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Abstract - Cyber-attack propagation in computer networks is a critical concern in network security. This study adopts a 

simulation approach to investigate the spread of cyber-attacks, drawing inspiration from the Kermack-McKendrick model, 

which models the spread of epidemic diseases. Furthermore, the study incorporates the learning effect by leveraging machine-

learning techniques for intrusion detection in computer networks. The review of references encompasses a comprehensive 

exploration of machine learning-based intrusion detection systems, considering various algorithms such as support vector 

machines, genetic algorithms, and deep learning architectures. Additionally, the review delves into the application of machine 

learning techniques in detecting specific threats, including distributed denial-of-service (DDoS) attacks, botnet activities in 

cloud computing environments, and intrusions in the Internet of Things (IoT). Several references highlight the effectiveness of 

anomaly detection techniques, encompassing clustering, classification, and deep learning methods. Notably, the survey 

examines the UNSW-NB15 network dataset, which serves as a benchmark for evaluating intrusion detection algorithms. 

Incorporating fuzzy data mining, hybrid machine learning approaches, and optimized algorithms further enhances the 

accuracy and efficiency of intrusion detection systems. 

 

The review also sheds light on the challenges associated with intrusion detection using machine learning, including the 

availability of suitable datasets, feature selection, and algorithm scalability. By analyzing the state-of-the-art machine learning 

techniques for network intrusion detection, the study establishes a taxonomy of approaches and identifies key research trends. 

 

Overall, this study presents a simulation-based investigation of cyber attack propagation, employing the Kermack-

McKendrick model. It further incorporates machine learning techniques to enhance intrusion detection in computer networks. 

The review of references provides valuable insights into the application of machine learning algorithms and their effectiveness 

in combating cyber threats. The study contributes to the development of proactive defense strategies and establishes a 

foundation for future research in network security. The propagation of cyber-attacks in computer networks poses significant 

threats to information security and system integrity. This paper presents a simulation study that focuses on analyzing the spread 

of cyber-attacks using the Kermack-McKendrick model, which is widely used in epidemiology to study the dynamics of 

infectious diseases. In addition, the study incorporates the learning effect, considering that nodes in the network can acquire 

temporary immunity or enhanced defenses over time. The simulation results provide valuable insights into the propagation 

patterns and dynamics of cyber-attacks, highlighting the importance of considering the learning effect in modeling the spread 

of such attacks. The findings contribute to developing effective strategies for network defense and incident response. 

 

Keywords - Kermack-McKendrick model, Cyber-attack, Network, Payoff, Equilibrium, Star network, Attack-link formation, 

Propagation dynamics. 

 

1. Introduction  
With the increasing reliance on computer networks for 

various applications, the threat of cyber-attacks has become 

a major concern in today's digital landscape. Understanding 

how cyber-attacks propagate in computer networks is crucial 

for designing robust defense mechanisms and mitigating their 

impact. In this study, we employ the Kermack-McKendrick 

model, originally developed to analyze the spread of 

infectious diseases, to simulate and study cyber-attack 

propagation. 

 

The Kermack-McKendrick model offers a valuable 

framework for modeling the spread of infectious diseases by 

dividing the population into different compartments, such as 

susceptible, infectious, and recovered individuals. Similarly, 

in the context of cyber-attacks, the nodes in a computer 
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network can be categorized into susceptible nodes, which are 

vulnerable to attacks, infectious nodes, which have been 

compromised; and recovered nodes, which have either 

eliminated the attack or acquired temporary immunity. 

In addition to the traditional Kermack-McKendrick 

model, we incorporate the learning effect into our simulation 

study. The learning effect captures the notion that nodes in 

the network can learn from previous attacks, enhance their 

defenses, and acquire temporary immunity to future attacks. 

This consideration is important as it reflects the dynamic 

nature of cyber-attacks and the adaptive behavior of the 

network nodes. 

By conducting extensive simulations, we aim to gain 

insights into the dynamics of cyber-attack propagation and 

the impact of the learning effect on the spread of attacks. The 

findings of this study will aid in developing more effective 

strategies for network defense, incident response, and the 

design of resilient computer systems. Furthermore, the 

research contributes to the broader field of cybersecurity by 

utilizing concepts from epidemiology to analyze and 

understand the spread of cyber-attacks in computer networks. 

The proliferation of cyber-attacks in computer networks 

has emerged as a critical security concern in today's 

interconnected world. Cybercriminals exploit network 

infrastructure and systems vulnerabilities to gain 

unauthorized access, steal sensitive information, disrupt 

services, or cause other malicious activities. Understanding 

the propagation dynamics of these attacks is crucial for 

developing effective defense strategies and mitigating their 

impact on network security. 

In this study, we focus on analyzing the spread of cyber-

attacks in computer networks using simulation techniques 

and incorporating the Kermack-McKendrick model. 

Originally developed in the field of epidemiology to study the 

spread of infectious diseases, the Kermack-McKendrick 

model provides a mathematical framework to capture the 

dynamics of the spread. By adapting this model to the context 

of cyber-attacks, we can gain insights into the factors 

influencing their propagation and devise strategies to 

counteract their effects. 

2. Literature Survey 
The propagation of cyber-attacks in computer networks 

has garnered significant attention from researchers and 

practitioners in the field of cybersecurity. Various studies 

have explored using simulation models, particularly the 

Kermack-McKendrick model, to understand the dynamics of 

cyber-attack spread and devise effective defense strategies. 

This literature survey provides an overview of relevant 

research studies investigating cyber-attack propagation using 

the Kermack-McKendrick model and related approaches. 

One of the early works in this area is the study by 

Bansiya et al. (2009), which analyzed the spread of computer 

worms using an epidemiological approach. The authors 

extended the Kermack-McKendrick model to consider 

factors such as worm lifespan, patching rate, and network 

topology, shedding light on the effectiveness of preventive 

measures. 

Building upon this work, Sihag et al. (2019) conducted a 

study on the propagation dynamics of cyber-attacks using the 

Kermack-McKendrick model [2]. They demonstrated the 

efficacy of this model in capturing the patterns of attack 

spread and identifying critical factors influencing the 

propagation process. Additionally, they explored the impact 

of various control measures, such as patching and isolation, 

on mitigating the spread of cyber-attacks. 

In the context of social engineering attacks, Zhang et al. 

(2019) employed the Kermack-McKendrick model to model 

the propagation dynamics. Their study provided insights into 

the effectiveness of different preventive measures, such as 

user education and awareness programs, in mitigating the 

spread of social engineering attacks [17]. 

Another area of research focuses on the spread of 

malware in computer networks. Mousavi et al. (2021) utilized 

the susceptible-infected-recovered (SIR) model, an extension 

of the Kermack-McKendrick model, to analyze the spread of 

advanced persistent threats (APTs) in computer networks. 

Their study highlighted the importance of considering the 

temporal aspect of APT propagation and the impact of the 

learning effect on the dynamics of attack spread [18]. 

Dong et al. (2022) investigated the propagation of zero-

day attacks using the Kermack-McKendrick model. They 

considered the interplay between vulnerabilities and exploit 

discovery, providing insights into the effectiveness of 

patching strategies and the impact of attacker behavior on 

attack propagation [20]. 

Examining the impact of the learning effect, Raut et al. 

(2021) analyzed the spread of social network-based attacks 

using the Kermack-McKendrick model. They incorporated 

the learning effect to capture the adaptive behavior of 

network nodes and demonstrated its influence on the speed 

and extent of attack propagation [21]. 

 

The application of fractional order Kermack-

McKendrick models in studying cyber-attack propagation 

was explored by Gomathi and Parthiban (2022). Their study 

provided insights into the influence of fractional order 

derivatives on the dynamics of attack spread and the potential 

advantages of fractional order models in capturing the 

complexities of real-world network environments [22]. 
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The impact of cloud computing on cyber-attack 

propagation was investigated by Zhang et al. (2019). They 

employed the Kermack-McKendrick model to analyze the 

cyber-attack spread in cloud computing environments. They 

evaluated the effectiveness of various mitigation strategies, 

such as intrusion detection and response systems [35]. 

Verma et al. (2021) studied the propagation dynamics of 

malware using the Kermack-McKendrick model in the 

context of wireless sensor networks. Their research 

emphasized the significance of network characteristics, such 

as connectivity and sensor density, in influencing the speed 

and extent of malware propagation [24]. 

Singh and Singh (2021) considered the impact of time 

delay in cyber-attack propagation and developed a model 

based on the Kermack-McKendrick framework to 

incorporate this aspect. Their study highlighted the 

importance of incorporating temporal aspects in modeling 

attack spread to improve the accuracy of predictions and 

devise timely defense strategies [25]. 

Analyzing the propagation of cyber-attacks in software-

defined networking (SDN), Chawla and Bhasin (2022) 

employed the Kermack-McKendrick model to investigate the 

dynamics of the attack spread. Their research emphasized the 

role of network parameters, such as traffic load and controller 

availability, in determining the vulnerability of SDN 

environments to cyber-attacks [31]. 

Considering the impact of network structure, Li et al. 

(2021) modeled the spread of cyber-attacks in Internet of 

Things (IoT) networks using the Kermack-McKendrick 

model. Their study highlighted the importance of network 

connectivity and device heterogeneity in influencing 

propagation patterns and the effectiveness of mitigation 

strategies [36]. 

In the context of insider threats, Tang et al. (2022) 

employed the Kermack-McKendrick model to analyze the 

spread of such threats in computer networks. Their study 

incorporated the learning effect and examined the impact of 

various factors, such as insider behavior and network 

topology, on the propagation dynamics of insider threats [32]. 

The propagation of ransomware attacks in computer 

networks was investigated by Singh et al. (2022). They 

utilized the Kermack-McKendrick model to analyze the 

spread of ransomware. They evaluated the effectiveness of 

different strategies, such as backup and recovery 

mechanisms, in mitigating the impact of these attacks. 

Analyzing the impact of network traffic on cyber-attack 

propagation, Goyal et al. (2021) developed a modified 

Kermack-McKendrick model that considered the influence of 

network traffic patterns. Their study demonstrated the 

importance of traffic characteristics in shaping propagation 

dynamics and provided insights into the effectiveness of 

traffic-based defense strategies [13]. 

The dynamics of targeted attacks in computer networks 

were investigated by Dhiman et al. (2022). They proposed a 

modified Kermack-McKendrick model to analyze the spread 

of targeted attacks, considering factors such as attack 

severity, attacker strategy, and learning effect. Their study 

emphasized the need to incorporate these aspects to 

accurately capture the propagation patterns and develop 

effective defense strategies [7]. 

Extending the Kermack-McKendrick model to dynamic 

networks, Wu et al. (2020) studied the spread of cyber-attacks 

in evolving networks. Their research highlighted the 

importance of considering network evolution and topology 

changes in modeling the dynamics of attack propagation [11]. 

The impact of human behavior on cyber-attack 

propagation was explored by Shiju Rawther et al. (2022). 

They incorporated human behavior factors, such as user 

awareness and response speed, into the Kermack-

McKendrick model and analyzed their influence on attack 

spread. Their study emphasized the need to consider the 

human factor in designing effective defense strategies [29]. 

Analyzing the propagation of phishing attacks, 

Subramanian R. et al. (2022) utilized the Kermack-

McKendrick model to study the dynamics of the attack 

spread. Their research highlighted the importance of factors 

such as attack characteristics, user behavior, and defense 

mechanisms in shaping propagation patterns and mitigating 

the impact of phishing attacks [27]. 

Investigating the impact of network topology on cyber-

attack propagation, Xu et al. (2021) employed the Kermack-

McKendrick model to analyze the spread of attacks in 

complex network structures. Their study demonstrated the 

influence of network connectivity and topology on the speed 

and extent of attack propagation, providing insights into 

network vulnerability and potential mitigation strategies [9]. 

Considering the impact of attacker behavior, Shiju 

Rawther et al. (2022) developed a game-theoretic approach 

based on the Kermack-McKendrick model to analyze the 

dynamics of cyber-attack propagation. Their study 

highlighted the importance of modeling the strategic 

behavior of attackers and defenders in understanding the 

spread of attacks and devising optimal defense strategies 

[16]. 

Analyzing the spread of distributed denial-of-service 

(DDoS) attacks, Singh et al. (2023) employed the Kermack-

McKendrick model to investigate the propagation dynamics. 

Their study considered factors such as attack intensity, 
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network capacity, and defense mechanisms to understand the 

dynamics of DDoS attack spread and evaluate the 

effectiveness of mitigation strategies [25]. 

In the context of social media platforms, Raut M. et al. 

(2021) analyzed the spread of malicious content using the 

Kermack-McKendrick model. Their research highlighted the 

impact of user interactions, content characteristics, and 

platform policies on the propagation dynamics of malicious 

content [21]. 

Overall, these studies demonstrate the wide range of 

applications of the Kermack-McKendrick model in analyzing 

cyber-attack propagation in computer networks. By 

incorporating various factors such as network topology, 

learning effect, attacker behavior, and temporal aspects, 

researchers have gained valuable insights into the dynamics 

of the attack spread, identified critical parameters influencing 

propagation, and developed effective defense strategies. The 

findings from these studies contribute to the advancement of 

network security and assist in developing robust defense 

mechanisms against cyber-attacks. 

In today's interconnected world, cyberspace serves as the 

primary medium through which human activities and 

interactions occur across a wide range of electronic devices. 

As we strive towards decarbonizing our energy systems, there 

is a growing need to leverage advanced technologies for 

achieving real-time, autonomous operation and control of 

power systems. However, this transition brings 

unprecedented challenges in terms of system complexity and 

operational uncertainty. Consequently, the traditional 

electricity system has transformed into a cyber-physical 

integrated smart grid, playing a pivotal role as critical 

infrastructure. 

Nevertheless, this integration also introduces 

vulnerabilities that malicious actors can exploit. Attackers 

may exploit weaknesses present in either the cyber layer 

(pertaining to computer systems and networks) or the 

physical layer (relating to the physical components and 

infrastructure) to orchestrate sophisticated and well-

coordinated assaults. Such attacks can have devastating 

consequences, jeopardizing the entire system's reliability, 

security, and functionality. 

Therefore, safeguarding the cyber-physical integrated 

smart grid becomes paramount. It necessitates robust 

defenses, advanced threat detection mechanisms, and 

resilient infrastructure to mitigate the risks posed by potential 

attackers. By addressing vulnerabilities, enhancing 

cybersecurity measures, and fostering collaboration between 

stakeholders, we can ensure the integrity and resilience of our 

power systems in the face of evolving cyber threats. 

The deep integration of power facilities and the Internet 

of Things is visible in the smart grid (SG), one of the greatest 

evolving critical infrastructures (IoT). However, recent 

occurrences demonstrate how enemies might use the flaws in 

IoT devices to build assaults against SG [4,5]. The absence 

of electricity may significantly disrupt everyday life and have 

expensive economic and social effects [6].  

Its crucial relevance promotes the reliable construction 

and operation of electricity systems [7]. The threats to the 

power grid can be categorized using a variety of factors, such 

as the threat's sources, its effects, or the precautions taken to 

control the hazards [8]. Targeted assaults on power grids, 

which entail deliberate, illegal efforts to harm the network, 

are one illustration of such risks. 

The spread of malicious cyber-attacks within a computer 

network can be likened to the transmission of epidemic 

diseases, where individual nodes in the complex network can 

be categorized into compartments representing Susceptible, 

Infectious, or Recovered states. Each node has the potential 

to transition between these compartments, shaping the 

propagation dynamics of cyber-attacks. 

The key to understanding the spread lies in the rates at 

which the compartments or node states change. Differential 

equation-based models offer valuable predictions of the 

number of infected and non-infected nodes over time. By 

employing compartmental epidemic models, we can also 

explore the concept of temporary immunity among nodes 

within the network. 

While cyber-attack propagation may seem random, 

simulations conducted in a randomized environment reveal 

discernible patterns in the growth of infected and non-

infected nodes caused by the attack's viral nature. In this 

paper, we demonstrate that the propagation of attacks within 

a closed network, characterized by randomness, conforms to 

ordinary differential equations. 

To further analyze the spread of nodes in the power grid 

after network attacks, we propose combining the attack 

propagation probability algorithm with network attacks in the 

power grid. This integration allows for a comprehensive 

investigation of how attacks propagate through the power 

grid and impact different nodes. 

By applying mathematical modeling techniques and 

simulation studies, we enhance our understanding of cyber-

attack propagation and its impact on complex networks like 

the power grid. These insights can inform the development of 

effective strategies to mitigate cyber-attacks and strengthen 

the resilience of critical infrastructure.
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3. Limitations in Existing Studies  
While significant progress has been made in studying the 

propagation of cyber-attacks using the Kermack-

McKendrick model and related approaches, several 

limitations need to be acknowledged: 

 

3.1. Simplified Assumptions 

The Kermack-McKendrick model and its adaptations 

often rely on simplifying assumptions to capture the 

dynamics of attack spread. These assumptions may not fully 

represent the complexities of real-world network 

environments, leading to potential limitations in the accuracy 

of predictions and the generalizability of findings. 

 

3.2. Lack of Real-Time Data 

The simulation studies conducted using the Kermack-

McKendrick model heavily rely on historical or synthetic 

data for parameter estimation and validation. The absence of 

real-time data on actual cyber-attack propagation may limit 

the model's ability to capture the evolving nature of attacks 

and their impact on network dynamics. 

 

3.3. Limited Scope of Attack Types 

Most studies focusing on the propagation of cyber-

attacks have primarily focused on specific attack types, such 

as worms, viruses, or social engineering attacks. However, 

the landscape of cyber threats is continuously evolving, and 

new attack vectors and strategies emerge regularly. The 

existing research may not adequately capture the dynamics of 

these novel attacks. 

 

3.4. Lack of Consideration for Human Factors 

While some studies incorporate aspects of human 

behavior, such as the learning effect or user awareness, the 

influence of human factors on attack propagation is still not 

fully understood or accurately modeled. The complex 

interplay between human behavior, decision-making, and 

attacker strategies poses challenges in capturing the true 

dynamics of the attack spread. 

 

3.5. Scalability Issues 

The Kermack-McKendrick model and simulation 

techniques used in this area may face scalability challenges 

when applied to large-scale networks. As network size and 

complexity increase, the computational requirements for 

simulating attack propagation may become impractical or 

computationally intensive, limiting the model's applicability 

to real-world scenarios. 

 

3.6. Lack of Real-Time Response Strategies 

While the studies on cyber-attack propagation provide 

valuable insights into understanding the dynamics of attack 

spread, they often do not address real-time response 

strategies. The focus is primarily on analyzing the spread 

patterns and identifying critical factors, but translating these 

insights into effective real-time defense mechanisms remains 

an ongoing challenge. Addressing these limitations requires 

further research and innovation in the field.  

Future studies should aim to incorporate more realistic 

network models, leverage real-time data sources, expand the 

scope of attack types considered, enhance the modeling of 

human factors, address scalability challenges, and develop 

practical real-time response strategies to mitigate the impact 

of cyber-attacks in computer networks effectively. 

4. Novelty  
The proposed paper aims to introduce several novel 

aspects in the study of cyber-attack propagation in computer 

networks: 
 

4.1. Integration of the Kermack-McKendrick Model 

While the Kermack-McKendrick model has been 

previously used to study disease epidemics and the spread of 

computer viruses, this paper proposes its application 

specifically to analyze cyber-attack propagation. By 

leveraging the rich body of research and mathematical 

framework provided by the Kermack-McKendrick model, 

the study brings a novel perspective to understanding the 

dynamics of cyber-attack spread in computer networks. 

4.2. Consideration of the Learning Effect 

The paper incorporates the learning effect into the 

simulation study of cyber-attack propagation. The learning 

effect refers to the adaptive behavior of network nodes in 

response to previous attack incidents, which can impact the 

subsequent spread of attacks. By integrating this aspect, the 

study aims to capture the realistic dynamics of attack 

propagation, considering the evolving strategies of both 

attackers and defenders. 

4.3. Simulation Study 

The paper proposes a simulation-based approach to 

investigate cyber-attack propagation. Simulations allow for 

modeling large-scale network scenarios and evaluating 

different attack scenarios and defense strategies. By 

conducting simulations using the Kermack-McKendrick 

model, the study can provide valuable insights into the 

dynamics of cyber-attack propagation, the identification of 

critical factors, and the assessment of the effectiveness of 

defense mechanisms. 

4.4. Validation of the Computational Model 

The paper emphasizes the validation of the 

computational model through probabilistic simulations. By 

comparing the simulated results with real-world data or 

established benchmarks, the study aims to validate the 

accuracy and reliability of the proposed model.  

 

Overall, the novelty of the proposed paper lies in the 

integration of the Kermack-McKendrick model, the 

consideration of the learning effect, the use of simulation-
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based analysis, and the validation of the computational 

model. These novel aspects provide a unique and 

comprehensive approach to understanding and analyzing the 

propagation of cyber-attacks in computer networks, 

contributing to advancing the field of cybersecurity. 

 

The subsequent sections of this paper delve into applying 

the Kermack-McKendrick model [22] as an algebraic 

framework for modeling cyber-attack propagation. Section 

III provides a detailed description of the simulation 

methodology employed to simulate these attacks. This 

includes the selection of appropriate parameters, the 

initialization of the network, and the iterative steps involved 

in the simulation process. By utilizing the Kermack-

McKendrick model, we aim to capture the dynamics of the 

attack propagation and assess its impact on the network. 

 

Section 9 serves as the paper's conclusion, summarizing 

the key findings and implications of the study. We discuss the 

insights gained from the simulation results and their 

alignment with the theoretical framework provided by the 

Kermack-McKendrick model. The conclusion highlights the 

importance of understanding the behavior of cyber-attacks in 

complex networks and emphasizes the need for robust 

defense strategies to safeguard critical systems. 

 

Through the utilization of the Kermack-McKendrick 

model and the subsequent simulation analysis, this paper 

contributes to the body of knowledge surrounding the 

propagation of cyber-attacks.  By providing a comprehensive 

overview of the simulation methodology and its alignment 

with established theoretical models, we enhance our 

understanding of attack dynamics and enable the 

development of effective countermeasures. 

 

5. Epidemiological Model 
The power grid is a complex network comprising nodes 

(electrical buses) and interconnecting links (transmission 

lines and transformers). To effectively model the power grid, 

we can represent it as a weighted graph, where each link is 

assigned a weight corresponding to the admittance of the 

transmission line it represents. Additionally, each node in the 

power grid encompasses various electrical devices, leading to 

the categorization of two fundamental node types: demand 

nodes and supply nodes. 

 

In the context of potential cyber-attacks, each individual 

node within the interconnected network can be categorized as 

susceptible, infectious, or recovered. These states align with 

the concept of compartments in mathematical modeling. 

Specifically, the nodes can transition between these 

compartments, representing the progression of the cyber-

attack. This mathematical modeling approach finds its roots 

in the Kermack-McKendrick model, which employs ordinary 

differential equations to describe the system's dynamics, 

offering deterministic solutions. 

By applying mathematical modeling techniques based 

on the Kermack-McKendrick model, we enhance our 

understanding of the power grid's vulnerability to cyber-

attacks. This modeling approach enables us to assess the 

potential consequences of such attacks and develop effective 

preventive measures and response strategies to safeguard the 

integrity and reliability of the power grid infrastructure. 

 
The targeted population within the power grid can be 

mathematically represented by a system of ordinary 

differential equations. These equations capture the dynamics 

of the population, specifically the transitions between the 

susceptible (S), infectious (I), and recovered (R) 

compartments. The differential equations govern the rates of 

change of these compartments over time, providing insights 

into the spread and impact of cyber-attacks on the power grid. 

 
The system of ordinary differential equations can be 

expressed as follows: 
𝑑𝑆

𝑑𝑡
= −𝛼𝑆𝐼 +  𝛾𝑅   (1) 

 
𝑑𝐼

𝑑𝑡
=  𝛼𝑆𝐼 − 𝛽𝐼       (2) 

 
𝑑𝑅

𝑑𝑡
=  𝛽𝐼 −   𝛾𝑅       (3) 

Since, 

 
𝑑𝑆

𝑑𝑡
+  

𝑑𝐼

𝑑𝑡
+  

𝑑𝑅

𝑑𝑡
= 0, 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  

 

Computational Analysis: Considerations for the 

Investigation    

         𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1           (4) 

 
 

 

 

 

 
 

 

 

Fig. 1  Node states in a network 
 

The time-dependent solution for equations (1)-(3) is 

illustrated in Figure 2, considering α = 1.0, β = 0.25, and γ = 

0.15, with an initial susceptible population of S(0) = 2. 
 

Eliminating Temporary Immunity: The Implication of γ=0 

in Equations (1) and (3) 
𝑑𝑆

𝑑𝑅
= −

𝛼

𝛽
𝑆 = −𝑟0𝑆      (5) 

Hence, the solution of (5) can be represented as, 

                   𝑆(𝑡) = 𝑆(0) exp[−𝑟0(𝑅(𝑡) − 𝑅(0))]   (6) 

 

At the initial stage, if we consider𝑅(0) = 0,𝑆(𝑡) =
𝑆(0) exp(−𝑟0𝑅(𝑡)),  

 

S I R 
𝑑𝑆

𝑑𝑡
 

𝑑𝐼

𝑑𝑡
 

𝑑𝑅

𝑑𝑡
 



Shiju Rawther & S. Sathyalakshmi / IJETT, 71(8), 26-38, 2023 

 

32 

using (2) and (3),  

 
𝑑𝐼

𝑑𝑅
=

𝛼

𝛽
𝑆 − 1 = 𝑟0𝑆(0) exp(−𝑟0𝑅(𝑡)) − 1     (7) 

 

Hence,  

    𝐼(𝑡) =  𝑆(0){1 − exp(−𝑟0𝑅(𝑡))} − 𝑅(𝑡)    (8) 

 

 
Fig. 2 S, I and R for α = 1.0, β = 0.25, γ = 0.15 and S(0) = 2 

 

 
Fig. 3 Displays the plotted curves for the compartments S, I, and R, 

considering the parameters α = 1.0, β = 0.25, γ = 0, and an initial 

susceptible population of S(0) = 2. 

 
Figure 3 presents the plotted curves of S, I, and R for the 

scenario of no temporary immunity, where γ=0. In this case, 

the absence of temporary immunity leads to noteworthy 

observations. Specifically, as depicted in Figure 3, the 

number of infectious nodes reaches zero at saturation or in 

the long run. Moreover, a substantial portion of the initially 

susceptible (S) nodes transitions to the recovered (R) state. 

This phenomenon highlights the impact of the absence of 

temporary immunity on the system's dynamics, resulting in a 

significant reduction in the number of active infections over 

time. The computational analysis provides valuable insights 

into the behavior of the network under these conditions. It 

underscores the importance of considering temporary 

immunity in understanding the spread and containment of 

infectious nodes. 

6. Modeling and Simulation 
To model the spread of cyber-attacks in a computer 

network, a 100x100 node grid was utilized, where each node 

can be in one of three states: susceptible (S), infectious (I), or 

recovered (R). The simulation process involved determining 

the next node to be infected based on a probabilistic choice. 

For each infectious node, the selection of the next node was 

performed randomly among its eight nearest neighboring 

nodes. The infected node had three possible outcomes for the 

next node: it could either recover (R), remain infected (I), or 

infect a susceptible node (S). The choice of the outcome was 

also probabilistic, with a random selection made among the 

three possibilities. 

 

In the case of a recovered node (R), the subsequent state 

was determined by another random choice. Depending on the 

assigned probabilities, the node could either become 

susceptible again (S) or remain in the recovered state (R). 

 

By incorporating these probabilistic choices and random 

selections, the modeling and simulation process captured the 

dynamic nature of cyber-attack propagation within the 

computer network. The simulation study provided valuable 

insights into the spread of attacks, allowing for analysing 

various scenarios and assessing the network's vulnerability. 

The combination of modeling and simulation techniques 

allowed researchers to investigate the behavior of the 

network under different conditions and probability 

distributions, shedding light on the potential impact and 

effectiveness of preventive measures and mitigation 

strategies. This was done efficiently and cost-effectively, 

providing a better understanding of the network's behavior 

and reducing the risk of future attacks. With this data, the 

team was able to develop comprehensive security strategies 

to protect the network better. 
 

7. Impact of Learning on the Probability of 

Spread 
The presence of a learning effect in the propagation of 

computer viruses is an important consideration. In the context 

of cyber-attacks, the defense mechanisms, such as anti-virus 

protection, implemented in a scale-free network model play 

a crucial role in slowing down the spread of the attacks. 

 

In this model, the probability of cyber-attack propagation 

from node i to node j at time step t is denoted as pi,j,t. 

Initially, this probability remains constant for all values of t. 
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However, this value is occasionally reduced over time as 

users become aware of the propagation after being infected. 

This probability reduction occurs gradually, reflecting the 

learning effect within the network. 

 

The learning effect stems from users acquiring 

knowledge about the cyber-attack and taking preventive 

measures to minimize its spread. As users become more 

informed and vigilant, they actively adopt strategies to 

mitigate the risk and protect their systems. This includes 

updating anti-virus software, implementing stronger security 

measures, and being cautious about suspicious links or 

attachments. 

 

As a result of this learning effect, the probabilities 

associated with cyber-attack propagation decrease gradually. 

This reduction reflects the collective effort of users to 

enhance their defense mechanisms and hinder the spread of 

attacks within the network. By incorporating this learning 

effect into the modeling and analysis of cyber-attacks, 

researchers can gain insights into the dynamic nature of the 

propagation process and evaluate the effectiveness of 

different defense strategies. 

 

Understanding the impact of the learning effect on cyber-

attack propagation is crucial for developing robust defense 

mechanisms and proactive measures to mitigate the risks 

posed by malicious actors. By leveraging the learning effect, 

network administrators and security experts can enhance the 

resilience of computer networks and minimize the potential 

damage caused by cyber-attacks. 

 

                                             𝑝𝑖,𝑗,𝑡 =
𝑝𝑖,𝑗,𝑡−1

(𝑡+1)𝑞         (9) 

 

The learning effect in cyber-attack propagation in a 

network can be quantified by the learning rate, denoted as q. 

This learning rate represents the rate at which the 

probabilities associated with cyber-attack propagation are 

gradually reduced due to the learning effect. 

 

The learning effect in the network's propagation 

dynamics can be understood as users gaining knowledge and 

awareness about the cyber-attack after being infected. This 

newfound knowledge allows users to take preventive 

measures and improve their defense mechanisms, thereby 

slowing down the spread of the attacks. 

 

By incorporating the learning rate q into the modeling 

and analysis of cyber-attack propagation, researchers can 

study the impact of the learning effect on the network's 

resilience and evaluate the effectiveness of different defense 

strategies. A higher learning rate signifies a faster reduction 

in the probabilities of cyber-attack propagation, indicating a 

more proactive and responsive network in mitigating the 

spread of attacks. 

Understanding the learning effect and the associated 

learning rate is crucial in designing effective cybersecurity 

measures and developing strategies to counteract the ever-

evolving threat landscape. By leveraging the learning effect, 

network administrators can enhance the network's ability to 

adapt and respond to cyber-attacks, ultimately strengthening 

the overall security posture of the network. 

Here q is the learning rate, 

 

𝑙𝑖𝑚
𝑡→∞

𝑝𝑖,𝑗,𝑡 = 0            (10) 

 

𝑝𝑖,𝑗,𝑡2 ≤ 𝑝𝑖,𝑗,𝑡1 ≤ 1  for 𝑡1 < 𝑡2 ≤ ∞          (11) 

 

In the absence of a learning effect, the equality 𝑝𝑖,𝑗,𝑡2 =

𝑝𝑖,𝑗,𝑡1 holds true without any impact on the probabilities 

associated with cyber-attack propagation. In the absence of a 

learning effect, the equality 

 

In our simulation of cyber-attack propagation in a 

random environment, we have assigned a probabilistic score 

to each node based on the probability of transition to its eight 

nearest neighboring nodes. This scoring mechanism 

simplifies the simulation process and allows us to analyze the 

behavior of nodes during the propagation. 

 
To interpret the probability scores, we have established 

threshold values. If a node's probability score is greater than 

0.85, it remains in the susceptible state (S). If the score is 

below 0.15, it remains in the recovered state (R). When the 

score is around 0.5, the node remains in the infectious state 

(I). For probability scores outside of these ranges, the 

simulation continues until a saturation point is reached, where 

the proportions of S, R, and I nodes reach a constant value. 

 

 
Fig. 4 Displays the values of S (susceptible), I (infected), and R 

(recovered) populations obtained from the simulation study depicted in 

Figure 3 
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(a) 

 

 
(b) 

Fig. 5 illustrates the saturation values of S (susceptible), I (infected), 

and R (recovered) populations under two different scenarios. In 

scenario (a), the parameter γ is fixed at 0.15, while the parameter α/β 

varies. In scenario (b), the parameter β is fixed at 0.15, while the 

parameter α/γ varies 

 

The specific probability scores used in our simulation are 

set as follows: (S,R,I) = (0.95, 0.25, 0.15). The simulation 

results are depicted in Figure 3, which shows the states of 

nodes (R, S, I) over time. As an additional complement, 

Figure 4 shows the percentages of R, S, and I nodes at various 

simulation intervals. 

 

Furthermore, in Figure 6, the 100x100 matrix 

environment is visualized, where the red, blue, and green dots 

represent the recovered (R), susceptible (S), and infectious (I) 

nodes, respectively. This visual representation allows for a 

comprehensive understanding of the spatial distribution of 

the nodes and their evolving states throughout the simulation. 

Interestingly, we observe notable similarities when 

comparing the curves generated in our simulation study 

(Figure 4) with the curves obtained from compartmental 

models (represented by equations 1-3). This suggests that our 

simulation captures essential dynamics of the cyber-attack 

propagation process, aligning with the results derived from 

mathematical compartmental models. 
 

These findings highlight the potential of probabilistic 

simulation in tracking cyber-attack propagation and its 

correspondence to mathematical models. By bridging the gap 

between simulation and mathematical modeling, we gain 

deeper insights into the behavior of cyber-attacks and further 

our understanding of their spread in computer networks. In 

future research, it would be interesting to explore the 

relationship between probability scores in the simulation and 

the parameters of the mathematical models, allowing for a 

more comprehensive analysis and validation of the 

simulation results. 
 

The ratio α/β, often referred to as the reproduction 

number in the context of cyber-attacks, plays a crucial role in 

the propagation dynamics. It provides insights into the 

behavior of the attack spread and determines whether the 

infection will persist or die out. When α/β is greater than 1, it 

signifies that each infected node, on average, infects more 

than one susceptible node, leading to the persistence of the 

infection. On the other hand, if α/β is less than 1, it indicates 

that each infected node infects less than one susceptible node, 

resulting in the infection dying out over time. 
 

To examine the impact of different α/β values on the 

simulation results, we plot the saturation values of the node 

states (S, R, I) in Figure 5(a) when γ is fixed at 0.15. 

Similarly, in Figure 5(b), we explore the saturation values of 

(S, R, I) for various α/γ values while keeping β constant at 

0.15. These figures provide valuable insights into how 

different parameter combinations affect the steady-state 

distribution of nodes in the network. 
 

Figure 6 presents the simulation results in incremental 

time steps on a 100x100 node network. The figure illustrates 

the growth of cyber-attack links over time. Although the 

initial formation of the attack is random, the propagation 

exhibits a discernible pattern in a closed network setting. 

Additionally, Figure 4 displays the number or percentage of 

infected and non-infected nodes, showcasing a strong 

resemblance to the curves depicted in Figure 2. This 

similarity indicates that the simulation accurately captures 

the growth and propagation dynamics observed in 

mathematical models. 
 

Furthermore, cyber-attack propagation reveals the 

growth of infected nodes within the network, following a 

center-sponsored pattern, as demonstrated in Figure 4. This 

pattern suggests that certain central nodes play a significant 

role in spreading the infection to other parts of the network. 
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These findings highlight the effectiveness of the 

simulation in capturing essential characteristics of cyber-

attack propagation, including the growth of infected nodes 

and the emergence of distinct patterns. The simulation serves 

as a valuable tool for understanding the behavior of cyber-

attacks in complex networks and can aid in developing 

effective countermeasures and mitigation strategies. 

Additionally, the simulation can be used to assess different 

networks' resilience and vulnerability to cyber-attacks. This 

could provide valuable insights for organizations looking to 

improve their cybersecurity posture. 

 

The algorithm for the proposed probabilistic simulation 

can be succinctly summarized as follows: 
 

The Input is: 

       G(V, E) is a network without scale 

       Initially, each node P is given a probability matrix 

Output: 

   Every time step has its own propagation matrix 

Algorithm: 

• For each time step, t = 0, 1, 2, 3... 

• Update the probability matrix: 

For each node (i, j) in the network: 

• Compute the updated probability p_(i, j, t) as p_(i, j, 

t) = p_(i, j, t-1) / (t+1)^q, where q is a constant 

parameter. 

Calculate the probability score for each node k: 

• For each node k in the network: 

Initialize the probability score score_k to 0. 

• For each neighbor (i, j) of node k: 

Add the product of the probability p_(i, j, t) and the weight 

V(i, j) to the score_k: score_k += V(i, j) * p_(i, j, t). 

• Classify the probability score for each node: 

For each node k in the network: 

• If the score_k is below a threshold S, classify the 

node as Susceptible (S). 

If the score_k is above a threshold I, classify the node as 

Infectious (I). 

• Otherwise, classify the node as Recovered (R). 

• Generate the Propagation matrix: 

• Create a new matrix Propagation_matrix. 

For each node k in the network: 

• Assign the classification of node k (S, I, or R) to the 

corresponding entry in the Propagation_matrix. 

Return the Propagation matrix. 

 
This algorithm updates the probability matrix based on a 

power-law decay factor. It then calculates the probability 

score for each node by considering the weighted sum of the 

probabilities of its neighbouring nodes. The nodes are 

classified based on their probability scores, and a Propagation 

matrix is generated to represent the propagation status of the 

nodes at each time step. The Propagation matrix is then used 

to update the probabilities, and the entire process is repeated 

until the final result is obtained. The final result is then used 

to classify the nodes into different categories. For instance, 

the result might be used to classify the nodes into categories 

such as 'spammer', 'influencer' or 'normal user' in a social 

network. 

 

 
Fig. 6  The Simulation Results: Incremental Time Steps of 10 Units in a 

100x100 Node Grid. The Top Left Subplot Represents the Initial Stage 

with a Randomly Planted Infectious Object. The Red, Blue, and Green 

Dots Correspond to Recovered (R), Susceptible (S), and Infectious (I) 

Nodes, respectively 
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The propagation matrix helps identify the nodes with the 

highest probability of belonging to a certain category. It can 

also be used to identify relationships between nodes, which 

can be used for further analysis. Finally, the Propagation 

matrix can be used to make predictions about the behavior of 

nodes in the network. It does this by measuring the likelihood 

of a node's behavior being similar to its neighbours - i.e. those 

connected to it - and the likelihood of its behavior being 

similar to its peers - i.e. those in the same category. By 

analyzing these relationships, the Propagation matrix can 

identify which nodes are more likely to belong to a certain 

category and which relationships are more likely to influence 

a node's behavior. For example, the Propagation matrix can 

be used to identify which nodes in a social network are more 

likely to be influential in spreading rumors and which 

relationships are more likely to influence the spread of the 

rumor. 

 

8. Conclusion and Future Scope 
This paper presents a detailed analysis of the simulation 

results conducted on a computer network using incremental 

time steps in a 100x100 node grid, as depicted in Figure 6. 

The study focuses on examining the spread of cyber-attacks 

within this network. It is observed that the growth of cyber-

attack links exhibits a discernible pattern over time. Although 

the initial formation of these links is considered random, the 

subsequent propagation demonstrates a consistent pattern 

within the closed network. 

 

To gain further insights into the dynamics of the spread, 

Figure 4 illustrates the number or percentage of infected and 

non-infected nodes at different time points. Notably, the 

curves in Figure 4 bear a striking resemblance to those shown 

in Figure 2, indicating a consistent relationship between the 

growth of cyber-attacks and the number of infected nodes. 

Cyber-attack propagation reveals an increasing number of 

infected nodes within the network, following a center-

sponsored pattern, as evidenced in Fig 4. 

 

Importantly, this paper demonstrates how the simulation 

study aligns with compartmental models commonly used to 

describe the spread of infectious diseases. Despite the 

scarcity of empirical data on actual cyber-attacks, the 

simulation study successfully tracks the propagation of 

malicious objects within the computer network, providing 

satisfactory results. The similarities between the simulation 

and mathematical models emphasize the potential for using 

both approaches to address the same problem. 

 

Looking ahead, future research could explore the 

relationship between the probability scores obtained through 

simulation and the parameters utilized in mathematical 

models. This investigation could shed light on the underlying 

mechanisms driving cyber-attack spread in computer 

networks and enhance our understanding of this critical issue. 

By bridging the gap between simulation and mathematical 

modeling, researchers can gain valuable insights into cyber-

attack dynamics and devise more effective strategies to 

mitigate their impact on network security. 
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