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Abstract - Artificial Intelligence (AI) has constantly entered various applications in economical ways, specifically in control 

and monitoring applications in the sector related to agriculture. Moreover, the process of attaining neutrality in the energy for 

the Internet of Things (IoT) remains a challenging task. The agricultural sector is still affected by various pest diseases, which 

lead to danger to the productivity of crops and economically affect the farmers. To overcome these challenges, this research 

introduced an energy harvesting system to achieve the state of energy neutrality in IoT-based smart agricultural systems. 

Moreover, the Maximum Power Point Tracking (MPPT) algorithm is utilized to attain the state of energy neutrality, and the 

Principal Component Analysis (PCA) is used to detect the pests for the provided Region of Interest (ROI).  The Xception model 

is utilized to classify the codling moths and general insects affecting the crops. The Raspberry Pi3 (RPi3) is utilized to collect 

images in a single board computer and helps detect the pests accurately. The hybrid energy harvesting system is a 

combination of solar, wind and grid harvesters. Li-Po battery with 1820 mAh is utilized to charge the Hybrid system using the 

Xception model. The experimental results show that the proposed hybrid energy harvesting system consumed minimum energy 

of 118.2 J while the existing methods, such as Smart Energy Harvesting using Wireless Sensor Networks (SEH-WSN) and 

Long Range – Low Power Wide Area Networks (LR-LPWAN), consumed energy of 129.8 J and 124.5 J respectively. 

Keywords -  Energy neutrality, Hybrid energy harvesting system, Internet of things, Raspberry pi, Smart agriculture. 

1. Introduction 
The increase in the world’s population leads to an 

increase in the demand for food production. According to the 

report of the Food and Agriculture Organization (FAO), it is 

estimated that the world population will reach around 9.1 

billion in the year 2050. To provide sufficient food for the 

population, food productivity must be improved by 70% 

[1,2]. Moreover, the factors such as crop diseases, drought, 

and weeds may lead to a severe drop in food productivity [3]. 

Therefore, precise and periodic monitoring of the plants' 

health conditions has become a significant process [4]. The 

development of sensor technologies enabled IoT applications 

and helped to improvise the quality and quantity of 

agricultural production with cost reduction [5]. IoT 

technology has paved the way for developing various 

techniques such as Wireless Sensor Networks (WSN), edge 

computing, and other web services applicable for various 

farming applications such as irrigation, growth monitoring, 

fertilization, etc. [6]. Generally, the IoT sensors consist of 

AC grids where complexity occurs in their construction and 

lacks in providing long-term energy supply. This energy 

issue has limited the construction of IoT networks in the 

sensor networks related to agriculture [7].  

 

More than that, providing electrical supply to the 

Wireless Sensor Networks (WSN) and IoT in remote areas is 

quite challenging to develop smart agriculture techniques [8]. 

In ordinary natural farming, farmers need to visit the 

agricultural fields to compute the condition of crops. On 

average, farmers need to spend around 70% of their time 

evaluating and understanding the crop’s condition [9]. The 

emergence of pests and illnesses during crop development is 

intimately tied to climate change. IoT technology collects 

information about entities [10,26] and allows for an easy way 

to monitor crop growth activities in real-time. However, 

most farms are generally located in remote areas with limited 

access to infrastructure, limiting the development and use of 

agricultural IoT technologies [12,13]. The sensors equipped 

with the nodes of IoT gather the relevant data from the 

environment and help to maintain the balanced agricultural 

ecosystem. Alternate energy sources are necessary for 

sustainable smart agricultural farming to create a high-

intensity environment without creating an energy demand 

[14,15].   

 

The major contributions of this research are listed as 

follows: 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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1. The improvisation and description of smart traps related 

to IoT have been done in the absence of human 

intervention. 

2. The Xception model is trained and optimized to detect 

and classify the codling moths and general insects. 

3. The hybrid energy harvesting system is utilized to 

charge the Li-Po battery with an 1820 mAh battery. The 

hybrid energy harvesting system combines solar, wind, 

and grid harvesters.  

 

2. Research Gap 
The limitations observed from the existing research are 

high energy consumption, low consideration of climatic 

conditions for real-time energy harvesting applications, 

interface issues, more processing time and computational 

time, high-cost maintenance, and time delay. To overcome 

this limitation, an energy harvesting system is proposed to 

achieve the state of energy neutrality in IoT-based smart 

agricultural systems. An MPPT algorithm is employed in the 

system to neutralize the energy received from the solar 

panels and transmit it to the harvesting system. The PCA is 

used to detect the pests in the ROI. This experiment's output  

results constitute the development of a smart agriculture 

system and better detection of pests.   

 

The rest of the paper is structured as follows: Section 2 

is discussed the related works. The proposed method is 

presented in Section 3. The results and analysis of the 

proposed method are discussed in Section 4; finally, the 

paper's conclusion is presented in Section 5.  

 

3. Related Works 
Himanshu Sharma [16] has introduced a framework to 

provide an enhanced life for the applications related to Smart 

Energy Harvesting using Wireless Sensor Networks (SEH-

WSN). The introduced framework improves the life span of 

WSN networks using the SHE method. The SHE-WSN 

framework consists of a battery charging circuit and solar 

panels attached to the nodes of WSN. The nodes in WSN 

sense the activities based on the duty cycle, and this sensed 

data is transferred to the sink node. These sink nodes perform 

communication directly with the sensors and help in 

agricultural activities. The framework increases the network 

throughput and improvises the lifespan of WSN. However, 

the energy consumption of SEH – WSN nodes are higher in 

the absence of optimization algorithms.  

  

Murtaza Cicioglu and Ali Çalhan [17] have introduced a 

sensitive agriculture-based integrated system on WSN and 

drone communication. The sensors with various packets were 

created, and these packets were transmitted to the 

coordinator node. The drone was utilized to gather the 

information of appropriate packets from the coordinating 

nodes, and the transmission of packets takes place at the 

gateway to reach the target. The integrated system provides 

better results with less delay and throughput, which is valid 

for applications related to smart farming. However, the 

integrated system does not consider the geographical 

conditions and climatic effects while accessing smart 

farming applications.   

 

Weidang Lu [18] has introduced an architectural design 

of smart agriculture using Simultaneous Wireless 

Information and Power Transfer (SWIPT). The 

communication of SWIPT with the WSN was categorized 

into two stages; in the first stage, the information was 

transferred from the source sensors to the relay sensors and 

destination sensors. The relay sensors utilize a specific part 

of the subcarriers to gather the information, while the 

destination sensors utilize all the subcarriers to gather the 

information. The system achieved maximum energy 

efficiency by using the transmitted information from the 

optimized power allocation to transmit energy and 

information. Due to the process with the single sensor node, 

interference problems occurred during the transmitting and 

receiving of the information. 

 

Himanshu Agarwal [27] has introduced a product 

density model for the IoT-enabled base station to provide 

precision agriculture. Moreover, the model utilized an 

improved duty cycling algorithm to attain better energy-

neutral operations and improvise the network’s life span. The 

improved duty cycling algorithm was utilized to select an 

optimal path for data transmission and helped to discover the 

possible pathways from the source node to the base station. 

The introduced product density model could model the time–

dependent random variations.  However, the product density 

model was not suited when it was tested with the networks 

based on physical IoT.  

 

Tran Anh Khoa [20] has introduced a topology with the 

sensor nodes to monitor the level of water and moisture 

content present in the soil and rain prediction sensors using 

Long Range – Low Power Wide Area Network (LR-

LPWAN). The circuit board containing LoRa-LPWAN was 

optimized by conjoining the layers and software 

implementation. The system detects the measured values and 

intimate the users through a network or mobile applications. 

The LoRa-LPWAN can monitor two or more agricultural 

fields with the same mobile app, which has varying growth 

schedules. However, the system stores and computes the data 

to detect an optimal solution.  

 

Zhixin Wang [21] has introduced a Hybrid Energy 

Harvesting Device (HEHD), which was utilized in 

converting wind and solar energy into electrical energy to 

provide a self-powered smart agricultural system. The HEHD 

was a combination of electromagnetic generators, 

triboelectric Nanogenerators and solar cells to collect energy. 

In HEHD, the rotational motion was transformed into 

translational motion using a transverse connector. The 
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HEHD method helped in self-powered sensor nodes in smart 

agricultural applications. However, the buck-boost unit in 

HEHD minimized the matching impedance and led to a time 

delay.  

 

Lili Xia [22] introduced a hybrid energy harvester which 

was a combination of solar and wind with an oscillation-

induced function. The hybrid harvester utilized a vibrational 

device to create electrical energy. When the harvester is 

placed in good lightening conditions, it helps maintain a 

stable state and optimize the power efficiency. Similarly, 

during poor lighting conditions, the harvester utilized a 

specified control unit to clean the Photovoltaic (PV) panels. 

However, the introduced hybrid harvester requires a high 

cost to maintain the PV panels at regular time intervals.  

 

Lei Hu et al. [23] developed an electromechanical 

quality of a hybrid broadband wind energy harvester to 

monitor smart agriculture in the loess plateau. A wide-band 

Energy Conversion Device (ECD) that combines a 

Triboelectric Nanogenerator (TENG) with an 

Electromagnetic Generator (EMG) was implemented to 

collect wind energy across various wind speeds effectively. 

To optimize the wind energy usage by  TENG and minimize 

energy dissipation, the team implemented an optimized 

Scotch yoke mechanism. An extension of the deflector into 

the fan significantly diminished the start-up wind speed and 

enhanced a device's capability to capture wind energy. In 

order to ensure stability and extend an ECD service life, an 

omnidirectional conductive foam was utilized as both 

electrode and friction substance. This method should focus 

on stable wind patterns because wind patterns may vary 

throughout different seasons and locations, which could 

impact the harvester's overall energy generation and 

reliability. 

Pengfei Chen et al. [24], a Fur-Brush Triboelectric 

Nanogenerator (FB-TENG) was implemented to harvest 

water and wind energy in smart agriculture. This method 

utilized naturally available animal furs in the FB-TENG due 

to their exceptional characteristics, including exceedingly 

low wear, great performance, and resistance to humidity. 

Compared to conventional TENGs, FB-TENG demonstrated 

remarkable durability and robustness even at low driving 

torque, durability to minimal friction and wear caused by 

gentle fur material. FB-TENG maintained a consistent output 

efficiency regardless of fluctuations in environmental 

humidity due to the density of its furrows. It exhibited 

stability even when exposed to a wide range of humidity 

levels, ranging from 40% to 90%. Through the utilization of 

a counter-rotating structure, the relative rotation of the fur 

disk and electrode disk in an FB-TENG was able to 

effectively amplify the output current and significantly 

enhance the overall output power. However, the energy 

generation potential of the FB-TENG may be limited in dry 

regions or during drought periods. To ensure optimal 

performance, a sufficient and consistent water source was 

required for water-based energy harvesting in the utilization 

of TENG methods. 
 

Xinqing Xiao et al. [25] developed a temperature 

monitoring method to store food based on solar energy 

harvesting and wireless charging. A method integrated 

wireless temperature sensing, solar energy harvesting and 

wireless charging capacities. The performance of wireless 

charging among sensor nodes and transmitters was analyzed, 

along with the energy utilization of the wireless sensor node. 

The performance of the wireless temperature monitor was 

evaluated;  the formation and optimization of wireless 

charging and solar energy harvesting-based temperature 

monitoring methods were also assessed. An implemented 

system efficiently enables real-time wireless temperature 

monitoring by utilizing wireless charging and solar energy 

harvest, ensuring food's condition and safety during storage. 

However, in this method, food storage containers or devices 

should be monitored in close proximity to the charging 

station; for effective charging and temperature monitoring, 

the system had a defined charging range. 
 

4. Harvesting System using IoT Technology 
The hybrid energy harvesting system is intended to be 

based on IoT technology which can collect more data from 

vast areas. This paper utilized a hybrid energy harvesting 

system which is a combination of solar, wind and grid 

harvesters. Figure 1 depicts the schematic process involved 

in energy harvesting. 
 

At the initial stage, the grid stations are used to produce 

power of 230v, and the transfer of energy from one source to 

other devices takes place using an isolation transformer. 

Moreover, the conversion of AC to DC takes place, and 

additional noises are removed using rectifiers and filters.  

The solar energy is harvested using 12 volts of solar 

photovoltaic cells, which are used to generate the energy per 

unit area obtained from the sun in the form of 

electromagnetic radiations, where these photovoltaic cells 

directly convert the energy into DC electric energy. Wind 

energy uses the wind to produce kinetic energy through wind 

turbines to turn electric generators for electric power.  The 

wind machine torque changes its rates of the angular moment 

based on the wind speed and pitch angle. The useful load of 

energy generated by wind on the rotor is transmitted to the 

asynchronous machine and generates AC electricity. The 

universal Bridge converts this AC electricity to DC 

electricity and transmits it to the booster. The energy from 

solar, wind and grid harvesters is stored in 200 volts, 6.5Ah 

Ni-MH battery and then transmitted to the various nodes. At 

the initial stage, the sensors are plotted in the agricultural 

field on every corner of the field; these sensors emit UV light 

attracting pests and insects towards it. The sensors which 

emit UV light are charged using an energy harvesting model, 

which is a combination of grid, solar and wind energy. 
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Fig. 1 Block diagram of the process involved in hybrid energy harvesting 

The grid station generates a constant 230v at 50 

frequencies. The solar photovoltaic cells generate 12 volts. 

The energy harvested from the three sources is stored in an 

1820 mAh LiPo battery. According to the count of the total 

number of pests in the sensor area, the voltage passes 

through a voltage regulator and the voltage is converted from 

AC to DC using a voltage converter. The presence of pests is 

captured using an image sensor (Sony IMX219) which 

captures the pests' image and classifies the insects using 

bounding boxes. The red box indicates the presence of 

codling moths (harmful insects), and the blue box indicates 

the presence of general insects (non-harmful insects). Thus 

the model effectively classifies the presence of insects and 

helps in precise agriculture. 

4.1. Implementation of Hardware Components 

Each trap is designed based on a customized platform 

which consists of a low-power image sensor to gather 

images, Raspberry Pi from a single board computer, and a 

hybrid energy harvester for collecting and storing the energy.  

 

4.1.1. Sensing 

The image sensor called Sony IMX219 is utilized, 

which is a low-power back-illuminated image sensor. This 

has been made up of 1.12μm pixel technology, which is 

highly sensitive and requires a minimal number of 

components. The image sensor combines the circuit at black 

level calibration and helps to lower the computation. 

Moreover, it instructs the sensors to minimize the 

consumption of power. 

 

4.1.2. Processing 

The pre-processing takes place in two stages; at the 

initial stage, the Raspberry minicomputer is used to regulate 

the sensor's acquisition and helps process the images. The 

Pi3 version is utilized in this process due to its computing 

ability, energy demand, and lower cost. The next stage 

contains a neural accelerator known as Intel Neural Compute 

stick which reduces the inference time. 

4.1.3. Transmission 

The Long-Range modulation is equipped with the smart 

trap, and the connection is offered with the help of the 

RFM95W transceiver. The 2dB gain is obtained during the 

connection of LoRa IC with an antenna.   

 

4.1.4. Power Supply 

The power supply for the whole integrated system is 

provided by a LiPo battery. The combination of solar, wind, 

and grids are directly connected with the energy harvester, 

which charges the Li-Po battery with 1820 mAh. The power 

supply contains two types of converters connected to it. The 

first one is regulated by MCP1812, which generates 3.3V to 

a microcontroller. The second one is the Boost converter 

which offers a stable power of 5v to the Raspberry Pi. A 

battery fuel gauge is utilized for the process of monitoring 

the condition of the battery. Moreover, the battery fuel gauge 

is responsible for handling the harvesting process by 

providing better battery life without the presence of the 

farmer’s supervision.  

 

4.2. Pipeline for Region Detection  

The pipeline is defined as the collection of components 

utilized during the processing of the flow of data in its 

manner. After capturing the image and segregating the 

harmful pests, the smart trap performs the multi-stage 

process. The automated pipeline for the detection of pests is 

represented in Figure 2. 

 

The pipeline process utilizes sliding windows and 

trained image classifiers. The classifiers are utilized in the 

concept of sliding windows at various Regions of Interest 

(ROI). A part of the captured image of an insect is known as 

ROI. The regular arrangement is performed densely over the 

ROI, and a large amount of overlapping occurs above the 

image. The overlapping that occurred over the images can be 

rectified using a Gaussian filter which effectively smoothens 

the image by removing unnecessary pixels.   
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Fig. 2 Flow diagram of detection of pest 

The filtered image undergoes the edge extraction 

process, which is performed using a canny filter that selects 

the ROI with maximum probability. After the detection 

stage, ROI is analysed by an algorithm, namely Principal 

Component Analysis (PCA) algorithm, to detect the pests. 

4.3. Edge Accelerator  

The edge accelerator is generated based on a System on 

a Chip (SoC) aided specifically for the DL models. Various 

corporations have produced different hardware to improve 

the performance of algorithms related to deep learning. This 

research analyzed three kinds of platforms such as Intel 

NCS2, Nvidia Jetson Nano, and Google Coral USB TPU.  

 

4.3.1. Consumption of Energy 

Energy is considered one of the significant sources of 

battery-powered edge accelerators. The Jetson Nano is the 

most power-hungry platform in terms of energy 

consumption, requiring up to 10W when utilizing the GPU 

during inference. On the other hand, Google TPU consumes 

about 5W of electricity. The power usage is comparable for 

Intel NCS, which consumed 2W for the accelerator and 3W 

for Raspberry Pi.  

 

Maximum Power Point Tracking (MPPT) 

This research utilized hardware-based MPPT to attain 

energy neutrality. MPPT comprises a switching mode power 

converter and Maximum Power Point (MPP) controller to 

regulate the impedance and provides maximum power to the 

energy buffer and the load. MPP attains this variation by 

evaluating the voltage and current. For the DC sources like 

solar energy and wind energy, the MPP is utilized as a 

combination of voltage and current that enhance energy 

efficiency and helps to achieve neutrality. The MPPT 

determines voltage and current, which is used to evaluate the 

input intensity of the energy harvesting model. For example, 

the MPP of solar energy is determined by the intensity of the 

solar light and the temperature. 

 

Similarly, for wind energy, the rotational speed sensor is 

utilized. Energy neutrality is attained only when the 

harvested power is higher than the minimum power 

consumption of the system. Additionally, in most hardware-

based MPPTs, maintaining a low overhead is an easy task. 

The overall process involved in Maximum Power Tracking 

Algorithm is presented in Figure 3. 

4.3.2. Performance 

Model inference time for execution is an important 

statistic for sensory systems. The Nvidia Jetson has the most 

processing capability of the three systems studied, tailed by 

Google TPU. Less power consumption takes place using 

Intel NCS 2, and it is fully adequate for the suggested 

solution, which does not need hard real-time ML job 

execution. Because this research is focused on energy saving, 

the Intel NCS2 was chosen to operate as a neural accelerator 

for the suggested application. 

 

4.3.3. Availability 

The systems and configurations evaluated were also 

limited by hardware availability. The design space 

investigation includes analyzing the three neural accelerators. 

Among the three, Intel NCS2 provides optimal trade-offs in 

its performance, consumption of energy, and compatibility. 

 

4.3.4. Principle Component Analysis 

The Principal Component Analysis (PCA) is a 

significant process in the orthogonal linear transformation of 

the ROI.  PCA highlights the dissimilarity and removes the 

unnecessary part of the image. Moreover, it detects the mean 

value of the data and evaluates the principal components. 

PCA is best suited for performing extracting the essential 

features from the ROI image. PCA is utilized for different 

operations on the image matrix to convert it to a low-

dimensional Eigen subspace. The Eigenvectors with 

maximum value are deliberated as principal components. The 

steps involved in the PCA algorithm are presented below:  

1. Collect the input data from the ROI 

2. Evaluate the mean value 

3. Subtract the mean from every individual data 

4. Evaluate the Eigenvector and the Eigenvalues 

5. Detect the maximum Eigenvalue 

6. Compute the weight 

 

The set of Eigenvectors is known as Eigen's face, which 

is utilized in the process of detecting the image of pests. This 

Eigen's face extracts the significant features from the image 

obtained from ROI. In this research, 𝐾 images are obtained 

which is based on the number of trained images from ROI 

and the loaded images are denoted as 𝐿, which is presented in 

Equation (1) as follows: 
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Fig. 3 Flowchart of MPPT 

𝐿 = {𝛤1, 𝛤2, … , 𝛤𝐾}                             (1) 

Where 𝐿 is the loaded image and the trained 𝐾 image is 

denoted as Γ𝐾 . 
 

After the process of loading, the next step is to evaluate 

the mean value, which is denoted as �̅� and it is evaluated 

using Equation (2) as follows: 

�̅� =
1

𝐾
∑ 𝛤𝐾

𝑛=𝐾
𝑛=1                            (2) 

Then subtract the mean face from each image which is 

known as normalization. The outcomes obtained from the 

normalization process get stored in a new matrix. This step is 

mathematically represented in Equations (3) and (4) as 

follows: 

𝜙𝑛 = 𝛤𝐾 − �̅�                            (3) 

𝐷 = 𝜙1,𝜙2, … , 𝜙𝑛                       (4) 

Where 𝜙𝑛 is the variable of normalization, �̅� is the 

average face, and 𝐷 is the matrix. 

After the stage of normalization, a normalized face 

vector is obtained. Then, the matrix co-variance is evaluated 

for the normalized vector, which is presented in Equation (5) 

as follows: 

𝐶 = 𝐷𝐷𝑇𝑠                              (5) 

Where 𝐶 is the co-variance matrix of matrix 𝑠. 
The effective calculation of the Eigenvalue provides 

Eigenvector with a reduced space vector. For the process of 

image detection, the weight of the image is evaluated based 

on Equation (6) as follows: 

𝜔𝐾 = 𝜇𝑇(𝛤𝐾 − �̅�)                          (6) 

Where 𝜔 is the weight and the Eigenvector is denoted as 

𝜇.  

4.4. Xception Neural Network 

The weighted image obtained from the PCA algorithm 

proceeded with the classification process. In this research, 

the Xception neural network is used for classifying pests. 

The Xception Neural Network is an enhanced form of the 
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InceptionV3 model, which is a structure of the deep neural 

network and is depth-wise separable. There are about 36 

convolutional layers present, which are categorized into 14 

blocks. The depth-wise separable layers present in the 

Xception model undergo convolution at every individual 

layer for each channel. The Xception takes place as an 

ordinary convolution process and performs 3 × 3 operation 

after the completion of 1 × 1 convolution. The architecture 

of the Xception model is presented in Figure 4.  

 

In Figure 4, initially, the data travels through the 

entrance gateway and to the middle gateway, where the 

process is repeated eight times and then goes over the exit 

gateway. Normalization must be done for all the 

convolutional layers and the separable layers. For a standard 

convolutional layer, the input size of the feature map is 

considered as 𝐷𝐹 × 𝐷𝐹 × 𝑀 and the size of the feature map at 

the output side is assumed as 𝐷𝐹 × 𝐷𝐹 × 𝑁. Where the width 

and height of the spatial map are represented as 𝐷𝐹 . The 

number of input channel and the number of output channel is 

represented as 𝑀 and 𝑁, respectively. The formula utilized 

for the computation of the output feature is represented in 

Equation (7) as follows:     

𝐺𝑘,𝑙,𝑛 = ∑ 𝐾𝑖,𝑗,𝑚,𝑛 .𝑖,𝑗,𝑚 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚             (7) 

 

Where the depth convolutional kernel is denoted as 𝐾, 
and the output of the feature map is represented as 𝐺.  
The cost for computation of standard convolution is 

represented as follows, 

𝐷𝑘.𝐷𝑘.𝑀. 𝑁. 𝐷𝐹.𝐷𝐹                                                 

Where the spatial dimension of the kernel is denoted as 

𝐷𝑘. 

 

The depth of the convolution for each input channel is 

represented in Equation (8) as follows, 

�̂�𝑘,𝑙,𝑛 = ∑ 𝐾𝑖,𝑗,𝑚,𝑛 .𝑖,𝑗,𝑚 𝐹𝑘+𝑖−1,𝑙+𝑗−1,𝑚           (8) 

Where the filtered feature map is denoted as �̂� and the 

filtered convolutional kernel is denoted as 𝐾.̂    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 Architectural diagram of the Xception model 
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The training of the Xception model is performed using 

the categorical cross-entropy function, which is evaluated in 

Equation (9) as follows, 

𝑙𝑜𝑠𝑠 = − ∑ �̂�𝑖1𝑙𝑜𝑔𝑦𝑖1 + �̂�𝑖2𝑙𝑜𝑔𝑦𝑖2 + ⋯ + �̂�𝑖𝑚𝑙𝑜𝑔𝑦𝑖𝑚
𝑛
𝑖=1

            (9) 

Where the number of samples is denoted as 𝑛, and the 

number of classifications is denoted as 𝑚. 
 

4.4.1. Training the Xception Model 

The dataset is trained in an automated way by image 

processing technique. The relevant features are extracted 

from the raw images and created tiles with the insects and 

codling moths. The dataset consists of around 1100 images, 

and 30% of them are utilized for the process of validation. 

The images present in the dataset can be enhanced by 

integrating the augmentation techniques prior to training. The 

model is trained for about 100 epochs where the size of 

images is around 52 × 52. During the training process, the 

Xception model performed better training without 

overfitting.  
 

4.4.2. Augmentation of Data and Optimization of Network       

Building bigger and larger neural networks have 

contributed significantly to deep learning's effectiveness. 

This helps the models to perform better on certain tasks, but 

it also increases their cost of usage. Larger models require 

more storage space, making them more difficult to allocate. 

Higher versions take longer to run and may need more 

expensive hardware. The optimization step seeks to minimize 

the model's size while minimalizing accuracy or 

performance. This enables faster examination while avoiding 

loss in accuracy. The suggested execution optimizes the 

model in the period of training and before training the model. 
 

4.4.3. Augmenting the Data 

In this research, data augmentation is performed to 

enhance the count of images during training. The images of 

the trap from the drone view show that the images will not 

modify the labels' classes during the rotation or flipping 

period.  
 

4.4.4. Pruning 

The neural network's pruning is one technique where 

insignificant neurons are removed from the trained model. 

The pruning can be performed in various ways, such as 

pruning the weights by citing the separate constraints to zero, 

and entire nodes present in the network can be removed from 

the network to maintain the accuracy of the large network at 

their initial stage. Pruning helps to enhance the accuracy of 

the network. Pruning the network takes place during the 

training period and helps achieve the required accuracy 

during the validation stage.  

 

4.4.5. Optimization 

The optimization is performed after the stage of training 

where the complexities present in the network are lowered 

and enhance the evaluation speed. The faster inference of the 

deep learning model is performed by merging the nodes, 

constant horizontal fusion, and normalization of batches. 

Moreover, the unused layers present in the network are 

dropped out in the stage of training.   

5. Results and Analysis 
In this research, the occurrence of codling moths is 

monitored twice a day. The flow of the process in the smart 

trap is represented in the following steps. 

• Initially, the power is switched ON (start) 

• The image of trapped insects is captured (P1) 

• The captured images are pre-processed (P2) 

• Next, the classification algorithm is executed (P3) 

• The results were sent using the radio (P4)  

• After this process, the power is switched OFF (End)  

 

These steps are utilized to describe the performance of 

smart traps in energy consumption and accuracy. The image 

of the evaluated photo is shown in Figure 5, where the 

codling moths are bounded by red boxes and the other 

insects are bounded by blue boxes. 

 

The results are analysed based on the performance of the 

Xception model with other models, and the comparison is 

performed with the existing energy harvesting models 

discussed in the related works. 

 
Fig. 5 Image of annotated photo 

5.1. Experimental Setup 

The proposed model is built with hardware components 

such as an image sensor called Sony IMX219 for sensing, 

RFM95W transceiver, Raspberry Pi3 and Li-Po battery with 

1820 mAh to store the power. Moreover, the implementation 

of the proposed research is done using MATLAB. The 

experimental setup of Raspberry Pi3 with Sony IMX219 

image sensor is shown in Figure 6 as follows: 
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Table 1. Energy consumption of the networks 

Process 
Raspberry Pi 

MobileNetv2 

Raspberry 

Pi 

LeNet 

Raspberry 

Pi VGG16 

Raspberry 

Pi Xception 

Raspberry Pi 

MobileNetv2 

with Intel 

NCS 

Raspberry 

Pi LeNet 

with Intel 

NCS 

Raspberry 

Pi VGG16 

with Intel 

NCS 

Raspberry 

Pi Xception 

with Intel 

NCS 

Start(J) 40.7 40.7 40.7 40.7 40.7 40.7 40.7 40.7 

P1(J) 2.171 1.674 1.733 1.423 2.427 2.177 2.359 2.121 

P2(J) 6.125 5.453 6.491 4.632 6.923 7.054 7.041 7.012 

P3(J) 119.1 57.4 114.3 53.5 70.34 59.04 73.53 55.34 

P4(J) 2.147 2.147 2.147 2.147 2.273 2.273 2.273 2.273 

End(J) 15.85 15.85 15.85 15.85 21.97 21.97 21.97 21.97 

Total(J) 186.1 123.2 181.2 118.2 144.6 133.2 147.9 129.4 

 

 
Fig. 6 Experimental setup of Raspberry Pi3 with image sensor 

5.2. Performance Analysis 

This subsection helps to evaluate the performance of the 

Xception model with the existing models such as LeNet-5, 

VGG-16, and Mobile NetV2. The performance is evaluated 

based on the energy consumption rate, accuracy, recall, 

precision and F-score. The energy consumption of the 

aforementioned networks is compared with the Xception net 

in Table 1 as follows.  

The Raspberry Pi3 is utilized in evaluating the networks. 

Moreover, the performance is individually analysed with the 

presence and absence of Intel NCS. The energy consumption 

of the Li-Po battery with 1820 mAh with RPi3 is evaluated 

and tabulated as follows.The results from Table 1 show that 

the Xception model consumed minimum energy and helped 

enhance the Li-Po battery's lifespan with 1820 mAh. The 

Zception model consumed minimal energy of 118.2J and 

129.4 J with Intel NCS. The Xception model undergoes 

convolution for depth-wise layers of the network. Moreover, 

it can perform large image classification for large datasets. 

The performance of the classifiers is valued in terms of 

training accuracy and validation accuracy, as shown in Table 

2. Xception model proceeded for training accuracy and 

validation accuracy. The graphical representation for LeNet, 

VGG 16, MobileNetV2 and Xception net is represented in 

Figure 7. 

Table 2. Analysis of accuracy for various classifiers 

Epochs Training Accuracy Validation Accuracy 

LeNet-5 

1 0.81 0.8 

2 0.84 0.81 

3 0.8 0.82 

4 0.89 0.83 

5 0.83 0.83 

6 0.9 0.91 

7 0.92 0.92 

8 0.94 0.93 

VGG 16 

1 0.91 0.97 

2 0.95 0.94 

3 0.97 0.98 

4 0.96 0.96 

5 0.97 0.98 

6 0.98 0.99 

MobileNetV2 

1 0.81 0.8 

2 0.84 0.81 

3 0.8 0.83 

4 0.89 0.84 

5 0.83 0.84 

6 0.93 0.92 

7 0.94 0.95 

8 0.95 0.96 

Xception Net 

1 0.7 0.69 

2 0.7 0.69 

3 0.81 0.83 

4 0.82 0.84 

5 0.93 0.96 

6 0.97 0.99 
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Table 3. Performance evaluation 

Networks Precision (%) F-score (%) Accuracy (%) Recall (%) 

LeNet-5 99.5 97.1 96.1 94.3 

VGG 16  99.6 98.5 97.9 97.4 

Mobile Net V2 98.5 96.4 95.1 94.5 

Xception Net 99.9 99.7 98.6 97.7 

 

 
(a) 

 
(b) 

 
(c) 

           
(d)

Fig. 7 Graph for comparison of training and validation accuracy of (a) LeNet-5, (b) VGG 16, (c) MobileNetV2, and (d) Xception Net

 
Fig. 8 Graphical representation of networks in terms of performance 

metrics 

Similarly, the performance of the Xception model is 

evaluated for accuracy, recall, precision and F-score. Table 3 

symbolizes the performance of the Xception model when 

compared with LeNet-5, VGG 16 and Mobile Net V2.   The 

results of Table 3 are graphically represented in Fig 8. 

The overall results from Table 3 show that the Xception 

model achieved better performance in all metrics compared 

to the remaining networks. It has attained a classification 

accuracy of 98.6% while remaining networks such as LeNet-

5 (96.1%), VGG 16 (97.9%) and Mobile Net V2 (95.1%). 

The depth-wise convolution layer present in the Xception 

model helps to attain better performance when compared 

with other network models. 
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Table 4. Comparative table 

Methods Accuracy (%) 
Energy consumption 

(J) 

SEH-WSN [16] 96.2 129.8 

LR-LPWAN [18] 94.5 124.5 

ECD-TENG [23] 95.3 123.3 

FB-TENG [24] 96.8 121.6 

Xception Net 98.6 118.2 

 

Fig. 9 Comparison analysis of the proposed method with existing 

methods 

 

5.3. Comparative Analysis 

In this subsection, the effectiveness and efficiency of the 

Xception model are compared with the existing models 

utilized in harvesting energy. The comparison is performed 

for parameters such as accuracy and energy consumption 

rate. The efficiency of the Xception model is compared with 

Smart Energy Harvesting using Wireless Sensor Networks 

(SEH-WSN) [16], Long Range – Low Power Wide Area 

Networks (LR-LPWAN) [20], Energy Conversion Device 

that combines a Triboelectric Nanogenerator (ECD-TENG) 

[23], and Fur-Brush Triboelectric Nanogenerator (FB-

TENG) [24]. Table 4 represents the accuracy and energy 

consumption of the Xception model when compared with 

SEH-WSN, LR-LPWAN, ECD-TENG, and FB-TENG.  

 

The methods such as SHE-WSN [16], LR-LPWAN [20], 

ECD-TENG [23], and FB-TENG [24] are evaluated for the 

same experimental setup, which is mentioned in section 4.1 

to compute the effectiveness of the proposed method. The 

results of Table 4 are represented graphically, as shown in 

Fig 10. The results from Table 4 show that the Xception Net 

achieved a better accuracy value of 98.6% while SEH-WSN, 

LR-LPWAN, ECD-TENG, and FB-TENG attained an 

accuracy of 96.2%, 94.5%, 95.3%, and 96.8%. Moreover, the 

Xception model consumed less energy of 118.2 J which is 

comparatively lower than SEH-WSN (129.8 J), LR-LPWAN 

(124.5 J), ECD-TENG (123.3), and FB-TENG (121.6).  The 

depth-wise convolution layer present in the Xception model 

helps in accurately classifying the codling moth and general 

insects. 
 

6. Discussion 
The SEH-WSN [16] has achieved 129.8J of energy; 

however, this method has high energy consumption 

compared to the proposed method and also has power 

management issues. These are resolved with the proposed 

method's MPPT mechanism, which neutralizes the energy for 

efficient harvesting. The LR-LPWAN [18] has achieved 

124.5J of energy, but this method has an interface issue 

along with the improper selection of noes. The ECD-TENG 

[23] and FB-TENG [24] have achieved 95.3% and 96.8% 

accuracy, 123.3J and 121.6 J energy consumption. These two 

methods have the drawback of low system stability in 

generating energy. These drawbacks are addressed in the 

proposed research with the use of PCA and Raspberry Pi3.  

 

7. Conclusion   
Hybrid energy harvesting is envisioned to be a critical 

component to achieving energy neutrality for the Internet of 

Things-based Smart Agricultural Systems. This research 

introduced a hybrid energy harvesting model based on IoT 

technology. The hybrid energy harvesting model combines 

solar, wind, and grid harvesters. The Xception network is 

utilized to evaluate the images of harmful and non-harmful 

insects. The detection of pests is performed using the high-

level hardware configuration using Raspberry Pi3. This 

research helps the agricultural sector and economically 

improve farmers' status by providing better yields. The 

results obtained from the experiments show that the proposed 

method has achieved better accuracy of 98.6%, which is 

comparatively higher than the existing SHE-WSN, LR-

LPWAN, ECD-TENG, and FB-TENG with 96.2%, 94.5%, 

95.3%, and 96.8% respectively. In the future, research can be 

proceeded to reduce the energy in the process of pest 

detection using Raspberry Pi 4. 
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