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Abstract - The performance and health of lead-acid batteries used in various applications such as automotive, industrial, and 

renewable energy systems significantly impact their operational efficiency and longevity. Monitoring the performance of battery 

health in real time prevents failures and extends battery life. This paper proposes a lead-acid battery real-time monitoring 

system health and performance using a fuzzy logic controller and a Hardware-in-the-Loop (HIL) simulator. The proposed system 

measures critical battery parameters such as voltage, current, and temperature. It processes this data with fuzzy logic algorithms 

to calculate the battery's State of Charge (SOC) and State of Health (SOH). The HIL simulator provides a virtual platform for 

testing and validating the system in real time. The findings suggest that the proposed method can produce reliable estimates of 

battery SOH, making it a promising solution for real-time battery monitoring in various applications. 
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1. Introduction 
 Lead-acid batteries have been widely used for over a 

century in various applications, including automotive, backup 

power, and renewable energy storage systems [1]. However, 

as these batteries age, their performance and health gradually 

deteriorate, resulting in reduced capacity, shortened lifespan, 

and potential failure [2, 3]. To address these issues, 

researchers have developed several techniques for monitoring 

battery health and performance [4]. In recent years, real-time 

simulation has emerged as a powerful tool for battery 

monitoring and evaluation [5, 6]. Real-time simulators 

provide a virtual environment for testing and evaluating 

battery behavior under different conditions, enabling 

operators to identify potential issues and take corrective 

actions in a timely manner [7]. Real-time monitoring of 

battery health and performance is crucial to prevent failures 

and extend battery life [8]. 

  

 Despite the advancements in battery monitoring 

techniques, there still exist research gaps and challenges in 

effectively monitoring the health and performance of lead-

acid batteries. One major challenge is accurately estimating 

the state of health (SOH) of the battery, considering 

uncertainties in battery parameters such as temperature, aging, 

and load variations [9, 10]. Traditional monitoring approaches 

often struggle to handle these uncertainties, leading to 

inaccurate estimations and ineffective maintenance strategies. 

Additionally, there is a need for a real-time monitoring system 

that integrates monitoring techniques with advanced control 

strategies to provide valuable insights for operators and 

decision-makers [11 -13]. 

  

 To address these research gaps, this paper proposes a 

novel real-time monitoring system for lead-acid batteries, 

utilizing fuzzy logic and a Hardware-in-the-Loop (HIL) 

simulator [14, 15]. By integrating a fuzzy logic controller 

(FLC), the system can effectively handle uncertainties in 

battery parameters, resulting in high-accuracy estimations of 

the battery's state of health [16]. The research aims to enhance 

the performance and longevity of lead-acid batteries, which 

are widely used in various critical applications [17]. The 

proposed monitoring system not only detects early signs of 

battery degradation using fuzzy logic algorithms but also 

provides valuable information for maintenance and 

replacement decisions [18, 19]. 

   

 To develop the monitoring system, the research team 

employs various experimental techniques, such as 

electrochemical impedance spectroscopy and cyclic 

voltammetry, to characterize the battery's behavior under 

different conditions [20, 21]. The data collected from these 
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experiments are used to develop an accurate model of the 

battery's behavior, which is then integrated into the HIL 

simulator [22]. This approach enables real-time monitoring of 

essential battery performance and health indicators, including 

state of charge (SOC), state of health (SOH), and internal 

resistance [23]. Moreover, the system incorporates a data 

visualization tool that presents the battery's performance 

parameters in real time, facilitating operators in promptly 

identifying potential issues and taking appropriate corrective 

actions [24,25,26]. 

  

 In summary, this research addresses the research gap in 

real-time monitoring of lead-acid batteries' health and 

performance. By leveraging fuzzy logic and HIL simulation, 

the proposed monitoring system aims to accurately estimate 

the battery's state of health and provide real-time insights for 

effective maintenance and replacement strategies. The 

integration of advanced control strategies and data 

visualization tools enhances the capabilities of the monitoring 

system, contributing to improved battery performance, 

extended lifespan, and enhanced reliability in critical 

applications. 

  

 The rest of the paper is organized as follows: Section 2 

describes the battery modelling, while Section 3 presents the 

data collection and estimation techniques; Section 4 interprets 

the research findings and their implications; Section 5 presents 

the monitoring data and simulation results; and then the 

conclusion summarises the research work and its contribution. 

 

2. Battery Modelling and Real-Time Simulation 
2.1. Battery Model 

There are several types of models available for lead-acid 

batteries, including empirical, electrochemical, and circuit 

models. 

 

The electric circuit model is the best type of model for 

lead-acid batteries because it provides a good balance between 

accuracy and simplicity. The lead acid battery electric circuit 

concept is shown in Fig. 1. Considering that it is based on a 

straightforward equivalent circuit that is simple to incorporate 

in circuit simulators or control algorithms, it can provide 

accurate predictions of the battery's voltage and current 

behaviour under a variety of loads and situations. In the design 

and optimization of lead-acid battery systems for backup 

power, electric vehicles, and other applications, the battery 

circuit models are frequently used.  

 

 The equivalent circuit model for a lead-acid battery can 

be expressed mathematically as follows:                                         

𝑉𝑏𝑡  =  𝑉𝑂𝐶  –  I𝑅𝑖  –  𝑉𝑝𝑟  −  I ∗ (𝑅𝑒//𝐶𝑒)                      (1) 

 Where Vbt is the battery terminal voltage, VOC stands for 

the battery's open circuit voltage. The battery's current is 

represented by the symbol I, Ri is the battery's internal 

resistance., Vpr is the voltage drop across the concentration 

polarization layer, Re is the resistance of the battery's diffusion 

polarization layer, and Ce is the capacitance of the battery's 

diffusion polarization layer. 

 

2.2. Real-Time Simulation 

The Simulink simulation model is initially created and 

then modified in accordance with the subsystem separating 

rules and the RT-LAB model libraries. The RT-LAB system 

uses the original Simulink model to create parallel tasks, 

which are then executed on each CPU of the multi-CPU 

machine. Data is transferred between jobs using shared 

memory, which has very low latency. Additionally, the RT-

LAB system offers a unique feature called multi-step length 

computing, which enables calculating various modules of a 

complex model at different time steps. This feature enhances 

the precision and convenience of simulating a vehicle. 

 

The process of creating the model using RT-LAB 

software involves several steps. First, the model is divided into 

simulation nodes based on different subsystems. Then, 

MATLAB Real-Time Workshop generates code compiled in 

the real-time simulator. Once the model is compiled, it can be 

loaded and executed in real time. The model's battery part 

comprises approximately 100 series-connected battery cells, 

while the auxiliary part includes components such as the VCU, 

charger, motor, and cooling fan. These subsystems interact 

with each other and with the BMS. To ensure real-time 

calculations, the model is divided into two nodes. 

 

 The model-building process of RT-LAB software 

involves several steps. Firstly, the model is divided into 

simulation nodes based on different subsystems. Next, code is 

generated using MATLAB Real-Time model and compiled in 

the real-time simulator. The compiled model can then be 

loaded and executed in real time. The battery part of the model 

comprises around 100 series-connected battery cells, while the 

auxiliary part consists of the VCU, charger, motor, cooling 

fan, etc. These different subsystems interact with one another 

and with the BMS. To facilitate real-time calculation, the 

model is split into two nodes. 

 

 
Fig. 1 A battery electric circuit model of a lead-acid battery 
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3. State of Health (SOH) Estimation 
The actual SOH values are obtained with the help of the 

capacity fading method. This method involves measuring the 

battery's capacity (in Ah) at different states of charge (SOCs) 

and comparing the results to the battery's rated capacity. The 

capacity fading method can be implemented by performing a 

series of discharge tests at different discharge rates and 

measuring the battery's capacity at each discharge rate. The 

capacity fading method is based on the idea that the capacity 

of a lead-acid battery will decrease as the battery ages and its 

SOH declines. For example, if the rated capacity of a lead-acid 

battery is 100 Ah, and the capacity measured at a particular 

discharge rate is 95 Ah, the SOH of the battery can be 

estimated to be 95%. If the capacity measured at a different 

discharge rate is 90 Ah, the SOH can be estimated to be 90%. 

By comparing the measured capacities at different discharge 

rates to the battery's rated capacity, it is feasible to calculate 

the battery's SOH. Eq. 2 gives the measured value of Actual 

SOH. 

Actual SOH =  
Total Capacity (Ah)

Beginning of life (BOL) Capacity (Ah)
     (2) 

The life parameters of batteries were examined using the 

usual cycle counting approach based on the outcomes of the 

results. According to the results of the experiment, the number 

of cycles has an impact on the battery's life, the investigation 

is done on the battery's performance after prolonged use and 

the correlations between changes in battery discharge 

efficiency, energy efficiency, discharge capacity, internal 

resistance, and other factors are examined. Table 1 displays 

the results of the cycle counting method and the actual 

procedures. The true SOH is estimated using raw data from 

multiple measures. These Actual SOH values will be used to 

compare the results of the subsequent chapters. 

3.1. Estimation of SOH using Fuzzy Logic Controller 

During an experiment employing an FLC to estimate the 

SOH of a lead-acid battery, various parameters are typically 

measured and recorded. The parameters that are commonly 

measured are voltage, current, temperature, time, and SOH. In 

particular, the input variables to the fuzzy logic controller are 

voltage, current, temperature, and time, while the output 

variable from the controller is the estimated SOH.  

 

These parameters are crucial in providing insights into the 

battery's overall health and performance, which can be used to 

make informed decisions regarding the maintenance and 

replacement of the battery. Table 2 displays the fuzzy sets for 

the input and output variables. 

Each input and output variable in this table has a domain 

or range of possible values that it can take. A membership 

function for each variable determines the degrees of 

membership for each value inside its domain. The degree of 

membership for each value in the domain is denoted by the 

terms "high," "medium," and "low" in the membership 

function.  

 

For example, a voltage value of 13V would have a high 

degree of membership in the voltage input variable, while a 

voltage value of 8V would have a low degree of membership. 

Similarly, a SOH value of 95% would have a high degree of 

membership in the SOH output variable, while a SOH value 

of 30% would have a low degree of membership. 

 

Fig 2 shows Implement the fuzzy logic controller using a 

programming language, such as MATLAB/Simulink. The 

controller takes the input variables (voltage, current, 

temperature, and time) and calculates the output variable 

(SOH) based on the fuzzy rules and membership functions. 

Table 1. Comparison of conventional SOH and actual SOH 

No. of 

Cycles 

Cycle 

Counting 

Method 

Actual SOH 

(Offline 

Measurement) 

0 100 100 

100 65 70 

150 50 55.59 

200 30 40.21 

250 12.5 30.45 

300 0 17.32 

Table 2. Fuzzy sets 

Input/Output 

Variable 
Domain 

Membership 

Function 

Voltage 0-12 V High: 12-14V 

  Medium: 10-16V 

  Low: Outside range 

Current 0-12 A High: 4-6A 

  Medium: 2-8A 

  Low: Outside range 

Temperature 0-42°C High: 25-30°C 

  Medium: 20-35°C 

  Low: Outside range 

Time 0-4.2 h High: 3-5h 

  Medium: 2-6h 

  Low: Outside range 

SOH 0-100% High: 80-100% 

  Medium: 50-90% 

  Low: 0-80% 
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Fig. 2 Simulink model of fuzzy logic controller for estimating SOH 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 General architecture 

3.2. Implementing HIL-Based RT Lab System Architecture 

Firstly, the fuzzy logic controller emulates the lead-acid 

batteries' behaviour through integration with the HIL real-time 

simulator. The simulator creates a virtual environment to test 

and evaluate the battery's behavior in real time. Then, the 

fuzzy logic controller is tested using different input variables, 

and if necessary, the controller is refined. The controller must 

precisely predict the lead-acid batteries' SOH under varied 

circumstances. 
 

 

The OPAL-RT Real-Time Digital Simulator (RTDS) 

model OP4510, which consists of a real-time Personal 

Computer (PC), a Central Processing Unit (CPU), and an 

FPGA, is the HIL device used in this work. 

The general architecture of RT-LAB is presented in Fig 

3, which utilizes a host-target model. During the design phase, 

the host is utilized to develop the model, and at runtime, it 

functions as a user interface that communicates with the target 

through Ethernet. The target PC is responsible for performing 

real-time computations and has a standard PC architecture, 

with one or two processors specifically allocated for Simulink 

model simulation. 

 

These processors are connected to the rest of the system 

and I/O via an FPGA board using a PCI or PCI-Express bus. 

The number of I/O modules can be configured based on 

application requirements. By utilizing FireWire or PCI 

Express real-time communication links and switches, multiple 
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targets can be interconnected to form a supercomputer with 

high computational power, making it ideal for real-time 

simulation of intricate systems. 

 

4. SOH Estimation with HIL Real-Time 

Simulator 
 The steps taken to estimate the SOH using a HIL real-time 

simulator are as follows:  

  

 Set up the HIL real-time simulator to simulate the 

battery's behavior accurately. This may involve configuring 

the simulator to simulate different battery chemistries, cell 

types, and other parameters. Collected data from the battery 

under different conditions. This may involve performing 

experiments such as cycling the battery through different 

charge and discharge cycles, subjecting the battery to different 

temperatures, and other similar experiments. After the data 

collection, the next process is to extract the relevant 

information. This may involve using signal processing 

techniques to analyze the data and identify features indicative 

of the battery's state. Machine learning algorithms are used to 

analyze the data and estimate the battery's SOH. These 

algorithms can learn patterns from the data and use them to 

predict the battery's behavior under different conditions. 

Finally, the results have been validated for the SOH 

estimation. This can be done by comparing the predicted 

behavior of the battery with its actual behavior under different 

conditions. 

 
SOH estimation with a HIL real-time simulator requires 

careful preparation, data collection, processing, and 

validation. By following these steps, we can obtain accurate 

estimates of the battery's SOH, which can be used to improve 

battery management and extend battery life. The HIL 

simulator can simulate the battery and its behavior in real-time 

while allowing the battery management system (BMS) to be 

connected and tested in a controlled environment.  

This approach can provide a more accurate estimation of 

SOH compared to traditional methods, as it considers real-

world conditions and usage patterns. Fig 4 shows the process 

involved in HIL Real-Time Simulator for BHPMS Design. 

The digital system-based process of designing various 

methodologies plays a major role in recent research works.  

 

These methodologies generally include the process of 

data collection, validation, and system verification. In our 

research work, the HIL-based BHPMS design methodology is 

provided for accurate estimation of SOC and SOH of a 

rechargeable battery by using the HIL simulator. 

 

5. Comparative Analysis  
The model was tested in the RT-LAB environment, and the 

findings showed that the simulator was effective. The output 

obtained from the HIL real-time simulator gives the estimated 

SOH value using our advanced NN-based BHPMS. The 

estimated SOH is compared with actual SOH (Measured from 

the characteristics of Lead Acid Battery), SOH estimation 

with FUZZY Logic with and without cranking and the 

conventional cycle counting method.  

 

The actual SOH is the benchmark value for the purpose of 

comparing it with the estimated SOH value. The results show 

that the FFNN-based BHPMS gives better results compared to 

the other methods. The HIL-based model was seen to estimate 

the expected/remaining battery life accurately, which is much 

similar to that of Actual SOH. 

 

A comparison of the remaining State of Health (SOH) 

estimated using the Simulink model and the Hardware-in-the-

Loop (HIL) model of the BHPMS is illustrated in Figure 4. 

Furthermore, Figure 4 shows that the expected or remaining 

battery life decreases as the battery ages for a 100% charged 

battery under varying constant temperatures of 28°C and 

40°C. As the temperature rises, the anticipated battery life also 

decreases. 

 

 
Fig. 4 HIL real-time simulator for BHPMS design 
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Fig. 5 Comparison of SOH estimation using simulink and HIL model 

6. Conclusion  
In the research carried out, the algorithms of SOH 

estimation were first developed using Neural Network & 

Fuzzy toolboxes in MATLAB, respectively. The algorithms 

of SOH estimations were then incorporated together in the 

Simulink model of BHPMS for the estimation of the SOH of 

the battery. The Simulink model of BHPMS was then 

transferred to the HIL-based RT LAB platform design 

methodology. The design methodology that was adopted 

includes a user-friendly interface that manages a unified 

environment along with other design tools, such as Xilinx ISE 

tools and other simulators and synthesizers for HDL that are 

widely used in the industry. The Simulink model also features 

the development of the BHPMS with no initial link to its 

implementation. 

 

Furthermore, preference was given to the MATLAB-to-

HIL design methodology to examine the product development 

cycle and decrease the design duration, which would offer a 

competitive advantage in terms of time-to-market. The 

Simulink flow also provides a cycle-accurate simulation 

capability for the system. Simulink model simulation results 

were also reviewed with the results of two different MATLAB 

tools, i.e., NN Toolbox and Fuzzy Toolbox and found that the 

Simulink model implementing the BHPMS was found to be a 

very efficient approach to indicate the SOH of battery. This is 

because; FFNN based Simulink model of BHPMS also has a 

high degree of confidence for control strategy & Advanced 

chip design. The Simulink model was simply used in the 

automatic generation of HDL codes, and then these HDL 

codes were used for BHPMS chip design. Thus, the Simulink 

model will be an easier and more convenient flow to develop 

HIL-based BHPMS, which reduces the product design time, 

and time-to-market and provides high performance. 
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