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Abstract - Understanding a complex type structure and its use in a type-safe manner is a difficult task. The recursive generic 

type is a complex variant one can expect by finding the recursion. It has major significance in generic programming for solving 

binary method problems and mimicking self-type. However, improper use of recursive generics can cause vulnerabilities in 

source code. To avoid unsafe practices, a programmer must be aware of the recursive generic presence in source code. In 

Java generics, the type recursion can be found at a class or interface declaration. Therefore, it is appropriate to distinguish 

class type at declaration time itself.  In this paper, we use a machine learning approach to find recursive and non-recursive 

generic types in Java source code. We collect data from ten contemporary Java projects and prepare a dataset with generic-

specific attributes. The lesser presence of recursive generic type in Java projects causes an imbalanced dataset. Initially, the 

dataset results were highly imbalanced. Therefore, we resampled the dataset and used the dataset to train decision tree-based 

classifiers. Using standard performance metrics, we conduct a comparative analysis to find a (near-) optimal classifier among 

the six decision tree-based classifiers. Our analysis reasserts that the ensemble-based ``Random Forest Classifier" results best 

in all nine metrics. 

Keywords - Classification, Decision Tree, F-bounded, Java Generics, Type-Safe. 

1. Introduction  
Parameterization is a programming construct that 

represents a type in a generic manner [28]. The parameters 

are declared variables; when implementation is needed, it is 

instantiated with a specific type. However, the parameterized 

or generic type does not support subtyping [29]. For example, 

List<Integer> cannot be assigned to List< number>; instead, 

the Integer is a subtype of number. Moreover, Object-

Oriented Programming Languages (OOPLs) support the 

inclusion of subtyping with parameterized type in the form of 

variance. The subtype inclusion enhances re-usability, but it 

has major concerns regarding safety due to the undecidable 

nature of variance [9].  In Java, bounded quantification 

ensures safety for subtype inclusion among generic types [1]. 

A bounded quantification imposes restrictions over a 

particular range of subtypes for a type parameter. The syntax 

of a bounded type parameter is as follows: the type parameter 

followed by the “extends” keyword and the upper bound. 

Here, the keyword extends indicates the subtype relation.  

As given in example 1, the generic type List has a 

bounded type parameter “T” that inherits a number. 

Therefore, a List is constrained to have a Number or any 

subtypes as a parameter. However, the plain bounded 

constraint is insufficient for a situation where the bounded 

type parameter is constrained recursively. For example, the 

binary method operations for class objects [2]. In this, the 

parameter type of the generic class and the receiving class 

object should be the same. The recursive bounded generics 

are suitable to perform such binary operations. However, a 

safe implementation of recursive bounds is necessary; 

otherwise, it may result in StackOverflowError. A constraint 

recursive bound is proposed, which is popularly known as F-

bound, and is being used in several OOPLs [3]. As shown in 

the sample code, the F-bounded Comparable<T> interface is 

used for ordering objects of the class that implements it. It 

has a binary method compareTo() that compares the class 

object with the specified object. Here, the parameter type of 

// Plain Bounded 

List<T extends Number> 

// Recursively Bounded (F-bound) 

T extends Comparable<T> 

//Binary operation using F-bounded 

class Person implements Comparable 

<Person>{ 

public int compareTo(Person person) 

{} } 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Neha Kumari & Rajeev Kumar / IJETT, 71(8), 76-84, 2023 

 

 

77 

a comparable interface and the receiving class object is the 

same (Person). The F-bounded quantification is introduced to 

constrain such recursive type parameters. It has a significant 

quantification feature that enhances generics’ expressiveness. 

However, the use of the F-bounded generics is restricted in 

various contexts. These restrictions avoid unsoundness in the 

program code [4], [5], [6], [7]. Greenman et al. proposed a 

trivial approach to implementing F-bound generics safely.  

The proposed method suggests a disjoint of recursive 

type (shape) and non-recursive type (material). To validate 

their claim, they analyze millions of Java codes in the form 

of a usage graph. The usage graph shows self-loop for class-

level cycles and ignores parameter-level cycles. For example, 

the graph shows self-loop in T extends Comparable<T>, but 

it does not show self-loop in T<E extends 

Comparable<E>>. The self-loop at the parameter level can 

easily be detected by analyzing the source code. Nowadays, 

machine-learning approaches are being used on a large scale 

to analyze source code [34]. We train an ML model using our 

dataset and use the model to identify and classify recursive 

and non-recursive type signatures at the class declaration. 

The machine learning (ML) approach can be a 

convenient and error-less process to classify recursive 

generic (F-bounded) and non-recursive generic at class 

declaration. We require a Java dataset with relevant attributes 

to implement an ML model. Since an ML model’s accuracy 

depends on the data quality used for training, we collect data 

from workable Java projects in two popular public 

repositories. The dataset holds important attributes of Java 

generics, such as class details, parameters, inheritance 

relations, etc. Once the dataset is prepared, we select 

classification models for training. Since the decision tree-

based models are simple to understand and interpret and do 

not depend on normalized data [8], we choose decision tree-

based models for our classification problem. The classifier 

works in two-phase to complete classification. 

The first is the learning phase, which takes examples 

from the dataset and generates a tree-based model. In the 

second phase, the generated model tests whether it classifies 

accurately for the given input data. This paper performs a 

comparative analysis among six decision tree-based 

classification models to find a (near-) optimal classifier. The 

comparative analysis uses nine performance metrics based on 

Accuracy, Confusion table, AUC, and Kappa statistics. 

The paper is organized as follows. Section 2 discusses 

the fundamentals of Java generics and mainly focuses on 

recursive generics and problem motivation. Section 3 

presents related works. Section 4 includes the proposed 

method implemented in this paper to distinguish recursive 

and non-recursive generic types. Section 5 majorly discusses 

the results. Finally, Section 6 concludes the work with future 

perspectives. 

2. Background and Motivating Example 
2.1. Generics in Java  

The section briefs the evolution of generics and the role 

of recursive generics in the Java programming language. 

Generics were added in Java 5 to improve static type checks 

by replacing explicit cast with type-specific parameters.  

 

However, Java generics are restricted in various ways to 

avoid unsafe practices. The invariant nature is one of its 

limitations. The invariant Java generics do not allow 

subtyping among type parameters. Subtyping can be enabled 

with bounded constraints. The bounded quantification 

ensures safety by fixing the upper (extends) and lower (super) 

limits for parameters. This upper and lower bound is known 

as covariant and contravariant, respectively. In Java generics, 

parameter bounds are restricted in various contexts.  

The above code shows that the type of extended class 

parameter and the receiving class instance can differ. 

Therefore, this declaration is invalid for classes with binary 

method operations. The following class declaration is valid 

only if the extended class parameter and the receiving class 

instance type are the same as the F-bounded example.  

 

Hence, the F-bounded quantification is used to constrain 

the recursive bound. However, the F-bounded suffers from 

uses limitations due to its complex structure. We discuss 

these limitations and their impact in the following sub-section. 

2.2. Motivating Example  

The recursive generic or its other name, such as self-

bounding generics, self-referential or F-bounds, are the 

different names in different OOPLs. The one goal is to 

constrain parameter type to provide exact type among its own 

// Before Generics 

List a = a.add("xyz"); 

String b = (String)a.get(0); 

// After Generics 

List<String> a = a.add("xyz") 

String b = a.get(0); 

// Invariant Generics 

List<Number> != List<Integer> 

// Co and Contra (variant) Generics 

List<? extends Number> = List<Integer> 

List<? super Integer> = List<Number> 

// Bounded Quant. with recursive bound 

class P<? extends T> 

extends Comparable<P<? extends T>>{} 

// F-bounded Quantification 

class P<T> 

implements Comparable<P<T>>{} 
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covariant types. In Java, this recursive pattern is mainly used 

to solve binary methods or to mimic self-type in Fluent API 

[32].  

 

The other use of recursive generic can also be found with 

type families [33]. Apart from the recursive generic 

applications, the main concern is the way it is being used in 

the program so that it does not result in code failure. For 

example, the recursive generic that contain contravariant 

parameter may result in an infinite loop [9]. Here we will 

demonstrate how the recursive generic may result in unsafe 

if not used carefully in Java. 

 

Instead of the various restriction on recursive generics 

(F-bounded), it behaves suspiciously in a few cases due to its 

complex structure. Here we discuss two such unsafe cases of 

F-bound. The first case is about contravariant recursion in 

inherited class parameters; this results in StackOverflowError 

at runtime and the contravariant recursion in the base class 

type parameter; this may lead to incompatible type 

implementation.  

 

In the above code, to validate whether C<P> is a subtype 

of Comparable<? super C<P>> or not. The Comparable<? 

super C<P>> should be a subtype of 

Comparable<Comparable<? super C<P>>>, and this goes 

on repeatedly that, may lead StackOverflowError. 

 

The above code uses the recursive interface as a class’s 

type parameter. The Comparable interface can have ‘T’ or 

any supertypes as its parameter. However, this semantically 

doesn’t seem right for F-bound constrain since the recursive 

constraint applies only if the Comparable interface type 

parameter and the implementing class instance are exactly the 

same. The second case is about Fluent API. Java does not 

have a self-type. The recursive generic type is used to mimic 

self-type. The Fluent API uses an explicit cast to ensure 

safety, as shown in the below example. Otherwise, the parent 

class object return instead of the child class. The 

incompatible return type may result in compile time error 

[31]. 

 

 

 

 

 

A programmer must be aware of the presence of 

recursive generics, and he should understand the uses 

restrictions to control any mishap. Therefore, we propose an 

ML-based model to identify recursive patterns from Java 

source code and categorize the recursive and non-recursive 

generic classes. We assume the following three recursive 

patterns of the class declaration are classified as a recursive 

generic type; otherwise, the classes are non-recursive. 

Based on the above problem statement, we formulate the 

following research question. 

• Using the given dataset, how efficiently can a machine 

learning model classify a class declaration as a recursive 

and non-recursive generic type? 

3. Related Work  
A bounded quantification is a programming approach 

that safeguards the inclusion of subtyping among 

parameterized types [1]. The bounded quantification ensures 

safety by allowing the parameter a specific range of subtypes. 

However, it fails when a type bound is self-type. The self-

types are crucial for binary method operations such as 

comparison, addition, etc. To solve such recursive bounded 

operations, the F-bounded is introduced [3]. Instead of the 

advantages, the F-bounded is mainly criticized for its use in 

an unsound manner. Kennedy and Pierce [9] are among the 

first researchers to discuss the intricate combination of the 

wildcard and F-bounded that can lead to unbounded growth 

during subtype checking. The inference for recursive type 

found failed due to poor inference context in Java [5]. The 

recursive lower bound causes non-termination during type 

check [6]. In the past, many solutions have been proposed to 

overcome unsoundness among recursive types, for example, 

the exclusion of expansive inheritance and removing nested 

contravariance. However, the proposal to disjoint material 

(non-recursive) and shape (recursive) is practical and 

decidable for subtyping relation [4]. 

 

We consider the F-bounded generics as one of the 

essential components of the generics type system that needs 

to be studied broadly. Many object-oriented languages use 

other alternative higher-kind types in place of the F-bounded 

for binary operations. Type class is one of the alternatives for 

the F-bounded [10]. However, this is not a trivial process to 

switch to another type, especially for the languages like Java 

that strictly follow backward compatibility. The F-bounded 

generics work well if used in a specified manner. Therefore, 

the programmer must be aware of the presence of the 

recursive type in the source code. The machine learning 

approaches are popularly used to extract knowledge from 

class C<P> implements 

Comparable<Comparable<? super C<P>>>{} 

class Xyz<T extends Comparable 

<? super T>> { 

public int compareTo(T other) {}} 

1) class Enum < E extends Enum<E>> 

2) class SubClass extends X <SubClass> 

3) class MyClass <T extends FirstType 

<T, U>, U extends SecondType <T, 

U>> 

 public class Parent <B extends Parent<B>> { 

 public final B method() {... 

 return (B) this; 

 } } 
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open-source projects [12], [36]. This extracted knowledge is 

helpful to improve programs and avoid unsafe practices [13], 

[14]. Therefore, we propose to use the ML approach to 

explore and understand the F-bounded. Various ML-based 

applications are developed using robust programming like 

Java [15]. Here, we use ML to learn a crucial component of 

the Java programming language.  

In the proposed methodology, the ML model is used as a 

classifier. The model identifies the recursive and non-

recursive patterns from the given data and classifies them 

accordingly. For the ML model training with relevant data, 

we search for several standard Java datasets that are publicly 

available [16], [17], [18]. Among them, most datasets either 

contain bug-related attributes or attributes that can help to 

predict the name of identifiers and methods [19], [20]. 

Several classification models have been proposed, and their 

performances have been analysed with various datasets [21]. 

In this paper, we developed a Java dataset with class 

declaration information essential for the classification model. 

Further, we use the dataset to train various classifiers and 

analyse their performances. 

4. Methodology  
We categorize the proposed methodology into four phases: 

• Input Phase: We choose relevant attributes and collect 

data from the Java source code to prepare the dataset. 

• Pre-processing Phase: We perform resampling over the 

imbalanced dataset and then encode the data into a 

suitable format for the machine learning model. 

• Model-based Learning: We choose six decision tree 

classifiers for the learning and perform a comparative 

analysis to find the (near-) optimal classifier [22]. 

• Evaluation Phase: The comparison is based on the 

results we get for nine performance metrics. 

 

4.1. Input  

We need to extract class declaration components from 

the Java Source code to identify whether the class is a 

recursive generic type. These components are class names, 

parameter details, inheritance relations, etc. The dataset 

contains these class declaration components in the form of 

nine attributes. To get values for respective attributes, we use 

JavaParser API that fetches values from AST nodes. After 

this, we store the extracted data in a CSV file with the help of 

OpenCSV Library. The next step is to label the data necessary 

to train the supervised ML algorithms. Classifiers can 

classify the class declaration as recursive and non-recursive 

using labelled data. The type of our dataset is categorical and 

contains nominal and ordinal values. Later, we convert these 

values into numerical data using standard encoders. 

4.2. Pre-Processing 

As expected, we find the occurrence of the recursive 

class significantly lesser than the non-recursive class, 

resulting in an imbalanced dataset. This presence of bias in 

the dataset may ignore the minor class. We can observe the 

classification error using the Weka tool [23], [24]. Wherever 

we apply a classifier to this imbalanced dataset, the number 

of incorrectly classified instances equals the number of minor 

classes in the dataset. Therefore, the dataset needs to be 

resampled. In this process, first, we reduce the occurrence of 

major classes. For this, we remove classes labelled as non-

recursive, which is neither generic class nor has inheritance 

relation. We use this constraint because a null value in 

inheritance relation and a null in class parameter can never be 

a recursive class. In the next step, we increase the occurrence 

of minor classes. For this, we randomly duplicate recursive 

class data. By following these two resampling steps, we 

successfully reduce bias from the dataset. Moreover, Now, 

our dataset is ready to train ML classifiers for error-less 

classification. 

4.3. Model-Based Learning 

The processed dataset is used to train and validate six 

decision tree classifiers. A decision tree classifies data by 

forming a tree structure where each internal node is a decision 

node, each edge shows the condition or decision, and the leaf 

shows the items belonging to a single class. The tree makes 

decisions by splitting nodes. Different decision tree 

algorithms use different node-splitting criteria such as 

entropy, Information Gain, Gini Index, Gain Ratio, Chi-

Square, etc. The six decision tree classifiers are as follows: 

4.3.1. Random Tree 

This algorithm forms a number of trees for each decision 

using random samples from the dataset. The final 

classification decision is based on the most frequent tree 

output—random tree results in overfitting. 

4.3.2. J48 

The J48 is popularly used as a categorical and continuous 

data classifier. This algorithm uses information gain as a 

splitting criterion. The final decision is based on the 

attribute(s) with the highest normalized information gain. 

4.3.3. Hoeffding Tree 

It is an incremental decision tree algorithm. The 

Hoeffding tree algorithm can learn from high-volume data 

streams by seeing each instance once. This algorithm results 

in the best with a high volume of data. 

4.3.4. Logistics Model 

Unlike an ordinary decision tree, it has a linear 

regression model at its leaves to perform supervised learning 

tasks. 

4.3.5. Decision Stump 

It is a decision tree with one root node followed by an 

immediate termination node. Primarily the decision is based 
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on a single input feature. Decision Stump is often used in 

ensemble techniques as a base learner. 

4.3.6. Random Forest 

The Random Forest is an ensemble classifier. It averages 

multiple decision trees trained on a random part of the same 

training set. Ensemble classifier results are more accurate as 

compared to single decision tree classifier. 

4.4. Evaluation 

We use nine performance metrics based on Accuracy, 

Confusion table, AUC, and Kappa statistics to evaluate the 

performances of six decision tree classifiers. The following 

performance metrics depend on the confusion table: True-

Positive (TP) rate, False-Positive (FP) rate, Precision, Recall, 

and F-Score. Receiver Operating Characteristics (ROC) and 

Precision-Recall Curves (PRC) represent the classifier’s 

performance through a curve on a two-dimensional axis. 

However, the Area Under Curve (AUC) can be calculated for 

both curves that give a performance score. A better classifier 

should have a result value close to 1 (100%) for all metrics, 

excluding the FP rate. The False-Positive rate should be low 

(˜0) as it indicates the rate of incorrectly classified instances. 

5. Experimental Setup and Results 
5.1. Dataset 

We require a Java source code dataset with class 

declaration information to implement the classification 

models. For this, we searched several Java datasets [25], [17], 

[26], [35]. We collected the datasets that are open to access 

[16], [17]. These datasets are well-curated and available in 

standard file formats (CSV, XML, ARFF). However, these 

datasets focus on bug prediction and contain bug-related 

attributes. It lacks the attributes that are required for the class 

declaration classification problem. Therefore, we prepare the 

dataset with class declaration attributes. We start with data 

collection. For this, we searched for several Java projects 

with ample use of generics. We selected Java projects from 

two popular source code repositories, GitHub and 

SourceForge. Next, we collected basic statistics of the project, 

such as the number of lines in code (LOC), the total number 

of classes, and the total number of generic classes, as shown 

in Table I. The code analysis tool CodeMR Static Code 

Analyser3 helps analyse these Java projects in detail. Based 

on the analysis, we select ten projects containing generic 

classes. After data collection, we process the following steps 

to prepare the dataset: 

1) Convert Java source code into AST nodes using 

JavaParser API. 

2) Traverse and select attribute nodes. 

3) Store the values of attributes. 

4) Generate CSV file using OpenCSV Library. 

5) Encoding categorical string values into numerical values 

using LabelEncoder. 

Data collection and storage are simultaneously possible 

for a single project using the above APIs. Therefore, it creates 

ten CSV files for ten different Java projects. Eventually, we 

merged all ten CSV files into a single file. 

5.1.1. Attributes 

The total number of attributes in the dataset is nine. All 

nine attributes are of the categorical type. The attributes are 

as follows Project name, Base Class name, Base Class 

parameter, IsGeneric, IsInherit, Parent class name, Parent 

class parameter, Child class name, and Child class parameter. 

The IsGeneric and IsInherit attributes contain the values 

(True or False) for the base class. It can be generic or non-

generic. In the dataset, 22 base classes are F-bounded among 

229 generic classes, and 33 are F-bounded among 116 non-

generic classes. Out of 257 inheritance relations, 55 are for 

recursive class declarations.

 

Table 1. Data collection 

Source Project Name #LOC #Classes #Generic Classes 

Github LinemobAPI 952 21 2 

Github Spring Generic CRUD 148 16 5 

Github JICI 7845 170 23 

Github Java Type Resolver 852 69 28 

Github Generics Resolver 2778 93 28 

SourceForge GUMP-2.0.0 1619 186 7 

SourceForge Extended Java WordNet Library 1475 181 16 

SourceForge Domain Persistence 312 43 24 

SourceForge JavaMicroWeb 1006 42 40 

SourceForge MOF 2 for Java 33560 853 46 

Total 10 50547 1674 219 
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5.1.2. The Imbalanced Dataset 

Initially, we found the dataset highly imbalanced, with 

the skewness of the labelled class at 100:1. The imbalanced 

dataset causes erroneous model training that results mainly in 

the wrong classification. We find that the percentage of 

incorrect classification equals the percentage of minor class 

instances in the dataset. The classification algorithms work 

well on a balanced dataset. Therefore, we perform a 

resampling approach to reduce the imbalance. Currently, the 

dataset has a skewness of labelled classes as 6:1. This 

skewness ratio is enough to classify accurately using 

supervised classifiers. 

 

5.2. Results 

Once a dataset with a required set of attributes is 

available, it can train various machine learning classifiers. 

During the training phase, the main concern is preparing an 

error-less classification model to classify class labels for the 

given test data accurately. Several performance metrics are 

available to measure the accuracy of a machine-learning 

model. In this paper, we used nine metrics to evaluate the 

performance of the classifiers. The result of these 

performance metrics helps us compare different classification 

models. For the comparative analysis, we selected six 

decision tree classifiers. The 10-fold Cross-validation 

method is used to test each classification model. Using the 

Weka tool, we calculated performance metrics for each 

classifier. Table II shows the weighted average of metrics 

results for all six classifiers. Among nine metrics, the results 

of eight metrics are considered good with increasing values 

(˜1), and the one matrix (FP rate) is considered good with 

decreasing value (˜0). As we can observe, the Random Forest 

classifier gives the best results in all metrics. We can assert 

that the Random Forest is the most accurate classifier for 

classifying recursive and non-recursive classes. Although, if 

we compare classifiers based on the time taken (Figure 1), the 

Random Forest appears as the slowest classifier among all the 

six. The Random Forest uses an ensemble of decision trees. 

In this work, the decision depends on the majority output 

taken from the multiple decision trees. The trees are formed 

during the training stage with random examples. 

Consequently, it takes more time but classifies more 

accurately than other decision tree classifiers. Here, we prefer 

accuracy over speed. Therefore, we can conclude that the 

Random Forest is better for the recursive class classification 

problem among all six decision tree classifiers. 

 

5.3. Analysis 

The machine learning approach is extensively used in the 

programming language domain for various tasks. This paper 

used six ML models to classify the class declaration patterns. 

We aim to acquaint the recursive classes in the source code 

with the help of ML models. As we already discussed, 

recursive classes are less frequent in Java projects—these 

results in an imbalanced dataset.  

However, we successfully reduced the imbalance 

through resampling. The prepared dataset trains and validates 

ML models for the classification problem. There are several 

performance metrics available to evaluate ML algorithms for 

classification problems. We categorized these metrics as 

confusion matrix-dependent and classification dependent. 

       A confusion matrix holds information regarding actual 

classes and predicted classes. The accuracy can be calculated 

in both positive and negative aspects. Therefore, confusion 

table-based metrics are considered more accurate for 

performance evaluation. The metrics such as TPR (True-

Positive Rate), FPR (False-positive Rate), Precision, Recall, 

F-score, ROC, and PRC use the information from the 

confusion matrix. These metrics tell how accurately and 

inaccurately a class is classified from the given dataset. 

Higher values of these metrics (except FPR) indicate higher 

accuracy.  

 As mentioned in Table 2, we noticed metrics values for 

the two classifiers, namely Hoeffiding and Decision Stump 

Tree. We found that the number of incorrectly classified 

instances is comparatively higher in these two classifiers, 

causing a decrease in metrics values. Accuracy and Kappa 

metrics are classification dependent. 

Table 2. Performance metrics 

Classifiers TP Rate FP Rate Accuracy Precision Recall F-Score Kappa ROC PRC 

Random Tree 0.985 0.062 0.985 0.985 0.985 0.985 0.945 0.962 0.975 

J48 Decision 

Tree 
0.991 0.016 0.991 0.991 0.991 0.991 0.967 0.987 0.988 

Hoeffding Tree 0.831 0.783 0.831 0.770 0.831 0.781 0.072 0.539 0.759 

Logistics Tree 0.991 0.031 0.991 0.991 0.991 0.991 0.967 0.985 0.990 

Decision Stump 

Tree 
0.890 0.183 0.889 0.905 0.890 0.895 0.632 0.790 0.849 

Random Forest 0.994 0.016 0.994 0.994 0.994 0.994 0.978 1.000 1.000 
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Fig. 1 Time taken by classifiers 

Accuracy is the measurement of correct predictions out of 

the total predictions. However, accuracy cannot be considered 

a sufficient performance matrix as it hides or ignores 

abnormalities. The Kappa matrix compares observed accuracy 

with randomly expected accuracy. The 100% Kappa values 

indicate perfect classification accuracy.  

Among all six classifiers, we find that the accuracy of four 

is very good, with minor differences. These four classifiers are 

Random tree, J48, LMT, and Random Forest tree. Among 

them, the most accurate classifier is the Random Forest which 

follows ensemble learning for classification.  

 

The other two classifiers with less accuracy are Hoeffding 

and the Decision Stump tree. The accuracy is lower since the 

dataset has a lower volume of data, and Hoeffding requires 

high-volume data to perform well. Also, the decision of the 

stump tree depends on a single attribute, though the 

classification problem does not depend only on a single 

attribute of the dataset. 

 

5.3.1. Comparative Analysis 

Keeping disjoint shape (recursive class) and materials 

(non-recursive) is one of the simple methods to eliminate the 

chances of code failure due to recursive generics [4]. To 

validate their claim, they analyze millions of Java codes in the 

form of a usage graph. The usage graph shows self-loop for 

class-level cycles and ignores parameter-level cycles. For 

example, the graph shows self-loop in T extends 

Comparable<T>, but it does not show self-loop in T<E 

extends Comparable<E>>.  

 

The self-loop at the parameter level can easily be detected 

by analyzing the source code. Using machine learning 

approaches, the source code analysis becomes trivial. Also, 

their analysis method only finds 17 recursive patterns in 

millions of Java codes. However, our dataset prepared by 

fetching essential program constructs from 10 Java projects 

has 55 recursive patterns. 

6. Conclusion 
In this paper, we perform a comparative analysis among 

six decision-tree-based classifiers for classifying recursive 

and non-recursive generic types at class declaration. The 

classifiers are trained and tested on the given data from the 

dataset. The dataset was prepared by collecting data from ten 

open Java projects. The analysis depends on the results of nine 

performance metrics. These nine metrics’ results reassert that 

the ensemble-based Random Forest is the most accurate. 

 

The paper focuses on classifying the recursive and non-

recursive generic types at class declaration. The dataset can be 

used in future work to model bug pattern prediction in the 

recursive class declaration. We propose to expand the dataset 

with more attributes and data. Hence, the dataset can further 

train ML models to predict unsound recursive patterns like 

expansive inheritance.
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