducing multiple LSTM 

layers instead of a single layer. This stacking of LSTM 

layers allows for a more powerful representation of 

temporal dependencies and enhances the overall data-

mining capability of the model. 

 

Furthermore, the SR-LSTM model incorporates an 

attention mechanism, which establishes a connection 

between the front and back of every two layers. This 

attention mechanism enhances the ability based on relevant 

temporal information and selectively attends to important 

features. By leveraging this attention mechanism, the SR-

LSTM model effectively addresses the limitations of 

traditional LSTM networks in handling temporal 

irregularities and dependencies. 

 

3.1. LSTM Architecture 

The LSTM model is designed to address two common 

issues in traditional RNNs: the vanishing gradient problem 

and overfitting. To overcome these challenges, LSTM 

incorporates three special gate functions: the input gate, 

output gate, and forget gate. These gates play a crucial role 

in regulating the flow of information within the LSTM 

model. 

 

Figure 1 illustrates the architecture of an LSTM model, 

showcasing these gate functions. 

 

Let's consider an input data sequence, denoted as x = 

x1, x2, ..., xT, and a corresponding hidden state sequence, 

denoted as h = h1, h2, ..., hT, with a period T. The network 

generates a response sequence, represented as yo = yo1, 

yo2, ..., yoT. 
 

The equations governing the behavior of the gates in 

the network can be expressed as follows: 

Forward gate (f_t): 

𝑓_𝑡 =  𝜎(𝑊_𝑥𝑓 ∗  𝑥_𝑡 +  𝑊_ℎ𝑓 ∗  ℎ_𝑡 − 1 +  𝑏_𝑓)    (1)
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Fig. 1 The structure of LSTM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 SR-LSTM model 
 

Input gate (i_t): 

𝑖_𝑡 =  𝜎(𝑊_𝑥𝑖 ∗  𝑥_𝑡 +  𝑊_ℎ𝑖 ∗  ℎ_𝑡 − 1 +  𝑏_𝑖) (2) 

Candidate memory cell (c ̅_t): 

𝑐 ̅_𝑡 =  𝑡𝑎𝑛ℎ(𝑊_𝑥𝑐 ∗  𝑥_𝑡 +  𝑊_ℎ𝑐 ∗  ℎ_𝑡 − 1 +  𝑏_𝑐) 

(3) 

Memory cell (c_t): 

𝑐_𝑡 =  𝑓_𝑡 ∗  𝑐_(𝑡 − 1)  +  𝑖_𝑡 ∗  𝑐 ̅_𝑡 (4) 

Output gate (O_t): 

𝑂_𝑡 =  𝜎(𝑊_𝑥𝑜 ∗  𝑥_𝑡 +  𝑊_ℎ𝑜 ∗  ℎ_𝑡 − 1 +  𝑏_𝑜)  (5) 

Hidden state (h_t): 

ℎ_𝑡 =  𝑂_𝑡 ∗  𝑡𝑎𝑛ℎ(𝑐_𝑡)  (6) 

Output response (yo_t): 

𝑦𝑜_𝑡 =  𝜎(𝑊_ℎ𝑦 ∗  ℎ_𝑡 +  𝑏_𝑦)                (7) 

Where σ(x) represents the sigmoid function given by  

σ(x) = 1/(1 + e^(-x))             (8) 

 Equations (1) to (7) define the computations performed 

by the gates and the activation functions involved. The 

weights (W) and biases (b) are the parameters that 

determine the behavior of these functions within the 

network. 

 

The SR-LSTM model incorporates a multi-LSTM layer 

instead of individual LSTM layers. This design choice 

enhances the model's ability to handle data irregularities. By 

establishing connections from the input layer to the final 

layer, the model improves its capacity to handle diverse data 

patterns. 

 

The distribution of attention in the SR-LSTM model 

can be calculated as follows: 

𝛼𝑖 = 𝑝(𝑧 = 𝑖|𝑋, 𝑞) =
exp (𝑠(𝑋𝑖,𝑞))

∑ exp (𝑠(𝑋𝑖,𝑞))𝑁
𝑗=1

                 (9) 

Where, q is a query vector with the index of selected 

information by attention z = 1, 2, ..., N,  

𝛼𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑠(𝑋𝑖 , 𝑞))                    (10) 
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Where s is an attention score which can be expressed as 

follows  

(𝑠(𝑋𝑖 , 𝑞)) =
𝑋𝑖

𝑇𝑞

𝑑
1
2

       (11) 

Then, the attention function is calculated as follows: 

𝑎𝑡𝑡((𝐾, 𝑉), 𝑞) = ∑ 𝛼𝑖
𝑁
𝑖=1 𝑉𝑖 =

exp (𝑠(𝑘𝑖,𝑞))

∑ exp (𝑠(𝑘𝑖,𝑞))𝑁
𝑗

𝑉𝑖 (12) 

Where k denotes pair of key values.  

3.1.1. GTO 

The Giant Trevally Optimizer (GTO) is based on a 

metaheuristic algorithm introduced by H. T. Sadeeq et al. 

[21]. Inspired by the hunting behavior of the giant Trevally 

in nature, GTO models the mathematical strategy employed 

by the fish to solve real-world engineering problems. 

 

The hunting process of the Trevally is characterized by 

three steps: forage moving, selecting a suitable hunting area, 

and attacking a target. These steps are mathematically 

formulated to address optimization problems effectively. 

Forage Moving 

In the moving step of the optimization process, the 

giant Trevally, represented by D, undertakes long-distance 

travel in search of food. This foraging movement can be 

mathematically described as follows:  

𝐷(𝑡 + 1) = 𝐵𝑝 ∗ 𝑅𝐴𝑁𝐷 + ((𝐻𝐼𝐺𝐻 − 𝐿𝑂𝑊) ∗

𝑅𝐴𝑁𝐷 + 𝐿𝑂𝑊) ∗ 𝐿𝑒𝑣𝑦(𝐷𝑖𝑚) (13) 

Here, D(t+1) denotes the future position vector of the 

Giant Trevally. 𝐵𝑝 represents the best position obtained thus 

far. Levy(Dim) refers to the Levy flight distribution, which 

introduces randomness to the searching behavior. RAND is 

a random number ranging from zero to one. 

 

The equation combines the current best position (𝐵𝑝) 

with two random components. In the first term, 𝐵𝑝 * RAND 

accounts for the influence of the best position on Trevally's 

movement. The second term, ((HIGH-LOW) * RAND + 

LOW) * Levy(Dim), incorporates a random element and the 

Levy flight distribution to enhance the exploration 

capabilities of the algorithm. 

 

Selecting a Suitable Area 

In this stage, the optimization algorithm aims to 

identify the area with the highest concentration of food 

(seabirds). The process of finding a suitable area is 

mathematically modeled as follows: 

𝐷(𝑡 + 1) = 𝐵𝑝 ∗ 𝑎 ∗ 𝑅𝐴𝑁𝐷 + ((𝑀𝑒𝑎𝑛𝐼 − 𝐷𝑖(𝑡))) ∗

𝑅𝐴𝑁𝐷          (14) 

In Equation (14), D(t+1) represents the future position 

vector of the Giant Trevally. 𝐵𝑝 is the best position obtained 

thus far, and a is the position controlling coefficient that 

typically ranges from 0.3 to 0.4. RAND is a random number 

between 0 and 1. 

The equation combines the current best position (𝐵𝑝) 

with two random components. In the first term, 𝐵𝑝* a * 

RAND incorporates the influence of the best position and 

the position-controlling coefficient on Trevally's movement. 

The second term, ((MeanI - Di(t))) * RAND, incorporates 

the difference between the average of past best points 

(MeanI) and the current candidate solution (Di(t)) to guide 

the search process. 

 

To calculate the average of past best points (MeanI), 

equation (15) is used: 

𝑀𝑒𝑎𝑛𝐼 =
1

𝑀
∑ 𝑋𝑖(𝑡)𝑀

𝑖=1                    (15) 

Here, MeanI represents the average of the past M best 

points, Xi(t) denotes the i-th best point at time t, and M 

represents the number of GTO members. 

Attacking Target 

The behavior of Giant Trevally jumping from the water 

and catching its target can be mathematically represented as 

follows: 

D(t+1) = LS + VD + JS                         (16) 

In equation (16), D(t+1) represents the future solution 

vector of the Giant Trevally. LS denotes the launch speed 

required to attack the target, and it can be calculated using 

the following equation: 

LS = Xi(t) * sin(ϴ2) * OBJ(Xi(t))                         (17) 

VD represents visual distortion, which can be expressed as: 

VD = sin(ϴ2) * D                         (18) 

JS stands for the jumping slope, which is calculated as: 

JS = RAND * (2 - t - 2/T)                          (19) 

Here, t represents the current iteration, and T is the 

maximum number of iterations. 

The GTO algorithm is employed to optimize the 

hyperparameters of an LSTM model, thereby improving its 

prediction performance. The hyperparameters that are tuned 

include Batch Size (BS), Optimizer, Learning Rate (LR), 

Number of Epochs (NE), Number of Hidden Units Per 

Layer (NHUPL), and Length of Time Lags (NTL). 

 

To accomplish this optimization, a fitness equation is 

derived that takes into account both accuracy and mean 

square error. A new model is constructed for each iteration 

based on the newly-tuned hyperparameters. 

The GTO-based SR-LSTM model parameter tuning 

process can be outlined using the following pseudocode: 

1. Input: population size, coefficient 'a', and model 

parameters 

2. Output: optimized hyperparameters (BS, optimizer, 

LR, NE, NTL, and NHUPL) 

3. For t = 1 to T: 

4. Generate a random population 
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5. Estimate the objective function 

6. Sort the population 

7. Identify the best solution 

8. For n = 1 to N: 

9. Execute Forage Moving 

10. Calculate new positions using Equation 13 

11. Execute Selecting Suitable Area 

12. Update means and new positions using an equation 

13. Execute Attacking Target 

14. Update jumping position 

15. Update LS, JS, and VD using equations 17, 18, and 19 

16. Estimate model accuracy and MSE 

17. If criteria are satisfied, return the best hyperparameters 

18. Else, repeat steps 8-17 

19. End 

20. End 

The pseudocode describes the iterative process of the 

GTO algorithm applied to optimize the hyperparameters of 

the SR-LSTM model. It involves generating a random 

population, evaluating the objective function, and sorting 

the population to identify the best solution. The algorithm 

then performs various operations, such as Forage Moving, 

Selecting a Suitable Area, and Attacking Target, to update 

the positions and calculate LS, JS, and VD. The model 

accuracy and MSE are estimated, and if the predefined 

criteria are met, the best hyperparameters are returned. 

Otherwise, the process is repeated until convergence or the 

maximum number of iterations is reached. 

 

In the hyperparameter tuning process, a population of a 

specific size is randomly generated, and the fitness function 

is calculated based on accuracy and error rate. The 

coefficient 'a' is assigned a value of 0.4. The iteration count 

is set to 1000, and the population size is 30. The optimizer 

is executed 50 times for each function. The solutions are 

updated using equations 13, 17, 18, and 19. By sorting the 

obtained solutions, the best solution is determined. The 

hyperparameter tuning process continues until the required 

criteria are satisfied; the best parameter values are returned 

at this point. 

 

4. Performance Analysis  
The SR-LSTM model is implemented in Python IDLE-

3.7 using the pandas, numpy, and TensorFlow packages. 

The dataset used for training and evaluation is obtained 

from the Kaggle website 

(https://www.kaggle.com/datasets/yasserhessein/thyroid-

disease-data-set). The dataset consists of 3 categories, 512 

samples, and 5 attributes. To ensure proper evaluation, the 

dataset is split into training, validation, and test sets. 

 

Figure 3 displays a visualization of the dataset, 

providing an overview of its structure and distribution. 

Additionally, Figures 4a, 4b, 4c, 4d, 4e, and 4f illustrate the 

visualization of attributes such as age, T3, T4, T4UFTI, and 

TBG measured in the dataset. 

 

Fig. 3 Data set 

 
(a) 

 
(b) 

 

age sex 
on 

thyroxine 

query on 

thyroxine 

on 

antithyroid 

medication 

sick pregnant 
Thyroid 

surgery 

1131 

treatment 

query 

hypothyroid 
… 

TT4 

measured 
T 

1 41 F 0 0 0 0 0 0 0 0 … 1 1 

2 23 F 0 0 0 0 0 0 0 0 … 1 1 

3 46 M 0 0 0 0 0 0 0 0 … 1 1 

4 70 F 1 0 0 0 0 0 0 0 … 1 1 

5 70 F 0 0 0 0 0 0 0 0 … 1 6 

… … … … … … … … … … … … … … 

3767 30 F 0 0 0 0 0 0 0 0 … 0 ? 
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(c) 

 
(d) 

 
(e) 

 
(f) 

Fig. 4 (a) Visualization of age. (b) T3. (c) TT4. (d) T4U. € FTI 

algorithm. (f) TBG Measured 

        The performance evaluation of the SR-LSTM model is 

conducted using metrics such as Accuracy (Acc), Precision 

(Pre), Recall (Rec), and F1 score. These metrics assess the 

model's ability to classify instances and correctly provide 

insights into its overall performance. 

 

Accuracy (Acc) is calculated as the ratio of the sum of 

true positive (TP) and true negative (TN) rates to the total 

number of instances, including true positives, false positives 

(FP), false negatives (FN), and true negatives. The formula 

for accuracy is given by equation (20).  

 

ACC =  
TP+TN

(TP + TN+FP + FN’) 
                             (20) 

   

Precision (Pre) measures the proportion of correctly 

predicted positive instances (TP) out of the total predicted 

positive instances (TP + FP). It helps evaluate the model's 

precision in identifying positive cases. Equation (21) 

represents the calculation of precision. 

 

PRE =  
TP

(TP + FP′) 
                           (21) 

Recall (Rec), also known as sensitivity or true positive 

rate, measures the proportion of correctly predicted positive 

instances (TP) out of the total actual positive instances (TP 

+ FN). It assesses the model's ability to capture positive 

cases. Equation (22) represents the calculation of recall. 

 

REC =  
TP

(TP + FN′) 
                                (22) 

 

The F1 score is a metric that combines precision and 

recall into a single value, providing a balanced measure of 

the model's performance. It is calculated as the harmonic 

mean of precision and recall using equation (23). 

F1 Score =   
TN

(TN + FP’) 
                                (23) 

During the optimization process, the SR-LSTM model 

initially uses the Adam optimizer with a learning rate (LR) 

of 0.01. The number of epochs (NE) is set to 150, and the 

number of hidden units per layer (NHU) is set to 50. The 

batch size (BS) is set to 32. Through the application of the 

GTO algorithm, suitable hyperparameters are identified to 

improve the model's performance. 

 

Table 1 provides a comprehensive comparison of six 

different optimizers based on their performance metrics, 

including Accuracy (Acc), Precision (Pre), Recall (Rec), 

and F1 score (F-Score) rates. The results indicate that the 

Adam optimizer achieved the highest scores across all 

metrics, with an Acc of 99.32%, a Pre rate of 96.84%, a Rec 

rate of 94.05%, and an F1 score of 95.12%. 

 

The RMSprop optimizer is the second-best performer, 

with an Acc of 98.88%, a Pre rate of 97.2%, a Rec rate of 

80.1%, and an F1 score of 84.3%. The Adadelta optimizer 

ranks third, achieving an Acc of 98%, a Pre rate of 91.72%, 

a Rec rate of 92.12%, and an F1 score of 91.65%.On the 
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other hand, the Adagrad optimizer exhibited the poorest 

performance among the compared optimizers, with an Acc 

of 63.88%, a Pre rate of 10.77%, a Rec rate of 16.78%, and 

an F1 score of 13.05%. Figure 5 presents a graphical 

representation of these results, providing a visual 

comparison of the performance of the different optimizers. 

 
Table 1. The performance analysis of different optimizers 

Optimizer Acc Prec Rec F1-score 

Adam 99.32 96.84 94.05 95.12 

RMSprop 98.65 95.55 92.42 93.73 

Adadelta 63.88 10.77 16.78 13.05 

Adagrad 63.88 10.77 16.78 13.05 

Table 2. Summary of different hypermeters results 

Hyper 

parameters 
Type 

Suggested 

parameters 

offer 

higher 

accuracy 

HUL 20,40,60,90,120 60 

BS 6,12,24,48,96,192 24 

LR 0.0001,0.001,0.01,0.1 0.001 

NE 
25,50,75,100,125,150, 

175,200,225,250,275,300 
250 

Optimizer 
Adam, RMSprop , 

Adagrad and  Adadelta 
Adam 

 

 
Fig. 5 Performance of the model for different optimizers 

The performance of the SR-LSTM model is further 

analyzed by considering different hyperparameters, 

including Batch Size (BS), Learning Rate (LR), Number of 

Epochs (NE), Number of Hidden Units per Layer (HUL), 

and Length of Time Lags (NTL). The analysis aims to 

identify suitable hyperparameters to enhance the model's 

performance. 

Table 2 provides a summary of the recommended 

hyperparameters based on the analysis. It indicates that a 

batch size of 24 yields better results compared to other batch 

sizes. Additionally, a learning rate of 0.001 shows improved 

performance compared to other learning rates. Moreover, 

models with a higher number of hidden layers, specifically 

60 hidden units per layer, demonstrate better performance. 

 

Figure 6 presents visualizations related to the model 

training, accuracy, and loss analysis. Specifically, Figure 6a 

showcases the training progress of the model, while Figures 

6b and 6c depict the accuracy and loss analysis, 

respectively. 

 
(a) 

 
(b) 
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(c) 

Fig. 6  (a) Loss analysis of SR-LSTM,  (b) Accuracy analysis of SR-LSTM, (c) Model training 

 
Fig. 7 Convergence curve of GTO 

The performance of the optimization process can be 

evaluated based on two key aspects: the quality of the 

solution obtained and the convergence rate analysis, which 

provides insights into the randomness and speed of the 

optimizer. 

 

Figure 7 illustrates the convergence curve of the Giant 

Trevally Optimizer (GTO) used for hyperparameter tuning. 

This curve depicts how the optimization process progresses 

over iterations. By analyzing the convergence curve, we can 

assess the effectiveness of GTO in finding the optimal 

solution and observe the rate at which it converges towards 

the best solution. 

Table 3 provides a comparison of the performance of 

the SR-LSTM algorithm with other prediction models. The 

results indicate that the SR-LSTM model outperformed the 

other models in terms of precision (Pre), recall (Rec), 

accuracy (Acc), and F1-score rates. The SR-LSTM model 

achieved a maximum accuracy of 98.7%, highlighting its 

effectiveness for risk analysis applications. 

 

Figure 8 visually represents the suitability of the SR-

LSTM model for risk analysis applications. 

Table. 3 Performance analysis of an optimized SR-LSTM model 

 Pre Rec Acc F-Score 

SVM 89.97 90.38 94.8 91.67 

LSTM 93.11 94.9 97.2 96.2 

SR-LSTM 95.8 97.89 99.2 98.1 

 

 
Fig. 8 Performance of the model in comparison with other models 
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5. Conclusion 
The medical field has witnessed an increasing adoption 

of machine learning (ML) algorithms due to their high 

accuracy and adaptability. However, one of the main 

limitations of these techniques is the manual selection of 

features, which can significantly impact the quality of 

results. A novel approach leveraging deep learning (DL) 

based prediction models has been proposed to overcome 

these challenges. In this particular study, a new model called 

SR-LSTM was developed specifically for predicting thyroid 

disease. This model effectively addresses temporal 

dependencies by incorporating cascaded LSTM layers and 

attention mechanisms. By leveraging the power of DL, the 

SR-LSTM model can automatically learn and capture 

complex patterns and dependencies in the input data, 

leading to improved prediction accuracy. 

 

Furthermore, to further enhance the performance of the 

SR-LSTM model, GTO-aided parameter tuning was 

employed. This optimization technique optimizes the 

hyperparameters of the model, such as learning rate, batch 

size, and the number of hidden units, to maximize its 

performance in terms of accuracy, precision, and F1-score 

rates.  

This integration of GTO enables the model to find the 

most suitable set of hyperparameters for the specific 

problem at hand. By combining the strengths of DL-based 

prediction models, such as SR-LSTM, with the optimization 

capabilities of GTO, this study offers a promising approach 

for accurate and reliable predictions in thyroid disease 

diagnosis. 
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