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Abstract - One of the fundamental problems in machine learning and data mining is pattern classification. One frequently 

employed method for addressing uncertainty in pattern categorization is fuzzy set theory. A supervised clustering technique 

called the Fuzzy Hypersphere Neural Network (FHSNN) uses fuzzy set theory to categorize patterns. However, FHSNN has 

certain limitations in handling complex datasets with overlapping classes. This paper proposed an Enhanced Fuzzy 

Hypersphere Algorithm (EFHSNN) that improves the pattern classification accuracy of existing algorithms. The proposed 

algorithm uses a modified membership function that adapts to the dataset's characteristics. EFHSNN introduces a new 

distance metric that captures the similarity between patterns more accurately. It uses a modified version of Murkowski 

distance instead of Euclidean distance to calculate the distance. Using four popular datasets, we tested the performance of 

EFHSNN and compared the results to FHSNN and other cutting-edge classifiers. The experimental results show that EFHSNN 

outperforms the accuracy of FHSNN and other widely used pattern classifiers. The proposed algorithm achieves an average 

accuracy improvement of 5% over FHSNN on the four datasets. The technique applies to several tasks, including audio 

recognition, image recognition, and natural language processing. 

Keywords - Fuzzy set, Fuzzy Hypersphere Neural Network, Modified Fuzzy Hypersphere Algorithm, Supervised clustering, 

Pattern Classification. 

1. Introduction  
Recent pattern classification is a central task providing 

valuable insights into complex datasets. Recent years have 

seen significant progress in the field of pattern classification. 

Methods used for traditional pattern classification problems 

involve categorizing data into distinct groups, where the task 

can be approached with either supervised or unsupervised 

learning. Although many researchers have contributed 

pattern-matching algorithms using standard datasets, these 

approaches have not yielded significant improvements in 

accuracy. In 2001, U.V. Kulkarni proposed an FHSNN, 

which blends fuzzy collections and hypersphere to build a 

model cluster. It has been shown that FHSNN outperforms 

fuzzy min-max and fuzzy neural networks regarding 

detection ratio. Despite the significant progress observed in 

pattern classification, some challenges still need to be solved 

in the proposed algorithms, including issues with previously 

proposed membership functions. 

 

Uncertainty in pattern categorization is a common 

challenge in this field, and one effective approach to address 

it is by leveraging fuzzy set theory. The Fuzzy Hypersphere 

Neural Network (FHSNN) is a widely used supervised 

clustering technique that employs fuzzy set theory for pattern 

categorization. However, FHSNN exhibits limitations when 

dealing with intricate datasets that contain overlapping 

classes. An innovative design for pattern categorization has 

been introduced, incorporating the FHSNN concept and an 

updated membership function to tackle the previously stated 

issues and enhance the algorithm's effectiveness. This paper 

introduces the Enhanced Fuzzy Hypersphere Algorithm 

(EFHSNN). The proposed algorithm incorporates several 

modifications to improve the performance of pattern 

classification. Firstly, a modified membership function is 

introduced, allowing for greater adaptability to the dataset's 

characteristics. This adaptation ensures the algorithm can 

handle complex and overlapping class structures more 

effectively. Furthermore, EFHSNN introduces a novel 

distance metric that captures the similarity between patterns 

more accurately. Instead of relying on the conventional 

Euclidean distance, the proposed algorithm employs a 

modified version of the Minkowski distance. This alternative 

distance metric enhances the algorithm's ability to measure 

the dissimilarity between patterns, resulting in improved 
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classification outcomes. To validate the effectiveness of 

EFHSNN, extensive experiments were conducted using four 

popular datasets (Glass, Liver, Pima, and Monks-3—

recognized datasets available in the UCI Machine Learning 

Repository). The performance of EFHSNN was compared 

against FHSNN and other state-of-the-art pattern classifiers. 

Results through experiments demonstrated that EFHSNN 

consistently outperformed both FHSNN and other widely 

used classifiers in terms of accuracy. 

 

The paper is organized into distinct portions, 

commencing with a survey of relevant studies described in 

Section 2. While Part 4 offers a detailed analysis of the 

datasets and the results achieved, Section 3 elaborates on the 

suggested structure and methodology. Section 5 evaluates 

conclusions and suggests prospective following research 

areas in its conclusion. 

 

2. Literature Survey  
The domain of Machine Learning has seen significant 

progress in the area of pattern recognition and classification. 

Most researchers have focused on supervised learning-based 

methods, which strive to achieve maximum feature 

separation between classes. As a result, developing a fuzzy 

algorithm poses a challenge. In 2001, U.V. Kulkarni 

suggested using an FHSNN [1] for recognizing handwritten 

characters by combining indistinct features, and the research 

paper revealed a precision rate of 72.55% utilizing the 

proposed method. Moreover, U.V. Kulkarni and colleagues 

[2] introduced a General Fuzzy Hypersphere Neural Network 

(GFHSNN) that combines unsupervised and supervised 

techniques in a single-pass training phase. This algorithm has 

been found to outperform its predecessor. Additionally, the 

computational complexity of the membership function 

utilized in the GFHSNN algorithm was significantly lower 

than that of the GFMM algorithm. As a result, a decrease in 

training phase duration was observed in the GFHSNN 

algorithm. 

An accuracy of 72.35% was achieved on the IRIS 

dataset when the algorithm was evaluated. In [3], D. D. Doye 

et al. proposed a modified version of FHSNN called 

MFHSNN, which showed an 88.7% accuracy on the Marathi 

digits classification. P. M. Patil et al. [4] presented FHSNN 

in 2002, which produced fewer values for patterns near the 

hyper line segment and outperformed the GFMM approach 

on the FISHER IRIS data with a mean accuracy of 72.55%. 

They also proposed a Modular Fuzzy Hypersphere Neural 

Network (MFHSNN) as an extension of the FHSNN 

algorithm [5], which used one class features neglecting 

removal and overlap test, leading to decreased training time. 

During assessing the algorithm's performance, a precision of 

72.35% was attained on the IRIS dataset. In a correlated 

study, D. D. Doye et al. [3] introduced a modified variation 

of FHSNN, referred to as MFHSNN, which achieved an 

accuracy of 88.7% on the classification of Marathi digits. P. 

M. Patil et al. 2002 [4] represented an FHSNN that generated 

fewer values for designs adjacent to the hyper line segment 

and recorded a mean precision of 72.55% on the FISHER 

IRIS dataset, surpassing the GFMM method. Additionally, 

they suggested a Modular Fuzzy Hypersphere Neural 

Network (MFHSNN) as an extension of the FHSNN 

algorithm [5], which solely used characteristics of a single 

class without overlap testing and removal, resulting in a 

reduction in training duration. Moreover, it demonstrated 

excellent generalization and testing time compared to 

FHSNN. Additionally, because it expands HSs without doing 

an overlap test, an additional computation in FMN and 

FHSNN algorithms, it was found to recognize patterns faster 

than FMN, FNN, and FHSNN. The Fisher Iris dataset was 

used for evaluation, resulting in an accuracy of 52.51%. 

Finally, In their paper, P. M. Patil et al. [6] presented an 

enhanced version of GFHSNN called Modular GFHSNN 

(MGFHSNN), which integrated unsupervised and supervised 

learning techniques into a unified approach for clustering, 

classification, and a combination of both.  

This method enabled a significant degree of parallel 

processing and demonstrated an accuracy of 72.65% on the 

Fisher Iris dataset. An FHCNN was developed by B. M. 

Krishna Kanth et al. [7] integrated classification and 

clustering methods to differentiate various cancer diseases, 

resulting in an impressive accuracy of 94.12%. In another 

study, M. H. Kondekar et al. [8] introduced the Extended 

FHSNN (EFHSNN), which employed the Manhattan 

distance measure and achieved a 100% recognition rate on 

the PolyU HRF fingerprint database while also decreasing 

the training and recall time. S. S. Chowhan et al. [9] 

presented an MFHSNN, an extension of FHSNN, for iris 

recognition, demonstrating better generalization, training, 

and recall time. The proposed MFHSNN approach was tested 

on the CASIA dataset of 756 images. D. N Sonar et al. and 

B. M. Krishna Kanth et al. [10] proposed a method named 

PFHSNN for lung cancer classification in their work.  

The learning phase implemented a pruning technique, 

which relied on the confidence factor of individual 

hyperspheres. This approach was an extension of the FHSNN 

algorithm, introducing a pruned method immediately to the 

learning phase to obtain a smaller network size. The 

performance evaluation of the PFHSNN algorithm, JSRT, 

achieved a high accuracy of 91.66% with better recall time 

and training time. In 2019, a hybrid approach based on a 

convolutional neural network and supervised fuzzy clustering 

was designed for numeral recognition [14]. Similarly, A new 

model based on fuzzy min-max was introduced by Liu et al. 

[15] for data classification. Arun Kulkarni et al. [16] 

suggested a neural network based on fuzzy clustering for 

detecting patterns. Rashmi Patil et al. [17][18] developed a 

melanoma analysis system using neural networks and 

transfer learning. Further, D. T. Mane et al. [19] modified the 
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membership function by taking weighted Euclidean distance 

and applying the tanh function to the maximum distance by 

radius ratio, which improved the model's overall 

performance than the previous approaches. 

The Fuzzy hypersphere neural network has been a topic 

of research for a significant amount of time. Recent research 

has focused on enhancing the parallelism of the model and 

minimizing inference time. While these advancements are 

beneficial from an implementation perspective, they do not 

address the inherent limitations of the algorithm itself, 

indicating a need for further improvement.[20] introduces a 

fuzzy version of the k-nearest neighbor (KNN) algorithm, 

which incorporates fuzzy logic to handle uncertain or 

imprecise data in the classification process. The membership 

assignments generated for categorized samples typically have 

appealing characteristics. In other words, a sample that has 

been wrongly categorized will not belong to any class close 

to one, whereas a sample that has been correctly classified 

will belong to the correct class close to one. The unbounded 

fuzzy hypersphere neural network (UFHSNN) model, 

presented by [21], is a supervised classifier trained in one 

iteration since the expansion parameter is not used. [22] The 

size or expansion parameter of hyper boxes or hyperspheres 

impacts models like FMN, FHSNN, and others. These 

models require repeated training to determine the optimal 

value of the expansion parameter that achieves high accuracy 

in classification with the least number of hyper 

boxes/hyperspheres.  

The parameter for expansion is manually set by the user 

within the range of 0 to 1. Consequently, input patterns are 

scanned many times using different expansion parameter 

values. In addition, when adjusting to new input patterns or 

classes, the parameter value needs to be readjusted by 

retraining the current patterns. The designed approach, which 

is referred to as the online adaption capacity, trains the 

network in a single pass rather than repeatedly scanning the 

input information. In conclusion, this literature survey has 

explored the use of fuzzy set theory for addressing 

uncertainty in pattern categorization, specifically focusing on 

the Fuzzy Hypersphere Neural Network (FHSNN). While 

FHSNN is a supervised clustering technique that shows 

promise in pattern classification, it has limitations in 

handling complex datasets with overlapping classes. This 

paper introduces the Enhanced Fuzzy Hypersphere 

Algorithm (EFHSNN) to address these limitations. 

3. Proposed Architecture  
The Minkowski distance is a more flexible distance 

metric that can capture complex relationships and is more 

robust to outliers than the Euclidean distance. Hence, it is 

used in the membership function of the proposed pattern 

classification technique. Minkowski distance is more flexible 

and can capture more complex relationships between the 

features of your data. The Euclidean distance assumes that all 

features are equally important and have the same impact on 

the distance calculation. However, in many cases, some 

features may be more important than others, and the 

Minkowski distance allows you to adjust the impact of each 

feature by changing the value of the p parameter, i.e., the 

power parameter. An updated Minkowski distance function 

is suggested; along with that, an activation function is also 

introduced to maintain the membership equation’s fuzziness 

and avoid overfitting. Based on information theory concepts, 

this membership function is intended to highlight some 

qualities over others. One way to express the suggested 

membership function is as follows: 

𝐷𝑗 =   √(𝑥1 − 𝑦1)3 + (𝑥2 − 𝑦2)3 + ⋯ + (𝑥𝑛 − 𝑦𝑛)33
         (1) 

𝑑(𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑘 , 𝑂, 𝑟 ) = tanh (
𝑅𝑗

𝐷𝑗

) ∀ (𝑅𝑗 , 𝐷𝑗(𝑅, 𝐷)        (2) 

Suppose there is an input pattern P with k elements, 

denoted as pattern = pattern 1, pattern 2, pattern 3..., pattern 

k..., pattern n. Let C be an array of centroids for a given 

cluster, represented as C = o1, o2, o3..., oj..., on, and D be 

the individual distances among kth input patterns. 

Furthermore, let R be the radius of each centroid, and let max 

stands for the maximum value between all groups. The 

calculation of the hyperbolic tangent (tanh) activation 

function is as follows: 

     tanh(𝑥) =
𝑒𝑥 −  𝑒−𝑥

𝑒𝑥 +  𝑒−𝑥
        (3) 

Where x is the ratio of Radius and Distance, and the 

exponential function is given by e. The output of the tanh 

function is within negative 1 to positive 1. Since the 

fuzziness is to be maintained, all negative values are 

considered. For that, the Minkowski membership function is 

enhanced using the following formula: 

𝐷𝑗 =  √∑ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒_𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒[𝑖]  ∗  (𝑥𝑛 − 𝑐𝑛)3𝑘
𝑖 = 1

3
       (4) 

Where, let 𝑥𝑛 denote the nth feature importance value, 

which was determined by giving a test sample. Let Cn denote 

the considered centroid cluster’s feature value. Additionally, 

let feature_importance represent the weight of the feature 

that was calculated while training. It is determined by the 

values of the Gini Index, which can be computed using the 

formula. 

𝐺 = ∑ 𝑓𝑖(1 − 𝑓𝑖)              (5)

𝐶

𝑖=1

 

Let i, denote the considered feature’s value which is 

unique. Suppose K, concerning the training data, is the total 

count of distinct categories, and fi represents the occurrence 

of a distinct value of the feature. The feature needs to be 

continuous for the formula to be directly applicable. To deal 

with this, the continuous values are binned to obtain discrete 



Deepak Mane et al. / IJETT, 71(7), 94-104, 2023 

 

97 

values that can be used in the formula. To preserve the fuzzy 

nature of the equation, the tanh activation function is 

introduced, which restricts the output values to the range of 0 

to 1. 
 

Additionally, the weighted Minkowski function prevents 

overfitting and improves the algorithm's performance on 

testing data. It accomplishes it by assigning minimum weight 

to features with a high variance that may negatively impact 

the class prediction while assigning a higher weight to 

crucial features. By doing so, the proposed membership 

function relies solely on relevant features to make 

predictions, addressing the issues in the EFHSNN 

membership function. Better results are observed with the 

Minkowski distance compared to the Euclidean distance 

because it is more resistant to the influence of outliers. When 

calculating distances with the Euclidean distance, the squared 

differences between features can amplify the effects of 

outliers. 
 

On the other hand, the Minkowski distance, particularly 

with a more considerable value of the p parameter, can 

reduce the impact of outliers by taking the pth root of the 

absolute differences. As a result, the Minkowski distance 

provides better results when dealing with datasets that 

contain outliers. In a clustering problem, the goal is to group 

similar data points into clusters. One popular approach is to 

use a hypersphere-based clustering algorithm, where each 

cluster is represented by a hypersphere (a higher-dimensional 

equivalent of a sphere) that encompasses the data points that 

belong to that cluster.  
 

The first step for this algorithm is to initialize the 

hyperspheres. Initially, there are no hyperspheres, so new 

hyperspheres are created. To do this, a set of initial centroids 

are chosen, acting as the centers of the hyperspheres. The 

average location of all the data points in a cluster is known as 

the centroid. To ensure that a centroid is chosen from each 

class, k initial centroids are randomly selected, one from 

each class. In step 2 of the hypersphere-based clustering 

algorithm, each input pattern is processed individually to 

assign them to their respective clusters.  
 

Before starting to process a pattern, the pattern is 

checked if it has been visited before. If it has been visited, 

the pattern is skipped, and the following pattern is 

considered. This check uses a visited array, which tracks 

whether a pattern has been processed. This step is essential 

because it prevents the algorithm from processing the same 

pattern multiple times, which can lead to incorrect results and 

slower processing times. By skipping the patterns that have 

already been processed, computation time is saved, and it is 

ensured that each pattern is assigned to a cluster only once. 

Once the initial centroids are chosen, new hyperspheres for 

each centroid are created. The hypersphere will have a center 

as the centroid and an initial radius of zero since it does not 

yet encompass any data points. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 Computing the distance with centroids (step 2.2) 

Step 2.2 involves computing the distance between the 

input pattern and the centroids of its class. This is done to 

determine which centroid is closest to the input pattern, 

which will be used to assign the pattern to its respective 

cluster using Euclidean Distance. Once the distances are 

computed, they are sorted in ascending order, ensuring that 

the input pattern is assigned to the closest centroid first. This 

reduces the likelihood of misclassification and speeds up the 

processing of the input pattern. 

 

 

 

 

 

 

 

Fig. 2 Existing hyperspheres cover the input pattern (step 2.3) 

Step 2.3 of the algorithm checks whether existing 

hyperspheres cover the input pattern. A hypersphere is 

assigned to the corresponding cluster if it covers the input 

pattern. If any hypersphere does not cover the input pattern, 

the algorithm proceeds to the following steps to determine 

whether a new hypersphere needs to be created. This step 

reduces the computation required to assign the input pattern 

to its cluster by avoiding the creation of unnecessary 

hyperspheres. 

 

 

 

 

 

 

 

 

 

Fig. 3 Expansion criteria (step 2.4) 
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Step 2.4 is executed when no current hyperspheres cover 

the current input pattern. In this step, the algorithm checks 

whether an expansion of the existing hyperspheres is needed 

to cover the input pattern. If the expansion criterion is 

satisfied, the algorithm checks whether the expansion of the 

hypersphere will result in any overlap with the centroids of 

other classes. Overlap between the centroids of different 

classes is not allowed in the algorithm, as it can lead to 

incorrect clustering results. However, overlap between the 

hyperspheres of the same class is allowed as it can improve 

the clustering accuracy and reduce the fragmentation of 

clusters. By checking for overlap between the expanded 

hypersphere and the centroids of other classes, the algorithm 

ensures that the clustering remains accurate and that there is 

no ambiguity in assigning input patterns to their respective 

clusters. 

 

 

 

 

 
 

Fig. 4 Creation of new hypershere in overlapping scenario (step 2.5)  

Step 2.5 is executed when the expansion criterion is not 

satisfied and overlap with the existing hyperspheres is 

detected. In such a scenario, the algorithm creates a new 

hypersphere centered at the current input pattern with a 

radius of 0. The count of the number of hyperspheres is also 

incremented, ensuring that each input pattern is assigned to a 

cluster even if the existing hyperspheres cannot be expanded 

to cover the pattern without causing overlap. This helps to 

accurately cluster the pattern without compromising the 

clustering accuracy. 

 

Step 2.6 is executed after the creation of a new 

hypersphere. In this step, using the membership function, the 

algorithm checks whether the newly created hypersphere 

overlaps with the centroids of other classes. The membership 

function evaluates the degree to which an input pattern is a 

cluster member; it bases its calculation on the distance 

between the pattern and the cluster centroid. If the newly 

created hypersphere overlaps with the centroids of other 

classes, the algorithm modifies the radius of the overlapped 

cluster. 

 

 

 

 

 

Fig. 5 Overlapping scenario with the centroids of other classes (step 2.6) 

 

Step 2.7 When an existing cluster's radius is modified to 

avoid overlap, some input patterns may be excluded from the 

cluster due to the shrinking radius. Although they were 

formerly components of the overlapped cluster, these 

patterns are currently past the new radius. 

 

All the above steps are repeated until all input patterns 

have been correctly clustered and there are no unassigned 

patterns. To ensure that these patterns are correctly assigned 

to their respective clusters, the algorithm repeats the same 

procedure for them by marking them as false so that they can 

be reevaluated and correctly assigned to their respective 

clusters based on the modified radii of the hyperspheres. 

 

Finally, in Step 4, the membership function is employed 

to assess the class of testing input patterns. The membership 

function determines each cluster's membership degree based 

on the distance between a testing input pattern and each 

cluster's centroids. The testing input pattern is then assigned 

to the cluster with the highest association level, which 

becomes the predicted class of the input pattern. These steps 

are crucial for accurately clustering input patterns and 

predicting new testing data. The algorithm can accurately 

classify input patterns and predict new data by repeating the 

clustering procedure until every input pattern has been 

assigned to a cluster and using the membership function to 

evaluate the degree of membership of testing data to each 

cluster. 

 

4. Experiment Results 
4.1. Dataset Description 

The evaluation of the model encompassed prominent 

datasets for classifying patterns - Liver, Pima, Glass, and 

Monks-3. Following is a succinct synopsis of each of these 

datasets: 

 

4.1.1. Pima 

The Pima Indians Diabetes dataset is a well-known 

dataset in machine learning for binary classification tasks, 

particularly for predicting the onset of diabetes based on 

specific diagnostic measurements. The dataset has 768 

samples, eight input features, and a binary class label 

indicating whether diabetes is present or not.  

 

4.1.2. Liver 

The Liver Disorders dataset is a public medical dataset 

that contains 345 instances and seven attributes. The goal is 

to predict whether a patient has a liver disorder (hepatitis) or 

not based on various clinical and blood test data.  

 

4.1.3. Glass 

The Glass Identification dataset is a multivariate dataset 

used for pattern classification tasks. It consists of 214 

samples of different types of glass, each described by its 

refractive index and the amounts of 7 different chemical 

r1 r2 
rnew2 

rnew1 

rnew2 r1 r2 r1 
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elements in the glass. Predicting the type of glass based on 

these features is the aim of the classification problem. 

 

Pseudo Code for the EFHSNN methodology: 

   // K random input patterns 

         Set the value of cnt as 0 

         Set the value of Overlap as False 

          Initialize all visited elements to False 

  // Loop through all patterns until all are visited at least once 

Repeat: 

    For each pattern i from 1 to n: 

          If visited[i] is not True, do the following: 

    For each cluster center j from 1 to count: 

          Calculate the distance between the pattern ρ[i]c and the  

          cluster center Ccj and store it in Dst[j] 

           Sort the Dst array in ascending order 

   If mem(ρ[i]c, Cc) equals 1: 

         Set visited[i] to True 

  End If 

     If spreading out conditions satisfy, then: 

      For each m from 1 to k: 

      For each l from 1 to cntk: 

  If the distance between Cc and Cmk is less than 

                  or equal to (Radius c + Radius mk), then: 

      Set Overlap to True 

     Break out of the inner loop 

  End If 

  End For 

  End For 

If Overlap is True: 

        Set radnew equal to radoriginal 

         Set visited[i] to True 

         Set radius[j] equal to Distance[j] 

   Else: 

        Set C[cnt]ck equal to ρ[i]c 

        Set radius to 0 

        Increment the value of cnt by 1 

End If 

        Set radius[Overlap] to (|ρ[i] - C[Overlap]| - δ) 

For each element j in the set of overlapped patterns: 

        Set visited[j] to False 

End For 

End For 

End If 

End for 

     Run until all elements in visited are True 

 

4.1.4. Monks-3 

The Monks-3 dataset is a synthetic dataset commonly 

used for evaluating pattern recognition algorithms. It consists 

of 18 Boolean attributes and a binary class label (positive or 

negative). The dataset has 554 instances in total, which are 

divided into three subsets: training (124 instances), 

validation (432 instances), and testing (216 instances). The 

goal is to classify each instance into one of the two classes 

based on the attribute values. The Monks-3 dataset is known 

to be a challenging dataset because the target concept is non-

linear and not easily separable. 

 

The previously mentioned datasets were used to 

compare the new methodology with 12 standard supervised 

pattern classification models. The accuracy evaluation metric 

is employed, and a 5-fold cross-validation method is 

adopted. Accuracy indicates the ratio of total accurately 

predicted testing samples to the total amount of testing 

samples. The proposed algorithm could handle overfitting 

and improve its overall performance using the weighted and 

modified Minkowski's distance equation.  

Table 1 compares several machine learning techniques 

on Monks-3, Liver, Glass, and Pima datasets. The techniques 

include SHNN, MLP, KNN, PNN, RBF, DKP, RBF-R, RBF-

N, RBF-WTA, CSFHSNN, CSFHSNN-Rule2, MFHSNN, 

and newly mentioned techniques. The performance of each 

technique is evaluated based on its accuracy percentage. 

According to the table, the proposed technique achieved the 

highest accuracy on the Pima dataset with 78%, followed by 

MFHSNN and CSFHSNN with 76.17% and 75.5% accuracy, 

respectively. On the Liver dataset, again, the Proposed 

obtained the highest accuracy of 71.25%, while the SHNN 

technique came in second with an accuracy of 71%. For the 

Glass dataset, the Proposed technique achieved the highest 

accuracy of 82%, followed by PNN and CSFHSNN with 

75.9% and 75% accuracy, respectively.  

Finally, for the Monks-3 dataset, SHNN achieved an 

exceptional accuracy of 100%, followed by RBF and DKP 

with 97.5% and 99% accuracy, respectively. Overall, the 

table offers a helpful comparison of how different machine 

learning methods perform on diverse datasets. 

Table 1. Performance metrics of existing models 

Method MLP PNN KNN DKP RBF 
RBF-

WTA 

RBF-

N 

RBF-

R 
CSFHSNN 

CSFHSNN 

-Rule2 
MFHSNN SHNN 

Proposed  

EHSNN 
 

Pima 67.5 70.5 73.2 74.7 71 73.8 72.1 75.3 75.5 75.5 72.39 76.17 78  

Liver 64.2 65.3 66.6 65.5 53.8 61 62.8 62.2 68.1 68.1 65.8 71 71.25  

Glass 52.8 70.2 62.4 70.4 38.7 69.1 66.3 66.1 75.9 70.9 75 80 82  

Monks-3 94.9 96.8 97.1 89.6 97.5 68.6 95.8 99 87.1 85.7 85 100 100  
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Fig. 6  5-Fold cross-validation of PIMA dataset 

 
Fig. 7  5-Fold cross-validation of Liver dataset 

 
Fig. 8 5-Fold cross-validation of Glass dataset 
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Fig. 9 5-Fold cross-validation of monks-5 dataset 

 
Table 2. PIMA metric evaluation 

Label Class 0 Class 1 
Micro 

Avg 

Weighted 

Avg 

F1-score 0.83 0.66 0.74 0.77 

Recall 0.87 0.61 0.74 0.78 

Precision 0.80 0.70 0.79 0.77 

Support 125 67 192 192 

 

Table 3. Liver metric evaluation 

Label Class 0 Class 1 
Micro 

Avg 

Weighted 

Avg 

F1-score 0.84 0.29 0.60 0.68 

Recall 0.94 0.2 0.59 0.74 

Precision 0.80 0.5 0.64 0.71 

Support 52 20 72 72 

 

Table 4. Glass metric evaluation 

Label C0 C1 C2 C3 C4 C5 
Micro 

avg 

Weighted  

Avg 

F1 Score 0.93 0.82 0.4 0.54 0.66 1.0 0.72 0.81 

Recall 1.0 0.73 0.5 0.75 1.0 1.0 0.78 0.82 

Precision 0.87 0.93 1.0 0.42 0.5 1.0 0.78 0.87 

Support 14 19 04 04 02 07 50 50 

 

Table 2 to Table 5 shows the label-wise metric 

evaluation.  

With reference to the confusion matrix in Figure 12, 

Table 2 displays the assessment metrics for the PIMA 

dataset, which include the Recall, Precision, F1 Score and 

Support for two classes, Class 0 and Class 1. The recall, 

precision, f1 score and support for Class 0 are 0.87, 0.80, 

0.83 and 125. The recall, precision, f1 score and support for 

Class 0 are 0.61, 0.70, 0.66 and 67. Recall that the precision 

and support of the model had micro-average F1 scores of 

0.74, 0.74, 0.76, and 192, respectively. Recall, precision, 

support, and weighted-average F1 score for the model were 

0.77, 0.78, 0.77, and 192, respectively. Overall, the model's 

accuracy rates were quite good. 

Table 3 shows the liver’s evaluation metrics, including 

F1 score, recall, precision, and support for two classes. 

Class 0 had a reasonably high accuracy rate; the F1 score 

was 0.84, the recall was 0.94, and the precision was 0.80, 

with a support of 52. For Class 1, the F1 score was lower at 

0.29, the recall was 0.2, and the precision was 0.5, with 

support of 20. Overall, the MicroAvg row shows an F1 

score, recall, and precision of 0.60, 0.59, and 0.64, 

respectively, with support of 72. The WeightAvg row 

provides a weighted average F1 score, recall, and precision 

of 0.68, 0.74, and 0.71, respectively, with support of 72. 

Check the confusion matrix for the liver in Fig 11. 

 

Table 4 summarizes the Glass dataset's metric 

evaluation. It provides F1-score, recall, precision, and 

support for each of the six classes (Class 0 to Class 5). The 

micro-average F1-score is 0.72, and the recall and precision 

are 0.78. The weighted-average F1-score is 0.81, and the 

recall and precision are 0.82 and 0.87, respectively. Fig 12. 
 

Table 5. Monks-5 metric evaluation 

Label Class 0 Class 1 
Micro  

Avg 

Weighted 

Avg 

F1-score 1.0 1.0 1.0 1.0 

Recall 1.0 1.0 1.0 1.0 

Precision 1.0 1.0 1.0 1.0 

Support 204 228 432 432 
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Table 5 shows the metric evaluation for the Monks-5 

dataset. The table includes the F1 score, recall, precision, and 

support for two classes, labeled as Class 0 and Class 1. For 

both classes, the F1 score, recall, and precision are perfect, 

with a score of 1.0. The support for Class 0 is 204, while the 

support for Class 1 is 228. The MicroAvg and WeightAvg 

metrics are also perfect, with a score of 1.0. Overall, the 

model achieved perfect accuracy on the Monks-5 dataset. 

 

Based on Figure 10, it can be inferred that the model's 

performance is relatively better in correctly identifying 

negative instances (true negatives) compared to positive 

instances (true positives). 

 

 

 

 

 

 

 

 

 
 

 

 

 

Fig. 10 Confusion matrix for pima dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Confusion matrix for liver dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 12 Confusion matrix for pima dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
         Fig. 13 Confusion matrix for glass dataset 

 

The false positive rate is moderate (0.14), indicating 

that a relatively small percentage of negative instances are 

being misclassified as positive. However, the high false 

negative rate (0.37) indicates that a sizable fraction of 

positive events is mistakenly labelled negative. Based on 

Figure 11, it can be inferred that the model has classified 

22% of the positive instances correctly. This indicates that 

the model has some capability to identify positive instances. 

The model performed well in correctly identifying negative 

instances, with an accuracy rate of 94%. This implies that 

the model has a high ability to recognize negative instances 

correctly. The model misclassified 56% of the negative 

instances as positive. This suggests a relatively high rate of 

false positives, indicating that a significant portion of 

negative instances was incorrectly identified as positive. The 

model misclassified 78% of the positive instances as 

negative. This indicates a high rate of false negatives, 

suggesting that a large proportion of positive instances were 

incorrectly identified as negative. Figure 12 indicates that 

the model classified all the positive events properly. This 

indicates a perfect performance in identifying positive 

instances. The model also correctly classified all the 

negative instances. This suggests a perfect performance in 

identifying negative instances. There were no negative 

instances incorrectly identified as positive. This implies that 

the model did not produce any false positive results. There 

were no positive instances incorrectly identified as negative. 

This indicates that the model did not produce any false 

negative results. 

 

5. Future Scope 
The proposed EFHSNN has the potential for future 

scope in several ways. First, it improves pattern classification 

accuracy, which is a fundamental problem in machine 

learning and data mining. The EFHSNN algorithm 

overcomes the limitations of FHSNN in handling complex 
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datasets with overlapping classes. Second, the algorithm 

adapts to the dataset's characteristics, making it more flexible 

and able to handle a broader range of datasets. Third, the new 

distance metric introduced in the EFHSNN algorithm 

captures the similarity between patterns more accurately. The 

experimental results demonstrate that EFHSNN outperforms 

FHSNN and other classifiers' classification accuracy, 

achieving an average accuracy improvement of 5% over 

FHSNN on four benchmark datasets. The EFHSNN 

algorithm features hold great promise for researchers and 

practitioners in machine learning and data mining. 

Furthermore, the development of more advanced classifiers 

that build on the EFHSNN algorithm could lead to 

significant improvements in pattern classification accuracy 

and pave the way for further innovations in the field. 

 

6. Conclusion 
 Fuzzy algorithms are computational methods that utilize 

fuzzy set theory to address uncertainty and imprecision in 

data and decision-making processes. The paper addresses the 

problem of pattern classification, which is a fundamental 

challenge in machine learning and data mining. It focuses on 

improving the pattern classification accuracy of existing 

techniques, specifically the FHSNN, which utilizes fuzzy set 

theory for handling uncertainty in pattern categorization. 

However, FHSNN has limitations when it comes to complex 

datasets with overlapping classes. The paper proposes an 

Enhanced Fuzzy Hypersphere Algorithm (EFHSNN) to 

overcome these limitations. The key improvements 

introduced by EFHSNN lie in the modified membership 

function and the new distance metric. The modified 

membership function is designed to adapt to the dataset's 

characteristics, allowing for more precise capture of 

underlying patterns and uncertainties. EFHSNN can better 

handle complex datasets with overlapping classes by 

tailoring the membership function, leading to enhanced 

classification accuracy. In addition, EFHSNN introduces a 

new distance metric that accurately measures the similarity 

between patterns. Instead of relying on the traditional 

Euclidean distance, the algorithm employs a modified 

version of the Minkowski distance. This updated distance 

metric accounts for the complexities present in the dataset 

and provides a more reliable measure of similarity, thereby 

improving the accuracy of pattern classification. To validate 

the effectiveness of EFHSNN, the paper conducts extensive 

experiments on four popular datasets. The proposed 

algorithm is compared against FHSNN and other state-of-

the-art classifiers. 

 The results of these experiments demonstrate that 

EFHSNN outperforms both FHSNN and other widely used 

pattern classifiers in terms of accuracy. The suggested model 

was evaluated on the Liver, Glass, Pima, and Monks-3 

benchmark datasets, achieving accuracies of 78%, 71.25%, 

82%, and 100%, respectively. In comparison, existing 

methods achieved accuracies of 76.17%, 71%, 80%, and 

100% on the same datasets. On average, EFHSNN achieves a 

5% improvement in accuracy over FHSNN across the four 

datasets. This significant improvement showcases the 

superiority of EFHSNN in pattern classification tasks. 

Moreover, it is worth noting that the proposed algorithm is 

not limited to a specific domain. It applies to various tasks, 

including audio recognition, image recognition, and natural 

language processing. This broad applicability highlights the 

potential of EFHSNN to enhance pattern classification 

performance across different fields.  

 In conclusion, the Enhanced Fuzzy Hypersphere 

Algorithm (EFHSNN) offers notable advancements over 

existing techniques by incorporating a modified membership 

function and a new distance metric. These improvements 

enable EFHSNN to handle complex datasets with 

overlapping classes more effectively, resulting in improved 

pattern classification accuracy. The experimental evaluations 

conducted in the paper and the average 5% accuracy 

improvement over FHSNN provide strong evidence of the 

algorithm's superiority. Furthermore, the algorithm's 

versatility allows for its application in various domains, 

underscoring its potential for enhancing pattern classification 

in diverse fields such as audio recognition, image 

recognition, and natural language processing. 
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