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Abstract - The fields of Computer Vision and Artificial Intelligence are rapidly developing technologies that hold promise for 

enhancing the economic viability of the Agriculture industry. This is an initiative to help strawberry exporters and growers to 

choose high-quality strawberries concerning their sweetness by automatically predicting the Brix values from their images. 

Using a novel dataset of 150 Strawberry images and their corresponding Brix values as labels, a deep learning algorithm called 

ResNet101 is utilized for feature extraction and different machine learning-based regression models are used for predicting Brix 

values. The image dataset is generated using a Logitech C920 HD camera, and each sample's instrumental Brix readings are 

collected using a Brix refractometer. Image augmentation is employed for the dataset enhancement. 70% of the entire dataset 

is used for training, and the remaining 30% for testing. With a high degree of Brix prediction accuracy, 96.3142%, the squared 

exponential GPR model is proven to be the best-fit model for this dataset. This method can significantly help provide high-

quality control requirements for the strawberry sector. An RMSE value of 0.4772 and a coefficient of determination value of 

0.8648 are the obtained performance evaluation metrics values during the prediction phase. Also, the MAE and MSE values 

obtained are 0.0233 and 0.2277, respectively. These findings show the possibility of combining deep learning with image 

enhancement to increase the precision of Brix value predictions for strawberries, and they may be a useful tool for enhancing 

the effectiveness and precision of quality control measures in the fruit business.  

Keywords - Automated strawberry brix prediction, Gaussian process regression model, Image data augmentation, Machine 

learning and deep learning techniques, Resnet101. 

1. Introduction  
In recent times, there has been an upsurge in interest 

regarding the integration of artificial intelligence (AI) and 

computer vision technology into various industries, including 

agriculture. The utilization of image analysis is a potentially 

advantageous approach to forecasting the quality of fruits and 

vegetables. The conventional techniques employed for 

assessing the quality of agricultural produce are prone to 

errors, lack dependability, and demand substantial human 

effort due to the laborious nature of manual inspection. Recent 

developments in artificial intelligence and computer vision 

have enabled researchers to design automated systems capable 

of accurately assessing the quality of fruits and vegetables by 

analyzing their visual characteristics. The significance of 

artificial intelligence in contemporary times is evident through 

examining academic literature, which facilitates an 

understanding of the pervasive integration of machine 

learning and deep learning methodologies across all aspects of 

human existence. Deep learning (DL) is a specialized area 

within the broader field of machine learning, which utilizes 

sophisticated algorithms to capture and represent complex, 

abstract concepts within datasets. The acquisition of these 

abstractions can be achieved through the utilization of a deep 

learning model without necessitating manual design. [1-2] A 

number of studies in the scholarly literature employ computer 

vision-based algorithms that utilize machine learning and deep 

learning methodologies to automate agricultural practices. [3-

10] At its fundamental level, deep learning can be 

comprehended as a technique for automating predictive 

analytics. [11-13] Deep learning applications can be applied 

in various ways in today's environment. Image recognition is 

a widely used application. [14] The utilization of deep learning 

algorithms for the automated identification of image features 

holds significant potential for various applications within the 
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agricultural sector. These applications include but are not 

limited to harvest yield prediction, [15-17] weed 

identification and management, [18] harvest/plant disease 

identification, [19-21] harvest quality prediction and 

evaluation, [22-23] and irrigation optimization. [24-25]   Deep 

learning algorithms offer several benefits over conventional 

methods, such as enhanced accuracy, the capacity to learn 

from unstructured data, the ability to extract features from data 

efficiently, and the capability to handle vast amounts of data. 

DL is having a significant impact in precision agriculture, 

where machine vision algorithms are used to detect and 

categorize various types of plants to improve crop production. 

The application of regression techniques based on deep 

learning is currently being employed within the agricultural 

sector.  [26-27] The regression technique allows for assessing 

the level of correlation between a dependent variable and an 

independent one. In order to utilize regression methodologies, 

it is necessary for two variables, denoted as y and x, to exhibit 

a mathematical association between their respective 

measurements, thereby enabling the prediction of the value of 

y based on a measurement of the other variable, x. Through 

the utilization of deep learning and computer vision 

methodologies, researchers are able to forecast various 

attributes such as shelf life, quality, and optimal harvesting 

time based on an uploaded image. It is a huge breakthrough 

for farmers worldwide, who can now better understand their 

yield for the running year and so. 

 

The quantification of sugar content in fruits, known as the 

Brix value, is a pivotal parameter in evaluating fruit quality 

and identifying the most suitable harvest periods. Numerous 

methodologies have been investigated for the purpose of 

predicting Brix values. However, the emergence of deep 

learning (DL) and its capacity to extract significant features 

from images has presented novel opportunities. Brix 

monitoring by destructive techniques includes sensory 

evaluation with the help of sensory panels, tools like 

refractometers, hydrometers, and liquid chromatography. 

Conventional techniques for measuring Brix entail arduous 

and time-consuming manual procedures, which frequently 

lead to imprecise measurements and delays in obtaining 

accurate results. [28] The precise estimation of Brix values in 

strawberries is of paramount importance in guaranteeing 

quality assurance, efficient post-harvest handling, and 

maximum consumer contentment. Therefore, a pressing need 

exists for a systematic and mechanized method to predict Brix 

levels in strawberries. The implementation of technology for 

automation enables the precise and consistent quantification 

of Brix values, thereby facilitating the dependable and precise 

evaluation of fruit quality. The implementation of quality 

control measures aids in the maintenance of standards and 

facilitates the selection of fruits with optimal sweetness levels 

for distribution and commercialization. Deep learning 

algorithms have exhibited exceptional proficiency in tasks 

related to image recognition, thereby presenting a viable 

instrument for scrutinizing the visual attributes of strawberries 

and precisely forecasting their Brix values. Despite the 

potential of deep learning (DL) based approaches, there is a 

research gap in developing a simple, robust, and reliable 

methodology tailored for predicting Brix value in strawberries 

using DL-based image features. 

 

The objective of this work is to fill the existing gap in the 

literature by proposing a new deep-learning framework for the 

prediction of Brix values in strawberries. Also, to enhance the 

precision and effectiveness of Brix value estimation compared 

to conventional techniques by utilizing the innate abilities of 

deep learning algorithms to acquire distinctive characteristics 

from strawberry images autonomously. Two distinct deep-

learning techniques were employed to predict the Brix value 

from strawberry images. The second method was found to be 

superior and is expounded upon in this report. The 

investigation was carried out utilizing solely merged visual 

representations of strawberries and their corresponding Brix 

measurements as image labels. The datasets were utilized to 

train the regression model, which was subsequently employed 

to forecast the Brix values of the test samples. The dataset was 

enhanced using an image data augmentation technique, and 

ResNet101, a pre-trained CNN model, was used to extract 

image features, both of which contributed to a significant 

improvement in prediction accuracy (Method 2). Quality 

control would entail evaluating the strawberries' quality using 

the anticipated Brix readings. Strawberries that do not reach 

the required quality standard can be easily identified by 

precisely forecasting the Brix values. Then the necessary 

action can be taken to eliminate them from the production or 

distribution process. The implementation of this approach has 

the potential to improve customer satisfaction and reduce 

waste by guaranteeing the delivery of high-quality 

strawberries exclusively to end users. 

 

2. Literature Review 
2.1. Brix Prediction Algorithms in Literature: A brief review 

In the research, "Forward Feature Selection for 

Ensembles to Predict Brix Values in Mango Fruits based on 

NIR Spectroscopy Technique," Bowonsak Srisungsittisunti 

makes use of ensemble models with forward feature selection 

to forecast Brix levels in mangoes using datasets from NIR 

spectroscopy. [29] The objective of this investigation was to 

construct precise forecasting models that can be utilized to 

approximate the Brix values of mango fruits. To achieve this 

goal, the investigators employed ensemble models that 

incorporated linear regression (LR), neural networks (NN), 

and k-nearest neighbor (KNN) methodologies. In addition, 

forward feature selection was utilized to identify the most 

pertinent features within datasets of near-infrared spectra. The 

researchers utilized spectrum data obtained through NIR 

spectroscopy from four distinct groups of 300 mango fruits to 

generate datasets for training ensemble models. A 

comprehensive set of 112 ensemble models were constructed, 

comprising different combinations of distinct methodologies 

and datasets. The empirical findings showed that mangoes that 
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underwent an extended harvesting period demonstrated 

reduced values of standard deviation (SD) and root mean 

square error (RMSE). The LR ensemble model that underwent 

training with the dataset of a 120-day harvesting period, and 

feature selection through all three methods (3M120), had been 

observed to exhibit the lowest RMSE value. The LR-NN-

KNN ensemble model, trained using the data of a 120-day 

harvesting period and feature selection through the KNN 

method, exhibited the best performance in predicting the 

optimal Brix value. This was evidenced by the model's 

minimum standard deviation value and an RMSE value close 

to the minimum. This paper shows the importance of picking 

the right features and model combinations to get the best 

prediction performance by comparing the outcomes from the 

feature selection and prediction stages. 

 

In a study conducted by Al-Sammarraie et al.  (2022), the 

authors explore the potential of using AI for the problem of 

determining the sweetness of oranges by analyzing the 

correlation between sweetness and the colors red, green, and 

blue (RGB) values in fruit evaluations, as the latter may affect 

the former. [30] In this work, an orange fruit image dataset 

was used alongside the Orange data mining tool and many 

machine learning methods. The objective was to identify the 

algorithm that yielded the highest precision in forecasting 

sweetness.  

 

The results emphasized the predominant impact of the red 

color constituent in forecasting the degree of fruit sweetness, 

indicating a direct correlation between the red color variable 

and the degree of sweetness. Logistic regression, tree method, 

SVM, neural network, and KNN were evaluated for their 

effectiveness in predicting sweetness. The results indicated 

that logistic regression achieved the highest accuracy rate of 

97%, followed by the tree method at 96%, SVM at 93%, 

neural network at 88%, and KNN at 82%. The concluding 

statements suggest that color feature values have the potential 

to serve as reliable indicators of fruit sweetness. 

 

3. Materials and Methods  
This investigation aims to devise an automated 

methodology for forecasting the Brix levels of strawberries 

from their images. This will be accomplished by employing 

machine learning-driven regression models that rely 

exclusively on associated images as input. The study involved 

the collection of two distinct sets of data, specifically the 

strawberry image dataset and the corresponding lab 

(instrumental) values of 0Brix, which were utilized as labels 

for the images. 

  

3.1. Acquisition of Dataset  

MAHABALESHWAR strawberries were gathered from 

fresh produce marketplaces during the months when they were 

in season to build a dataset. Table 1 displays the details about 

the number of strawberry samples used for dataset acquisition 

over some period (Oct 2020- Feb 2021). 

  Table 1. Dataset collection details 

Month 
Oct- 

Nov 
Dec 

Jan- 

Feb 
Total 

Qty. 

Sampled 
55 35 60 150 

 

The task of collecting strawberry samples was 

challenging during the pandemic period due to the limited 

availability of the fruit. Moreover, obtaining both datasets 

(i.e., Image and Instrumental Brix value readings) necessitated 

additional precautions to ensure the dependability of the 

outcomes. A studio setup and a Logitech C920 HD camera 

were used to take high-quality pictures of strawberries. [31] 

The strawberry fruit was positioned centrally within the 

setting and was captured in a stationary position with respect 

to the camera against a white backdrop. The visual 

representation in Figure 1 showcases the integration of a strip 

of Light Emitting Diode lights within the studio configuration, 

with the purpose of attaining a suitably illuminated backdrop. 

Additionally, the refractometer utilized in the experiment is 

visible in the image. 

 

 
Fig. 1 Studio setup for image acquisition. [31] 

 Figure 2 shows different strawberry perspectives. After 

vertically cutting the sample, a cross-section was also 

considered.                                                              
  

   
              a          b                             c 

Fig. 2 Different views of a Strawberry sample (a) Front view 1, 

  (b) Vertical cross-sectional view, (c) Front view 2 

A precise incision was made on the strawberries using a 

sharp knife to obtain the instrumental Brix values. The Brix 

(°Bx) values were then determined in the laboratory by 

extracting the juice from each strawberry sample and 

measuring it with a Brix refractometer. Wine, sugar, fruit, and 

honey sectors all are utilizing this unit of measurement known 

as Brix (°Bx) to calculate the sugar content of products. [32] 
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1.0-degree Brix is equivalent to 1.0% sugar by mass in fruit 

juices. This generally has a positive correlation with observed 

sweetness. The easiest and most accurate tool for measuring 

Brix is a BRIX (°Bx) refractometer which measures Brix on a 

scale of 0 to 30 percent (% Brix), is illustrated in Figure 3(a). 

[33] The parts of the refractometer are displayed in Figure 

3(b). 

 
                         (a)                                                (b) 

Fig. 3 BRIX Refractometer (a) Reading scale, and (b) Parts explained 

The sweetness of fruit can be determined by analyzing the 

percentage of sugar present in the juice, which is measured in 

degrees Brix (°BRIX) through the assessment of its soluble 

solids. The instrument underwent an initial calibration process 

to ensure precise measurements. The experimental conditions 

encompassing the ambient temperature and pressure were 

duly recorded. The Brix values of 150 strawberry samples 

were recorded meticulously in a tabular format alongside their 

respective data samples. Table 2 presents a selection of Brix 

values and their corresponding sample image names, which 

were acquired through the employment of the Brix 

refractometer.            

Table 2.  Obtained Instrumental BRIX Dataset 

Sample Name 0BRIX Values 

#1.jpg 5 

#2.jpg 5 

#3.jpg 7.5 

#4.jpg 7 

#5.jpg 8.9 

#6.jpg 3.9 

#7.jpg 6.2 

#8.jpg 5 

#9.jpg 5.6 

#10.jpg 7 

#11.jpg 6 

 

This methodology was easily executed by utilizing a pair 

of dataset values derived from a sample size of 150 

strawberries. Figure 4 presents the method overview diagram 

of the prediction model, specifically Method 2.  The below 

section explains in detail how this was achieved. The 

algorithm was implemented and executed using Matlab 

R2019-b Version. The activation of the parallel computing 

toolbox was implemented to attain efficient execution speed. 

The study employed a 64-bit Microsoft Win11 operating 

system, an Intel(R) Core(TM) i7-9750H central processing 

unit clocked at 2.60GHz, 16.0 GB of random access memory, 

a 2T hard disk drive, and an 8G NVIDIA GeForce GTX 2080 

TI graphics processing unit. Following the procurement of the 

dataset, the collection of 150 strawberry images stored in the 

system directory was imported into the Matlab workspace as 

a preliminary measure. The instrumental Brix values of 150 

strawberries were imported into Matlab and subsequently 

stored in the workspace. After that, a Matlab ImageDataStore 

object was instantiated utilizing the aforementioned images. 

[34] Certain preprocessing steps were performed on the 

images contained within the data repository. By default, 

Matlab stored the image files in the natural order within the 

ImageDataStore. The image files were systematically 

organized through programming techniques to sequence the 

files in ascending numerical order, corresponding to their 

assigned sample numbers. Following the completion of 

natural sorting, the ImageDataStore assigned labels to each 

strawberry image file based on their corresponding 

instrumental Brix values. The dataset was enhanced through 

the utilization of the image data augmentation technique on 

the images. The utilization of image augmentation is a 

methodology implemented in the field of deep learning with 

the aim of enlarging the scope and variability of a given 

dataset. Consequently, the model's performance may improve 

as it becomes more adept at generalizing to novel and untested 

images. The function named 'imageDataAugmenter' produces 

an object for image augmentation that offers various choices 

for arbitrary transformations such as scaling, rotation, and X 

and Y reflections. The parameters can be modified based on 

the model's requirements and the dataset's idiosyncrasies. The 

variable denoting input size determines the dimensions of the 

images employed for training the deep learning model. All 

images underwent a resizing process to achieve a uniform size 

of 224 x 224 pixels and were in RGB color format. The 

function 'augmentedImageDatastore' generates an augmented 

ImageDataStore entity, denoted as 'imdsAugmented', that 

retains the dimensions of the input size. This is achieved by 

providing the original image datastore 'imds' and the image 

augmentation object 'augmenter' as inputs. The images that 

were initially obtained and the images that were improved 

through the application of the augmenter's modifications are 

both retained in a distinct data repository, denoted as 

'imdsCombined'. The aggregate quantity of images contained 

within the recently created ImageDatastore is determined by 

summing the number of original visuals with the number of 

augmented ones that have been generated. This procedure 

facilitates the computation of the overall quantity of images 

contained within the resulting collection. A dataset 

comprising a sum of 300 images was available for regression 

analysis. A novel datastore was created, containing a doubled 

quantity of images. The initial 50% of the images 

corresponded to the original dataset, while the remaining 50% 

consisted of augmented images.
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     Fig. 4 Proposed method overview 

A new categorical variable, ‘labelsCombined’, was also 

generated by concatenating the original labels from ‘imds’ 

with themselves. This is because the augmented images are 

generated from the original images and therefore have the 

same labels. The next step was to assign the new combined 

labels to the ‘Labels’ property of the ‘imdsCombined’ 

datastore. Thus there were a total of 300 images stored in the 

ImageDataStore, along with 300 corresponding labels for 

training and testing purposes. Pre-trained Convolutional 

Neural Networks were used for feature extraction from 

images. [35] The ResNet-101 convolutional neural network, 

pre-trained on the ImageNet database consisting of over one 

million images, is utilized for feature extraction. 

Consequently, the network has obtained comprehensive 

feature representations for diverse images. The Deep Learning 

Toolbox Model for the ResNet-101 Network support package 

needs to be downloaded and installed before using the ResNet-

101 pre-trained network for feature extraction. Then the pre-

trained ResNet-101 neural network model is loaded, which 

defines the feature layer to be used for feature extraction from 

the input images. The input images undergo preprocessing to 

align their dimensions with the input layer of ResNet-101, 

which is (224*224*3) using an augmented image Datastore. 

The activations of the feature layer were extracted for each 

image in the data store using the activations function. The 

resulting features were normalized and stored in a table with 

the corresponding labels as a column. These features and 

labels saved in the table will be used for training the regression 

models. ResNet-101, a deep convolutional neural network, is 

a popular design for detecting image features. The proposition 

was put forth by He et al. (2016) in their scholarly article titled 

"Deep Residual Learning for Image Recognition". [36] The 

original ResNet architecture is expanded upon in ResNet-101, 

where there are 101 layers total in the ResNet-101 model, 

including activation functions, convolutional layers, batch 

normalization layers, and residual blocks. [37] The residual 

blocks, which constitute the primary element of the ResNet 

framework, facilitate the propagation of gradients in 

exceptionally deep networks. Furthermore, ResNet-101 

employs skip connections for the purpose of connecting the 

input and output of each residual block, thereby mitigating the 

problem of vanishing gradient. Due to its high accuracy and 

efficiency, ResNet-101 is commonly employed as a feature 

extractor for transfer learning and fine-tuning other image 

recognition tasks. Following the extraction of features, the 

data pertaining to these features was organized in a tabular 

format, whereby the normalized features were allocated to the 

columns, and the corresponding labels were assigned to a 

distinct column. The table's dimensions were 300 by 1001, 

comprising 1000 image feature variables obtained from 300 

images of strawberries and a single Brix label assigned to each 

image. Once this was done, a subset of the 300 image samples 

was allocated for training the network, while the remaining 

samples were reserved for testing. Specifically, 70% of the 

total sample was designated for training purposes, with the 

remaining 30% reserved for testing. This was accomplished 

using a cross-validation partition object. A training ratio of 0.7 

was employed. Thus the extracted features from a total of 300 

image samples of strawberries were partitioned to be utilized 

for the purpose of training giving 210 samples, while features 

from 90 image samples were reserved for testing. The 

'HoldOut' technique was employed in splitting the dataset so 

that a random subset of the collection was used for testing 

while the remaining data was utilized for training. The 
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variable "test indices" is utilized to extract the indices of the 

testing subset from the cross-validation entity. The training 

features and labels are assigned to the Xtrain and Ytrain 

variables, respectively, utilizing the training indices obtained 

from the cross-validation object to correspondingly represent 

the training data and labels. The testing features and labels are 

assigned to the Xtest and Ytest variables, respectively, 

utilizing the test indices obtained from the cross-validation 

object. The utilization of a machine learning model can 

involve its training on its subsequent training set, followed by 

an evaluation of its performance on the resulting testing set. 

The holdout method is a rapid and precise technique for 

assessing the efficacy of a model.  Figures 5 and 6 depict the 

histograms of the Brix values for the 210 training and 90 test 

data samples, respectively.   

 
    Fig. 5 Histograms of Brix values of the training dataset  

 
      Fig. 6 Histograms of Brix values of the test dataset  

The subsequent phase entails the identification of predictor 

and response variables for the purpose of conducting 

regression analysis. The regression learner application 

facilitates the execution of multiple regressions in parallel. 

The predictor and response variables of the training samples 

were selected for regression, as depicted in Figure 7. It should 

be noted that the figure below only displays the last few 

features due to the difficulty in displaying the 1000 predictors 

of the 210 samples. Upon completion of the selection of the 

training dataset’s predictor and response variables, the 

regression session was initiated, wherein multiple regression 

techniques, such as linear regressions, SVM regressions, 

Gaussian process, etc., were executed concurrently. The 

methodology employed involved utilizing a holdout-

validation approach as selected before training. The utilization 

of the holdout method, particularly through the incorporation 

of a distinct validation set, facilitates the identification and 

alleviation of overfitting. The performance of the training 

model was evaluated using holdout validation, with a holdout 

size of 25%. The dataset comprised 210 training samples, with 

each sample containing a thousand features. In this 

methodology, a subset of the training data amounting to 25% 

(approximately 52-53 samples) was designated as a validation 

set, while the remaining 75% (approximately 157-158 

samples) were allocated for training the model. The model 

underwent training using a total of 157-158 training samples, 

each of which was associated with thousand features. 

Following this, the trained model's performance was assessed 

on the validation set, which consisted of approximately 52 to 

53 samples. The estimations generated by the trained model 

on the validation set were juxtaposed with the real values or 

labels of the validation samples, thereby offering an 

assessment of the model's capacity to extrapolate to unfamiliar 

data. It is important to acknowledge that the presence of a 

restricted number of validation samples may introduce a 

certain degree of variability in the estimated performance.        

 
Fig. 7 Selection of predictors and response variables for ML-based 

regression algorithms. (Only the last few features, 989 up to 1000 

feature selection, is displayed here) 
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Nevertheless, despite this constraint, employing holdout 

validation with a 25% holdout can still yield valuable insights 

into the model's performance and aid in making well-informed 

choices pertaining to model selection and hyper parameter 

tuning. After training, the optimal model selection was 

determined by the attainment of the lowest validation error 

metrics. The Gaussian Process Regression model, utilizing a 

constant basis function and Squared Exponential kernel 

function, has been determined to be a highly suitable model 

for this dataset. Following training, the model achieved a 

minimum RMSE value of 0.75001 and an R2 value of 0.57. 

Figure 8 displays the results obtained after the training 

process. Multiple regression models were trained 

concurrently, and the model exhibiting the lowest validation 

errors was chosen as the optimal model. The Gaussian Process 

Regression Squared Exponential model has demonstrated 

superior suitability for the strawberry image dataset. After the 

completion of the training process, the obtained Mean Squared 

Error (MSE) value was 0.5625, while the Mean Absolute 

Error (MAE) value was 0.35277. The GPR model required a 

total training time of 3.1789 seconds for the entire training 

process. The bar plot in Figure 9 illustrates a comparison of 

the root mean square error (RMSE) values obtained from 

multiple training models after the training process. The GPR 

Squared Exponential model yielded the minimum Root Mean 

Square Error (RMSE) value, indicating its optimality for this 

dataset. 

 
Fig. 8 Results Obtained after the training process (Squared Exponential 

GPR model: Optimal model) 

 

Subsequently, this optimal model was exported to the 

workspace for further testing. The exported regression model 

is then employed to forecast the Brix values of the remaining 

test data samples. This was achieved by moving the remaining 

image features of the test data samples (90*1000) to the 

'predictFcn' function in Matlab. The Brix values of the 90 

samples under test were predicted with a high degree of 

precision. The following section elucidates the outcomes 

derived after forecasting the Brix values of the test data 

samples. 

 
Fig. 9 Bar Plot of the RMSE Values obtained for Various Regression 

Models after Training 

4. Results  
This section provides an account of the results obtained 

from the training and testing protocols implemented on the 

dataset subsequent to conducting regression analysis. The 

predicted outcomes are stored within a matrix in the Matlab 

environment. Subsequently, a table of output is created using 

Matlab to exhibit the findings. Table 3 presents the strawberry 

names, accompanied by their respective instrumental Brix 

values and predicted Brix values, for a select number of 

samples within the test dataset. In this context, the process of 

identifying test strawberries is accomplished by means of their 

respective image names. This table facilitates the facile visual 

juxtaposition of the predicted Brix values with test samples' 

actual instrumental Brix values. Furthermore, the output 

figure presents the actual versus predicted Brix values of a 

subset of randomly selected test data samples, along with their 

corresponding images. Figures 10 and 11 exhibits the 

outcomes of the 38th and 55th samples, respectively, along 

with pertinent details such as sample number, instrumental 

Brix value, and predicted Brix values. 
 

Table 3. Output table: Actual Vs. Predicted Brix values of a few test 

samples 

Strawberry ID 
Actual 

BRIX  
Predicted BRIX 

'2.jpg' '5' 5.83165297067182 

'4.jpg' '7' 6.99989186111522 

'6.jpg' '3.9' 3.90017878831613 

'7.jpg' '6.2' 6.19996590684449 

'9.jpg' '5.6' 5.60002144114144 

'12.jpg' '6' 5.83165297067173 

'23.jpg' '6.9' 5.83165297063923 

'32.jpg' '7' 5.83165297067182 

'33.jpg' '6.9' 6.89990111683138 

'36.jpg' '5.9' 5.83165297525884 

'41.jpg' '3.5' 5.83165297067182 

'42.jpg' '5.2' 5.83165297067182 

'45.jpg' '6.4' 5.83165297067182 

'49.jpg' '5' 5.00007697543839 
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Fig. 10 Actual Vs. Predicted BRIX of 38th sample. 

 

 
Fig. 11 Actual Vs. Predicted BRIX of 55th sample. 

 

Figure 12 depicts the scatter plot of the actual versus 

predicted Brix values of the test data samples. The graph 

between actual and predicted values is depicted in Figure 13. 

The predicted Brix values (yfit) are contrasted with the actual 

Brix values (ytest) using this graph. The blue colored 

line represents the observed ground truth values, while the red 

represents the predicted values. The model's accuracy in 

predicting the Brix values can be assessed by contrasting the 

two lines. The graph shows that the model successfully 

predicts the Brix values as the red line overlaps the blue line 

at most of the graph regions as displayed. 
 

 
   Fig. 12 Scatter plot of test data samples 

 
             Fig. 13 Ground truth versus predictions graph 

4.1. Performance Evaluation of the System  

The equations listed below are used to calculate statistics 

metrics for the regression prediction system, such as Mean 

Absolute Error (MAE), Mean Squared Error (MSE), Root 

Mean Squared Error (RMSE), and Mean Absolute Percentage 

Error (MAPE), for the performance evaluation of the 

algorithm [38]. Using the mentioned Equation 1, MAE is 

calculated. 

 

  𝑀𝐴𝐸 = |
1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐵𝑟𝑖𝑥 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑟𝑖𝑥)𝑛 |             (1) 

 

Where the variable n represents the cardinality of the test 

dataset. 

 

Calculating other parameters for the Brix value prediction 

algorithm, such as the Mean Squared Error and the Root Mean 

Squared Error (RMSE) of the test samples, requires using 

Equations 2 and 3, respectively, as shown below. 

 

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐵𝑟𝑖𝑥 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑟𝑖𝑥)2

𝑛               (2) 

 

         𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝐴𝑐𝑡𝑢𝑎𝑙 𝐵𝑟𝑖𝑥 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝐵𝑟𝑖𝑥)2

𝑛           (3) 

The mathematical expression presented in Equation 4 is 

utilized to compute the coefficient of determination (R2) 

metric. The metric that quantifies the degree of similarity 

between the data and the fitted regression line is referred to as 

R-squared in statistics. The term "coefficient of 

determination" is an alternative nomenclature for the 

aforementioned concept. The R-squared method is utilized to 

ascertain the percentage of the variance in the dependent 

variable that the independent variable can explain. 

          𝑅2 = 1
(𝑅𝑆𝑆 − 𝑇𝑆𝑆)⁄                       (4) 

 

where RSS = Residuals sum of squares,  

TSS = Total sum of squares. 

The total sum of squares is calculated by summing the 

squared differences between the observed values and their 

averages. The difference between the actual and projected 
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values is referred to as residuals. In order to assess how well 

the prediction algorithm works, the value of another metric 

known as the Residual Predictive Deviation (RPD) was also 

computed, which was done using Equation 5. 

                𝑅𝑃𝐷 =  
𝜎(𝐴𝑡)

𝜎(𝐴𝑡 − 𝑃𝑡)⁄           (5)  

Where      σ(At) is the Std. Deviation of Actual Brix 

values(Ytest) of Test samples. 

  σ(At − Pt) is the Std. Deviation of Residuals. 

 Pt   is the predicted Brix values of test samples(Yfit). 

 

An RPD value of 2.7 was obtained. The RPD value is 

obtained by dividing the std. deviation of the actual Brix 

values (Ytest) to the residuals' (Ytest - Yfit) std. deviation. It 

evaluates the prediction performance of the regression model. 

[39] Higher RPD values usually mean better prediction. RPD 

value interpretation depends on application and circumstance. 

However, these criteria are generally applicable: When the 

value of RPD falls between 1 and 1.5, it indicates a moderate 

level of predictive accuracy. The model exhibits a certain 

degree of predictive capability for the target variable, albeit 

with restricted precision. When the value of RPD falls 

between 1.5 and 2.5, it indicates a favorable level of predictive 

performance. The model exhibits a satisfactory level of 

predictive accuracy, effectively capturing a substantial 

proportion of the variances present in the dataset. An RPD 

value exceeding 2.5 signifies a substantial degree of predictive 

precision. This model exhibits a significant degree of 

precision in forecasting the dependent variable, implying 

robust explanatory capability.  

 

The next step is to construct a table in order to evaluate 

the Mean Absolute Percentage Error. The accuracy of the 

prediction algorithm can be determined with the help of the 

MAPE. In the order given above, the table's columns list the 

actual instrumental Brix, the predicted Brix values, the 

absolute difference between the actual and predicted Brix, and 

the percentage difference between the original and predicted 

Brix. The Mean Absolute Percent Error (MAPE) is 

determined by averaging the fourth column of the table for all 

of the test data samples. This is done in order to compute the 

error. As a consequence of this, the MAPE value that was 

calculated for the prediction of 90 different test data samples 

came out to be 3.6858. In order to calculate MAPE, Equation 

6 was utilized. 

               𝑀 =  
1

𝑛
∑ |

𝐴𝑡 − 𝑃𝑡
𝐴𝑡

⁄ |                              (6)𝑛
𝑡=1            

     

Where M is the MAPE, and n represents the variable 

denoting the number of iterations in the summation process. 

𝐴𝑡=Actual Brix Value 

    𝑃𝑡=Predicted Brix Value 

To ascertain the precision of the system, quantified as a 

percentage, Equation 7 directs to subtract the MAPE value 

from 100. 

 

                       𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) = 100 − 𝑀𝐴𝑃𝐸                 (7) 

 

Table 4 displays the readings from a few samples that are 

utilized in the computation of the MAPE. The accuracy of 

predicting the Brix values of the given test data samples 

obtained was 96.3142%. The system demonstrates an 

outstanding performance with regard to its accuracy 

percentage and other related metrics. Table 5 presents the 

statistical performance metrics summary obtained during both 

phases. The MAPE and accuracy attained in the prediction 

phase of Brix values are also mentioned. 

 

An alternative approach was implemented initially to 

forecast the Brix values, which involved utilizing a 

convolutional neural network (CNN) regression technique on 

the same image dataset (Method 1). This method did not 

involve using any image data augmentation technique or pre-

trained networks. A CNN-based regression technique was 

applied to predict the Brix values of strawberries. The 

predictive model demonstrated a level of accuracy of 

82.6071%; after acquiring and importing images and their 

corresponding Brix values for 150 strawberry samples, an 

ImageDataStore entity was created in the Matlab 

environment. By default, the ImageDataStore stores the image 

files in their natural order. The orderly organization of image 

files was achieved through programming techniques to enable 

their arrangement in ascending numerical order according to 

the assigned sample numbers. 

 

Upon the completion of the natural sorting process, the 

ImageDataStore allocated the appropriate instrumental Brix 

values to each individual strawberry image file. A set of 150 

images was partitioned into two distinct subsets for the 

purpose of training and testing a network. Precisely, 70% of 

the entire sample was designated for the purpose of training, 

whereas the remaining 30% was set aside for testing. The 

training dataset comprised 107 strawberry images, whereas 

the testing dataset consisted of 43 images. The training and 

test images contained in the data repository underwent various 

preprocessing procedures. The datastore elements underwent 

an initial restructuring process, resulting in the formation of 

arrays that possessed four dimensions. The determination of 

the input layer size of the neural network as [227*227*3] was 

made prior to the commencement of the regression analysis. 

As part of the preprocessing phase, the input images 

underwent a resizing operation to achieve the specific size. 

The layers comprising the model for DL have been defined 

and constructed.  The architectural design of the model was 

initially defined by its multiple layers. This prediction 

algorithm utilizes a custom-designed Convolutional Neural 

Network (CNN), which is an essential tool in the domain of 

Deep Learning (DL).           
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Table 4. Values for the computation of MAPE and Accuracy 

 

 

Table 5.  GPR squared exponential regression model statistical performance summary 

Phase MSE RMSE R2 MAE MAPE ACCURACY 

Training 0.56251 0.75001 0.57 0.35277 - - 

Prediction 0.2277 0.4772 0.8648 0.0233 3.6858 96.3142% 

The study utilized a convolutional neural network with 24 

layers to evaluate the visual information present in the images. 

The CNN was designed and taught with the training set to 

make predictions on the Brix values of the test dataset through 

the utilization of the implemented network. The size of the 

input layer, which serves as the initial layer of the neural 

network, was taken into account for the purpose of resizing the 

images. The fundamental architecture of a network is 

predominantly determined by its internal layers, which serve 

as the primary locus for computation and learning. A model's 

final layers determine the output data's dimensions and format. 

In order to facilitate the ability of a regression network to 

provide prognostications pertaining to uninterrupted data, 

such as Brix value derived from images, a fully connected 

regression output layer was produced upon the culmination of 

the procedure. In the end, the different layers were 

consolidated into a vertically arranged structure. The training 

parameters, such as maxEpochs and MiniBatchSize, were 

determined. The study employed a maximum of 200 Epochs 

and a mini-batch size of 10. The MiniBatchSize is a discrete 

numerical value denoting the magnitude of the mini-batch that 

is processed during every iteration of the training process. The 

variable maxEpochs represents the upper limit of epochs 

utilized during the training process and was defined as a 

positive integer. The 'rmsprop' optimization algorithm was 

employed as the solver. 

 

At the onset, a learning rate of 0.001 was selected. The 

program's accuracy is periodically calculated after training the 

neural network with the training data. Throughout the training 

process, it is achievable to assess the advancement of the 

training by generating visual depictions of diverse data points. 

As an illustration, it is possible to verify the rate at which the 

precision of the network is improving and to determine if it is 

exhibiting signs of overfitting the training dataset. Following 

each iteration, the 'trainNetwork' function generates a visual 

representation and presents training metrics. The network 

parameters are modified during each iteration, and the 

gradient is approximated. Upon each execution of the 

trainNetwork function, the system was validated by providing 

validation data in the trainingOptions parameter, and 

subsequently, the validation metrics were visually presented. 

The 'trainNetwork' function in Matlab was utilized for deep 

learning-based classification and regression tasks to train 

convolutional neural networks (CNNs). The process of 

training the network involves feeding the training images, 

their corresponding labels, the pre-defined network layers, and 

the previously established training options into the network 

training function. Enabling the training progress plot in the 

training options results in displaying the training progress 

figure in the plot. Upon completion, a final plot was obtained, 

as depicted in Figure 14. The figure depicts the root mean 

square error (RMSE) for regression networks instead of a plot 

comparing accuracy and iteration. The performance metric 

values obtained after training are presented in Table 6. Upon 

completion of the model training process, the subsequent step 

involves conducting testing procedures to forecast the Brix 

values of the test images. This entails utilizing the trained 

network model to evaluate the remaining test images. 

 

Actual BRIX Predicted BRIX Absolute Difference Absolute Percentage Error 

5 5.83165297067182 0.831652970671816 16.6330594134363 

7 6.99989186111522 0.000108138884777453 0.00154484121110 

3.90000000000000 3.90017878831613 0.000178788316127054 0.00458431579812 

6.20000000000000 6.19996590684449 3.40931555120605e-05 0.00054988960503 

5.60000000000000 5.60002144114144 2.14411414374283e-05 0.00038287752566 

6 5.83165297067173 0.168347029328269 2.80578382213781 

6.90000000000000 5.83165297063923 1.06834702936077 15.4832902805909 

7 5.83165297067182 1.16834702932818 16.6906718475455 

6.90000000000000 6.89990111683138 9.88831686195013e-05 0.00143308940028 

5.90000000000000 5.83165297525884 0.0683470247411568 1.15842414815520 
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The process of forecasting the Brix values of the test 

images were executed by feeding the taught model and the test 

images into the prediction function in Matlab, following the 

tweaking of the aforementioned network. Following the 

conclusion of the testing procedure, an assessment was 

conducted on the effectiveness of the prediction system 

through the utilization of several statistical metrics, including 

Mean Absolute Error (MAE), Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), Mean Absolute 

Percentage Error (MAPE), and Accuracy. These metrics were 

evaluated using the equations specified in the preceding 

section. MAE obtained using this approach is 0.214. MSE 

obtained using Equation 2. is 1.4486, and RMSE is 1.2036.  

The coefficient of determination yielded a value of 0.0787. 

The MAPE value obtained after predicting 43 test data 

samples using this approach is 17.3929. An accuracy of 

82.6071% was obtained for this particular prediction 

algorithm which is pretty much only a fair accuracy. The 

performance metrics obtained from the utilization of both 

methods (methods 1 and 2) are juxtaposed and evaluated 

through the graphical representation depicted in Figure 15.  

The performance metrics, including Mean Absolute Error 

(MAE), Mean Squared Error (MSE), Root Mean Squared 

Error (RMSE), and R-squared (R2) values, for both methods 

are presented in the bottom bar plot. Additionally, the 

accuracy achieved by both methods is compared in the top 

graph (indicated by the color red), revealing that method 2 

outperforms method 1. 

 

5. Discussion 
This research introduces a simple and innovative method 

for predicting Brix values in strawberries. The subsequent 

passages highlight the originality of the suggested algorithm 

and draw comparisons with prior research findings. The 

novelty of this research is attributed to the fusion of machine 

learning and deep learning methodologies with image features 

that have been extracted from a dataset comprising 300 images 

of strawberries. The dataset comprises 300 images, half of 

which were obtained via a studio configuration utilizing an 

HD camera, and the other half were generated through the 

application of image data augmentation methods. The Brix 

measurements were obtained using a Brix refractometer. The 

aforementioned values were subsequently employed to 

allocate categorical designations to the visual representations. 

The dataset is composed of a total of 300 data points, 

consisting of 150 unaltered images, 150 images that have been 

subjected to augmentation, and 300 Brix labels that 

correspond to the respective images.   The algorithm initiates 

the process by extracting image features through the 

utilization of the ResNet101 architecture, which is a profound 

learning model that is renowned for its exceptional feature 

extraction capabilities.

 
     Fig. 14 Custom DL CNN-Based-Regression-Training Progress Plot 

 

Table 6.  Regression Progress Data using a Custom DL Regression Model. 

 

 

 
 

No:  

of Samples  

No: of  

Epochs 

Iterations 

Per Epoch 

Max       

Iterations 
Elapsed Time 

Validation              

RMSE 

150 Images 200 10 2000 4 min 37 sec 1.2036 
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These image features are employed as input to the 

machine learning model in the course of its training procedure. 

The dataset has been segregated into two discrete subsets, 

namely a training set that constitutes 70% of the data and a 

testing set that constitutes the remaining 30%. After the 

training process, the best-trained model was exported and 

utilized to predict the Brix values of test samples.  The 

algorithm presented in this research has exhibited a significant 

degree of predictive exactness, achieving a 96.3142% 

accuracy rate by employing the exponential model of 

Gaussian Process Regression (GPR). This observation denotes 

the algorithm's proficiency in precisely forecasting Brix 

values in strawberries by utilizing their image characteristics. 

Upon comparison with prior research, this study exhibits 

several unique and original characteristics. Incorporating a 

composite dataset that includes both original and augmented 

images amplifies the training data's variety and resilience. 

This methodology takes into consideration the diversities in 

the physical attributes of strawberries and furnishes the 

algorithm with an all-encompassing comprehension of the 

diverse visual traits of strawberries. 

 

Furthermore, incorporating machine learning and deep 

learning methodologies enables the algorithm to harness the 

capabilities of both techniques. Utilizing the ResNet101 

model for feature extraction facilitates the capture of high-

level representations of strawberry images, thereby enhancing 

the precision of predictions. Moreover, the attained level of 

predictive precision highlights the algorithm's exceptional 

efficacy in forecasting Brix values in contrast to pre-existing 

techniques. The demonstrated level of precision showcases 

the effectiveness and dependability of the suggested 

methodology in evaluating the quality of strawberries through 

visual data. 

 

Numerous investigations using vis/NIR techniques have 

been carried out globally over the past few years to estimate 

the Brix values of various fruits and vegetables [41-44,49]. 

Nondestructive NIR spectroscopy appears to be a viable 

technique for fruit quality assessment; however, it requires 

complex and expensive technology. The spectroscopic 

technique still has several limitations, even though it is 

thought to be the most practical way for non-destructive 

quality analysis of fruits and vegetables. The method's primary 

drawback is that it relies on reference values that could contain 

mistakes. For each fruit species, a fresh calibration model is 

necessary. It is preferable to enhance calibration models in 

accordance with variations in location and seasonal 

conditions. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

Fig. 15 Performance Metrics Comparison of both the methods (Method 1: A Custom DL- Based-Regression 

Technique, Method 2: Regression Technique using a Pre-Trained Model (ResNet101) and Image Augmentation Technique 

Although there are many different techniques and tools 

for measuring Brix, the industry continues to place a high 

priority on attributes, including rapidity, affordability, little 

sample preparation, and environmental responsibility. As a 

result, a real-time, quick, non-invasive, and ongoing 

monitoring strategy for sugar value prediction is constantly 

needed. The proposed method can attain all these traits for 

predicting Brix values by utilizing an automated function with 

the help of artificial intelligence. Many works in literature use 

machine learning techniques to classify fruits based on 

maturity. However, work related to the prediction of the Brix 

values of strawberries using regression-based deep learning 

techniques is very few. In those, the performance accuracy of 

prediction of the sugar value prediction is also not mentioned. 
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In the year 2020, Mancini and peers published a paper that 

presents a method for predicting the quality attributes of 

strawberries. [45] This study evaluated five strawberry 

genotypes using typical lab methods and non-destructive Near 

Infrared Spectroscopy (NIR). Principal Component Analysis 

(PCA) was used to discover spectral differences across 

samples, while partial least square (PLS) regression was used 

to predict quality metrics. PLS predicted soluble solids 

concentration and hardness well, making it appropriate for 

quality control. Soluble solids and Brix are two units of 

measurement for the concentration of soluble solids in a 

liquid, such as sugars. They are frequently used 

interchangeably to describe the sweetness degree of fruit 

juices. [46] In infrared, NIR spectroscopy helped assess 

strawberry fruits' chemical and physical qualities without 

destroying them. The study showed that PCA can estimate 

genotype spectral similarity, and Fourier Transform-NIR with 

PLS can predict qualitative parameters. An external test set 

confirmed that this algorithm using PLS regression for 

predicting soluble solids content (°Brix) performed well 

among others. The model was constructed by employing nine 

latent variables following the spectra preprocessing using the 

first derivative technique, specifically the Savitzky-Golay 

method, with a window size of 21 points and a second-order 

polynomial.  The following performance measures were 

obtained for the prediction model, an RMSEP value of 0.8, a 

coefficient of determination value of 0.82, and an RPD value 

of 1.04. However, it was suggested that more research is 

needed for color and titratable acidity prediction as they did 

not give a satisfactory performance result.  

  

When comparing the proposed system to the approaches 

outlined in [45], the proposed approach is simple and 

transparent in the techniques used for Brix prediction. The 

Brix values are predicted from strawberry images in a much 

simpler way using the pre-trained deep learning network, 

ResNet101, and to enhance the dataset size, a visual 

enhancement technique was employed in conjunction with 

feature extraction that helps in improved model generalization 

for an ML-based regression technique. According to the 

findings, the Squared Exponential GPR model, in conjunction 

with the enhanced dataset, was highly effective in forecasting 

the Brix scores of the test data samples. During the Brix 

prediction phase of the test data samples, the best model had a 

minimum RMSE of 0.4772. Furthermore, throughout the 

testing phase, the model was able to explain up to 86.48% of 

the variation in Brix measurement and prediction data of the 

test data samples. A model with a high R-squared value and a 

low RMSE value is generally considered highly effective and 

reliable. This Brix prediction system's overall forecasting 

precision was calculated to be 96.3142%. Using only 

strawberry images and Brix labels, the squared Exponential 

Gaussian Process regression model could effectively predict 

Brix values by incorporating a pre-trained deep learning-based 

method for image feature extraction and image data 

augmentation approaches. This accurate and dependable 

method can be used to evaluate strawberry quality based on 

sweetness. The automation involved in the Brix value 

prediction using only images of strawberries makes this 

implementation method remarkable, which is made possible 

by training a regression algorithm to recognize patterns in the 

images and their corresponding Brix values. Also, this 

proposed approach requires strawberry juice extraction to 

assess the Brix values only during the training phase. Once the 

regression model has been built by training and testing with 

enough data samples, thereby achieving a 100% efficient 

model, strawberry destruction will no longer be needed to 

predict Brix values. More training data samples can be 

considered to achieve 100% performance accuracy. Table 6 

demonstrates a comparison of the performance measures of 

the Brix prediction algorithm in literature [45] with the 

proposed method.  The proposed method displays an R-

squared and RPD value better than that of the best model in 

[45], which uses the PLSR technique, and also a lesser 

RMSEP value.  

 

In a work published by Hayato Seki et al., an innovative 

method for assessing sugar levels in white strawberries 

through the utilization of near-infrared hyperspectral imaging 

(NIR-HSI) was introduced. [47] This novel preprocessing 

technique was developed to autonomously separate the flesh 

and achene on the surface of the fruit by integrating principal 

component analysis (PCA) and image processing. The 

predictive accuracy of the Partial Least Squares Regression 

(PLSR) model, which was constructed using the unprocessed 

spectra acquired from the flesh Region of Interest (ROI), was 

found to be satisfactory. This conclusion is supported by the 

Root Mean Square Error of Prediction (RMSEP) value of 

0.576 and the R-squared value of 0.841. Additionally, the 

model was constructed using a relatively small number of PLS 

factors. The model exhibited a satisfactory level of predictive 

accuracy. The Brix heat map images and violin plots were 

employed to visually represent the characteristics of the sugar 

level distribution within the flesh of white strawberries.  

 

A bar chart displayed in Figure 16 gives a comparison 

between the performance of the internal quality parameters 

prediction algorithms in literature [45], [47] with that of the 

proposed system.  Here the performance metrics of the 

proposed method are compared with the best performance 

metric value obtained in [45] and [47] for the prediction of 

internal quality parameters in terms of R2 and RMSEP values. 

When conducting a comparison of various regression models, 

it is typically preferable to observe a higher value for the 

coefficient of determination (R-squared) and a lower value for 

the root mean square error (RMSEP). A larger R-squared 

value signifies that the model accounts for a greater proportion 

of the variability in the dependent variable, implying a more 

optimal fit. A lower root mean square error (RMSEP) signifies 

that the model's predictions exhibit a higher degree of 

proximity to the observed values, thereby indicating enhanced 

accuracy. 
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An automated prediction system for strawberry 

harvesting time, sugar content, and acidity using image 

processing was proposed by Wanhyun Cho et al. in 2019 [48]. 

This work was accomplished in three different phases; 

initially, the researchers examined a segmentation method 

based on the ellipsoid Hough transform. This method aimed 

to segment the actual strawberry image automatically. 

Subsequently, the utilization of HSV color representations 

along with histogram-based color features was explored to 

differentiate between the three phases of strawberry 

development. The classification accuracy achieved for this 

task was 87.25%. 

 

Moreover third, they investigated the partial least square 

regression (PLS model), a statistical analytic method for 

predicting strawberries' sugar concentration and acidity based 

on ripeness phases. The Brix prediction accuracy was not 

mentioned as such. The efficacy of the proposed prediction 

system was evaluated by conducting tests using diverse 

strawberry measurement data obtained from Gangwon-do 

Highland in Korea. It is said that according to the experimental 

results, this prediction system could reasonably predict the 

sugar content and acidity of only the immature (White or 

Turning red phases) strawberries. However, the algorithm was 

unable to forecast the sugar level or acidity of the mature-ripe 

strawberries precisely. The model's predictive ability was 

deemed inadequate due to the imperfections present in the real 

data sets.  

  

To summarize, the research presented in this study 

proposes a new algorithm that utilizes ML and DL-based 

image features to predict Brix values in strawberries. This 

algorithm is distinguished from prior research due to its 

utilization of an augmented dataset, implementation of feature 

extraction utilizing ResNet101, and notable predictive 

accuracy of 96.3142%. The present study makes a significant 

contribution towards the progression of the domain of 

strawberry quality evaluation. It exhibits potential for 

utilization in fruit quality management and enhancement in the 

agricultural sector.
 

 

 

 

Table 7. Comparison of performance measures of prediction algorithms for internal quality parameters (Soluble Solids/Brix) in literature [45], with  

 

 

 
               Fig. 16 Performance comparison bar plot of prediction algorithms in literature [45], [47] with the proposed method in terms of RMSEP and 

R2 values. the proposed method

  

Comparison Model Name Dataset (Prediction Phase) R2 RMSEP RPD 

Method 

In Literature 

[45] 

PLSR 

9 latent variables after pre-treating the 

spectra with the first derivative 

(Savitzky–Golay method, 21 points 

window, second-order polynomial) 

0.82 0.8 1.04 

Proposed 

Method 

Squared 

Exponential 

GPR 

Augmented Dataset and Image Features 

(1000) Extracted using ResNet101 Pre-

trained CNN model 

0.8648 0.4772 2.7 
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6. Conclusion  
 The precise estimation of Brix values in strawberries 

holds significant importance in evaluating their quality and 

managing them post-harvest. Regression techniques in deep 

learning have demonstrated potential in effectively capturing 

intricate patterns and extracting significant features from 

images. This work compiled a dataset of strawberry images 

and their corresponding Brix values of 150 strawberry 

samples by acquiring the image dataset and Brix values. Using 

the dataset, two distinct methodologies were employed to 

predict the Brix values of strawberries. The initial approach 

employed the utilization of obtained images and 

corresponding Brix values for the purpose of training a 

customized deep-learning regression model (Method 1).  

 

 The model could predict the Brix values of the test data 

samples, albeit with a moderate level of precision. The second 

approach (Method 2) utilized an image data augmentation 

methodology to augment the dataset along with a deep 

learning model for image feature extraction. Subsequently, it 

utilized a machine learning algorithm to predict Brix values 

with a high degree of precision. This was accomplished by 

training the algorithm with image features that were extracted 

through the utilization of a pre-trained deep learning method, 

specifically, ResNet 101. The extracted and normalized image 

features, as well as the corresponding Brix values, were 

trained using several regression methods so that they could 

learn the relation between the features of the image and their 

associated Brix values. After training, the best model with the 

minimum RMSE value, which is the GPR Squared 

Exponential model, was exported to the workspace and was 

able to predict the Brix values of the remaining test data 

samples from their images with high-performance measures.  

 

 The algorithm was able to achieve a prediction accuracy 

of 96.3142% with an RMSEP value of 0.4772, an MSE of 

0.2277, an MAE of 0.0233, an RPD of 2.7, and a MAPE of 

3.6858 after prediction. The model demonstrated the ability to 

account for a maximum of 86.48% of the variance in the 

predicted Brix values by utilizing the image feature variables 

of the previously unseen data. Agricultural practitioners and 

strawberry exporters can employ the suggested methodology 

to establish a commercially viable setup capable of 

automatically detecting the sweetness level of strawberries 

with a 100% precision rate. This can be achieved by training 

the system with a sufficient number of samples. The selection 

of the methodology ought to take into account the particular 

demands of the application, the resources that are at hand, and 

the desired levels of precision. Although Method 2 exhibited 

superior accuracy compared to Method 1, it necessitates 

supplementary computational resources and a lengthier 

training period. 

 

 In contrast, Method 1 offers a relatively less complex 

approach but with a moderate level of precision. Subsequent 

investigations may concentrate on investigating alternative 

pre-trained deep learning models and refining augmentation 

methodologies to attain better precision in predicting Brix 

values for strawberries. Utilizing this methodology for the 

automated forecasting of Brix values in strawberries holds 

promise in improving the effectiveness of the network of 

supply chains by streamlining the delivery of fresh and high-

quality strawberries to the market. As a result, this could lead 

to enhanced profitability and decreased wastage of produce. 

The implementation of this methodology has the potential to 

serve as a valuable instrument in enhancing the efficiency and 

accuracy of quality assurance protocols within the fruit sector, 

consequently augmenting the revenue and profitability of 

strawberry cultivators and merchants. In summary, the 

outcomes of this investigation demonstrate the capacity of 

image processing and artificial intelligence to influence the 

agricultural sector. Prospective implementations of this 

approach may encompass the automated and non-invasive 

forecasting of Brix levels in diverse types of berries and fruits.  
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