
International Journal of Engineering Trends and Technology Volume 71 Issue 8, 76-84, August 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I8P207 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Finding Recursive Generics in Java Source Code using

Machine Learning

Neha Kumari1, Rajeev Kumar2

1,2School of Computer and Systems Sciences, Jawaharlal Nehru University, Delhi, India.

1Corresponding Author: nkumari.cse@gmail.com

Received: 18 May 2023 Revised: 29 July 2023 Accepted: 05 August 2023 Published: 15 August 2023

Abstract - Understanding a complex type structure and its use in a type-safe manner is a difficult task. The recursive generic

type is a complex variant one can expect by finding the recursion. It has major significance in generic programming for solving

binary method problems and mimicking self-type. However, improper use of recursive generics can cause vulnerabilities in

source code. To avoid unsafe practices, a programmer must be aware of the recursive generic presence in source code. In

Java generics, the type recursion can be found at a class or interface declaration. Therefore, it is appropriate to distinguish

class type at declaration time itself. In this paper, we use a machine learning approach to find recursive and non-recursive

generic types in Java source code. We collect data from ten contemporary Java projects and prepare a dataset with generic-

specific attributes. The lesser presence of recursive generic type in Java projects causes an imbalanced dataset. Initially, the

dataset results were highly imbalanced. Therefore, we resampled the dataset and used the dataset to train decision tree-based

classifiers. Using standard performance metrics, we conduct a comparative analysis to find a (near-) optimal classifier among

the six decision tree-based classifiers. Our analysis reasserts that the ensemble-based ``Random Forest Classifier" results best

in all nine metrics.

Keywords - Classification, Decision Tree, F-bounded, Java Generics, Type-Safe.

1. Introduction
Parameterization is a programming construct that

represents a type in a generic manner [28]. The parameters

are declared variables; when implementation is needed, it is

instantiated with a specific type. However, the parameterized

or generic type does not support subtyping [29]. For example,

List<Integer> cannot be assigned to List< number>; instead,

the Integer is a subtype of number. Moreover, Object-

Oriented Programming Languages (OOPLs) support the

inclusion of subtyping with parameterized type in the form of

variance. The subtype inclusion enhances re-usability, but it

has major concerns regarding safety due to the undecidable

nature of variance [9]. In Java, bounded quantification

ensures safety for subtype inclusion among generic types [1].

A bounded quantification imposes restrictions over a

particular range of subtypes for a type parameter. The syntax

of a bounded type parameter is as follows: the type parameter

followed by the “extends” keyword and the upper bound.

Here, the keyword extends indicates the subtype relation.

As given in example 1, the generic type List has a

bounded type parameter “T” that inherits a number.

Therefore, a List is constrained to have a Number or any

subtypes as a parameter. However, the plain bounded

constraint is insufficient for a situation where the bounded

type parameter is constrained recursively. For example, the

binary method operations for class objects [2]. In this, the

parameter type of the generic class and the receiving class

object should be the same. The recursive bounded generics

are suitable to perform such binary operations. However, a

safe implementation of recursive bounds is necessary;

otherwise, it may result in StackOverflowError. A constraint

recursive bound is proposed, which is popularly known as F-

bound, and is being used in several OOPLs [3]. As shown in

the sample code, the F-bounded Comparable<T> interface is

used for ordering objects of the class that implements it. It

has a binary method compareTo() that compares the class

object with the specified object. Here, the parameter type of

// Plain Bounded

List<T extends Number>

// Recursively Bounded (F-bound)

T extends Comparable<T>

//Binary operation using F-bounded

class Person implements Comparable

<Person>{

public int compareTo(Person person)

{} }

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Neha Kumari & Rajeev Kumar / IJETT, 71(8), 76-84, 2023

77

a comparable interface and the receiving class object is the

same (Person). The F-bounded quantification is introduced to

constrain such recursive type parameters. It has a significant

quantification feature that enhances generics’ expressiveness.

However, the use of the F-bounded generics is restricted in

various contexts. These restrictions avoid unsoundness in the

program code [4], [5], [6], [7]. Greenman et al. proposed a

trivial approach to implementing F-bound generics safely.

The proposed method suggests a disjoint of recursive

type (shape) and non-recursive type (material). To validate

their claim, they analyze millions of Java codes in the form

of a usage graph. The usage graph shows self-loop for class-

level cycles and ignores parameter-level cycles. For example,

the graph shows self-loop in T extends Comparable<T>, but

it does not show self-loop in T<E extends

Comparable<E>>. The self-loop at the parameter level can

easily be detected by analyzing the source code. Nowadays,

machine-learning approaches are being used on a large scale

to analyze source code [34]. We train an ML model using our

dataset and use the model to identify and classify recursive

and non-recursive type signatures at the class declaration.

The machine learning (ML) approach can be a

convenient and error-less process to classify recursive

generic (F-bounded) and non-recursive generic at class

declaration. We require a Java dataset with relevant attributes

to implement an ML model. Since an ML model’s accuracy

depends on the data quality used for training, we collect data

from workable Java projects in two popular public

repositories. The dataset holds important attributes of Java

generics, such as class details, parameters, inheritance

relations, etc. Once the dataset is prepared, we select

classification models for training. Since the decision tree-

based models are simple to understand and interpret and do

not depend on normalized data [8], we choose decision tree-

based models for our classification problem. The classifier

works in two-phase to complete classification.

The first is the learning phase, which takes examples

from the dataset and generates a tree-based model. In the

second phase, the generated model tests whether it classifies

accurately for the given input data. This paper performs a

comparative analysis among six decision tree-based

classification models to find a (near-) optimal classifier. The

comparative analysis uses nine performance metrics based on

Accuracy, Confusion table, AUC, and Kappa statistics.

The paper is organized as follows. Section 2 discusses

the fundamentals of Java generics and mainly focuses on

recursive generics and problem motivation. Section 3

presents related works. Section 4 includes the proposed

method implemented in this paper to distinguish recursive

and non-recursive generic types. Section 5 majorly discusses

the results. Finally, Section 6 concludes the work with future

perspectives.

2. Background and Motivating Example
2.1. Generics in Java

The section briefs the evolution of generics and the role

of recursive generics in the Java programming language.

Generics were added in Java 5 to improve static type checks

by replacing explicit cast with type-specific parameters.

However, Java generics are restricted in various ways to

avoid unsafe practices. The invariant nature is one of its

limitations. The invariant Java generics do not allow

subtyping among type parameters. Subtyping can be enabled

with bounded constraints. The bounded quantification

ensures safety by fixing the upper (extends) and lower (super)

limits for parameters. This upper and lower bound is known

as covariant and contravariant, respectively. In Java generics,

parameter bounds are restricted in various contexts.

The above code shows that the type of extended class

parameter and the receiving class instance can differ.

Therefore, this declaration is invalid for classes with binary

method operations. The following class declaration is valid

only if the extended class parameter and the receiving class

instance type are the same as the F-bounded example.

Hence, the F-bounded quantification is used to constrain

the recursive bound. However, the F-bounded suffers from

uses limitations due to its complex structure. We discuss

these limitations and their impact in the following sub-section.

2.2. Motivating Example

The recursive generic or its other name, such as self-

bounding generics, self-referential or F-bounds, are the

different names in different OOPLs. The one goal is to

constrain parameter type to provide exact type among its own

// Before Generics

List a = a.add("xyz");

String b = (String)a.get(0);

// After Generics

List<String> a = a.add("xyz")

String b = a.get(0);

// Invariant Generics

List<Number> != List<Integer>

// Co and Contra (variant) Generics

List<? extends Number> = List<Integer>

List<? super Integer> = List<Number>

// Bounded Quant. with recursive bound

class P<? extends T>

extends Comparable<P<? extends T>>{}

// F-bounded Quantification

class P<T>

implements Comparable<P<T>>{}

Neha Kumari & Rajeev Kumar / IJETT, 71(8), 76-84, 2023

78

covariant types. In Java, this recursive pattern is mainly used

to solve binary methods or to mimic self-type in Fluent API

[32].

The other use of recursive generic can also be found with

type families [33]. Apart from the recursive generic

applications, the main concern is the way it is being used in

the program so that it does not result in code failure. For

example, the recursive generic that contain contravariant

parameter may result in an infinite loop [9]. Here we will

demonstrate how the recursive generic may result in unsafe

if not used carefully in Java.

Instead of the various restriction on recursive generics

(F-bounded), it behaves suspiciously in a few cases due to its

complex structure. Here we discuss two such unsafe cases of

F-bound. The first case is about contravariant recursion in

inherited class parameters; this results in StackOverflowError

at runtime and the contravariant recursion in the base class

type parameter; this may lead to incompatible type

implementation.

In the above code, to validate whether C<P> is a subtype

of Comparable<? super C<P>> or not. The Comparable<?

super C<P>> should be a subtype of

Comparable<Comparable<? super C<P>>>, and this goes

on repeatedly that, may lead StackOverflowError.

The above code uses the recursive interface as a class’s

type parameter. The Comparable interface can have ‘T’ or

any supertypes as its parameter. However, this semantically

doesn’t seem right for F-bound constrain since the recursive

constraint applies only if the Comparable interface type

parameter and the implementing class instance are exactly the

same. The second case is about Fluent API. Java does not

have a self-type. The recursive generic type is used to mimic

self-type. The Fluent API uses an explicit cast to ensure

safety, as shown in the below example. Otherwise, the parent

class object return instead of the child class. The

incompatible return type may result in compile time error

[31].

A programmer must be aware of the presence of

recursive generics, and he should understand the uses

restrictions to control any mishap. Therefore, we propose an

ML-based model to identify recursive patterns from Java

source code and categorize the recursive and non-recursive

generic classes. We assume the following three recursive

patterns of the class declaration are classified as a recursive

generic type; otherwise, the classes are non-recursive.

Based on the above problem statement, we formulate the

following research question.

• Using the given dataset, how efficiently can a machine

learning model classify a class declaration as a recursive

and non-recursive generic type?

3. Related Work
A bounded quantification is a programming approach

that safeguards the inclusion of subtyping among

parameterized types [1]. The bounded quantification ensures

safety by allowing the parameter a specific range of subtypes.

However, it fails when a type bound is self-type. The self-

types are crucial for binary method operations such as

comparison, addition, etc. To solve such recursive bounded

operations, the F-bounded is introduced [3]. Instead of the

advantages, the F-bounded is mainly criticized for its use in

an unsound manner. Kennedy and Pierce [9] are among the

first researchers to discuss the intricate combination of the

wildcard and F-bounded that can lead to unbounded growth

during subtype checking. The inference for recursive type

found failed due to poor inference context in Java [5]. The

recursive lower bound causes non-termination during type

check [6]. In the past, many solutions have been proposed to

overcome unsoundness among recursive types, for example,

the exclusion of expansive inheritance and removing nested

contravariance. However, the proposal to disjoint material

(non-recursive) and shape (recursive) is practical and

decidable for subtyping relation [4].

We consider the F-bounded generics as one of the

essential components of the generics type system that needs

to be studied broadly. Many object-oriented languages use

other alternative higher-kind types in place of the F-bounded

for binary operations. Type class is one of the alternatives for

the F-bounded [10]. However, this is not a trivial process to

switch to another type, especially for the languages like Java

that strictly follow backward compatibility. The F-bounded

generics work well if used in a specified manner. Therefore,

the programmer must be aware of the presence of the

recursive type in the source code. The machine learning

approaches are popularly used to extract knowledge from

class C<P> implements

Comparable<Comparable<? super C<P>>>{}

class Xyz<T extends Comparable

<? super T>> {

public int compareTo(T other) {}}

1) class Enum < E extends Enum<E>>

2) class SubClass extends X <SubClass>

3) class MyClass <T extends FirstType

<T, U>, U extends SecondType <T,

U>>

 public class Parent <B extends Parent> {

 public final B method() {...

 return (B) this;

 } }

Neha Kumari & Rajeev Kumar / IJETT, 71(8), 76-84, 2023

79

open-source projects [12], [36]. This extracted knowledge is

helpful to improve programs and avoid unsafe practices [13],

[14]. Therefore, we propose to use the ML approach to

explore and understand the F-bounded. Various ML-based

applications are developed using robust programming like

Java [15]. Here, we use ML to learn a crucial component of

the Java programming language.

In the proposed methodology, the ML model is used as a

classifier. The model identifies the recursive and non-

recursive patterns from the given data and classifies them

accordingly. For the ML model training with relevant data,

we search for several standard Java datasets that are publicly

available [16], [17], [18]. Among them, most datasets either

contain bug-related attributes or attributes that can help to

predict the name of identifiers and methods [19], [20].

Several classification models have been proposed, and their

performances have been analysed with various datasets [21].

In this paper, we developed a Java dataset with class

declaration information essential for the classification model.

Further, we use the dataset to train various classifiers and

analyse their performances.

4. Methodology
We categorize the proposed methodology into four phases:

• Input Phase: We choose relevant attributes and collect

data from the Java source code to prepare the dataset.

• Pre-processing Phase: We perform resampling over the

imbalanced dataset and then encode the data into a

suitable format for the machine learning model.

• Model-based Learning: We choose six decision tree

classifiers for the learning and perform a comparative

analysis to find the (near-) optimal classifier [22].

• Evaluation Phase: The comparison is based on the

results we get for nine performance metrics.

4.1. Input

We need to extract class declaration components from

the Java Source code to identify whether the class is a

recursive generic type. These components are class names,

parameter details, inheritance relations, etc. The dataset

contains these class declaration components in the form of

nine attributes. To get values for respective attributes, we use

JavaParser API that fetches values from AST nodes. After

this, we store the extracted data in a CSV file with the help of

OpenCSV Library. The next step is to label the data necessary

to train the supervised ML algorithms. Classifiers can

classify the class declaration as recursive and non-recursive

using labelled data. The type of our dataset is categorical and

contains nominal and ordinal values. Later, we convert these

values into numerical data using standard encoders.

4.2. Pre-Processing

As expected, we find the occurrence of the recursive

class significantly lesser than the non-recursive class,

resulting in an imbalanced dataset. This presence of bias in

the dataset may ignore the minor class. We can observe the

classification error using the Weka tool [23], [24]. Wherever

we apply a classifier to this imbalanced dataset, the number

of incorrectly classified instances equals the number of minor

classes in the dataset. Therefore, the dataset needs to be

resampled. In this process, first, we reduce the occurrence of

major classes. For this, we remove classes labelled as non-

recursive, which is neither generic class nor has inheritance

relation. We use this constraint because a null value in

inheritance relation and a null in class parameter can never be

a recursive class. In the next step, we increase the occurrence

of minor classes. For this, we randomly duplicate recursive

class data. By following these two resampling steps, we

successfully reduce bias from the dataset. Moreover, Now,

our dataset is ready to train ML classifiers for error-less

classification.

4.3. Model-Based Learning

The processed dataset is used to train and validate six

decision tree classifiers. A decision tree classifies data by

forming a tree structure where each internal node is a decision

node, each edge shows the condition or decision, and the leaf

shows the items belonging to a single class. The tree makes

decisions by splitting nodes. Different decision tree

algorithms use different node-splitting criteria such as

entropy, Information Gain, Gini Index, Gain Ratio, Chi-

Square, etc. The six decision tree classifiers are as follows:

4.3.1. Random Tree

This algorithm forms a number of trees for each decision

using random samples from the dataset. The final

classification decision is based on the most frequent tree

output—random tree results in overfitting.

4.3.2. J48

The J48 is popularly used as a categorical and continuous

data classifier. This algorithm uses information gain as a

splitting criterion. The final decision is based on the

attribute(s) with the highest normalized information gain.

4.3.3. Hoeffding Tree

It is an incremental decision tree algorithm. The

Hoeffding tree algorithm can learn from high-volume data

streams by seeing each instance once. This algorithm results

in the best with a high volume of data.

4.3.4. Logistics Model

Unlike an ordinary decision tree, it has a linear

regression model at its leaves to perform supervised learning

tasks.

4.3.5. Decision Stump

It is a decision tree with one root node followed by an

immediate termination node. Primarily the decision is based

Neha Kumari & Rajeev Kumar / IJETT, 71(8), 76-84, 2023

80

on a single input feature. Decision Stump is often used in

ensemble techniques as a base learner.

4.3.6. Random Forest

The Random Forest is an ensemble classifier. It averages

multiple decision trees trained on a random part of the same

training set. Ensemble classifier results are more accurate as

compared to single decision tree classifier.

4.4. Evaluation

We use nine performance metrics based on Accuracy,

Confusion table, AUC, and Kappa statistics to evaluate the

performances of six decision tree classifiers. The following

performance metrics depend on the confusion table: True-

Positive (TP) rate, False-Positive (FP) rate, Precision, Recall,

and F-Score. Receiver Operating Characteristics (ROC) and

Precision-Recall Curves (PRC) represent the classifier’s

performance through a curve on a two-dimensional axis.

However, the Area Under Curve (AUC) can be calculated for

both curves that give a performance score. A better classifier

should have a result value close to 1 (100%) for all metrics,

excluding the FP rate. The False-Positive rate should be low

(˜0) as it indicates the rate of incorrectly classified instances.

5. Experimental Setup and Results
5.1. Dataset

We require a Java source code dataset with class

declaration information to implement the classification

models. For this, we searched several Java datasets [25], [17],

[26], [35]. We collected the datasets that are open to access

[16], [17]. These datasets are well-curated and available in

standard file formats (CSV, XML, ARFF). However, these

datasets focus on bug prediction and contain bug-related

attributes. It lacks the attributes that are required for the class

declaration classification problem. Therefore, we prepare the

dataset with class declaration attributes. We start with data

collection. For this, we searched for several Java projects

with ample use of generics. We selected Java projects from

two popular source code repositories, GitHub and

SourceForge. Next, we collected basic statistics of the project,

such as the number of lines in code (LOC), the total number

of classes, and the total number of generic classes, as shown

in Table I. The code analysis tool CodeMR Static Code

Analyser3 helps analyse these Java projects in detail. Based

on the analysis, we select ten projects containing generic

classes. After data collection, we process the following steps

to prepare the dataset:

1) Convert Java source code into AST nodes using

JavaParser API.

2) Traverse and select attribute nodes.

3) Store the values of attributes.

4) Generate CSV file using OpenCSV Library.

5) Encoding categorical string values into numerical values

using LabelEncoder.

Data collection and storage are simultaneously possible

for a single project using the above APIs. Therefore, it creates

ten CSV files for ten different Java projects. Eventually, we

merged all ten CSV files into a single file.

5.1.1. Attributes

The total number of attributes in the dataset is nine. All

nine attributes are of the categorical type. The attributes are

as follows Project name, Base Class name, Base Class

parameter, IsGeneric, IsInherit, Parent class name, Parent

class parameter, Child class name, and Child class parameter.

The IsGeneric and IsInherit attributes contain the values

(True or False) for the base class. It can be generic or non-

generic. In the dataset, 22 base classes are F-bounded among

229 generic classes, and 33 are F-bounded among 116 non-

generic classes. Out of 257 inheritance relations, 55 are for

recursive class declarations.

Table 1. Data collection

Source Project Name #LOC #Classes #Generic Classes

Github LinemobAPI 952 21 2

Github Spring Generic CRUD 148 16 5

Github JICI 7845 170 23

Github Java Type Resolver 852 69 28

Github Generics Resolver 2778 93 28

SourceForge GUMP-2.0.0 1619 186 7

SourceForge Extended Java WordNet Library 1475 181 16

SourceForge Domain Persistence 312 43 24

SourceForge JavaMicroWeb 1006 42 40

SourceForge MOF 2 for Java 33560 853 46

Total 10 50547 1674 219

Neha Kumari & Rajeev Kumar / IJETT, 71(8), 76-84, 2023

81

5.1.2. The Imbalanced Dataset

Initially, we found the dataset highly imbalanced, with

the skewness of the labelled class at 100:1. The imbalanced

dataset causes erroneous model training that results mainly in

the wrong classification. We find that the percentage of

incorrect classification equals the percentage of minor class

instances in the dataset. The classification algorithms work

well on a balanced dataset. Therefore, we perform a

resampling approach to reduce the imbalance. Currently, the

dataset has a skewness of labelled classes as 6:1. This

skewness ratio is enough to classify accurately using

supervised classifiers.

5.2. Results

Once a dataset with a required set of attributes is

available, it can train various machine learning classifiers.

During the training phase, the main concern is preparing an

error-less classification model to classify class labels for the

given test data accurately. Several performance metrics are

available to measure the accuracy of a machine-learning

model. In this paper, we used nine metrics to evaluate the

performance of the classifiers. The result of these

performance metrics helps us compare different classification

models. For the comparative analysis, we selected six

decision tree classifiers. The 10-fold Cross-validation

method is used to test each classification model. Using the

Weka tool, we calculated performance metrics for each

classifier. Table II shows the weighted average of metrics

results for all six classifiers. Among nine metrics, the results

of eight metrics are considered good with increasing values

(˜1), and the one matrix (FP rate) is considered good with

decreasing value (˜0). As we can observe, the Random Forest

classifier gives the best results in all metrics. We can assert

that the Random Forest is the most accurate classifier for

classifying recursive and non-recursive classes. Although, if

we compare classifiers based on the time taken (Figure 1), the

Random Forest appears as the slowest classifier among all the

six. The Random Forest uses an ensemble of decision trees.

In this work, the decision depends on the majority output

taken from the multiple decision trees. The trees are formed

during the training stage with random examples.

Consequently, it takes more time but classifies more

accurately than other decision tree classifiers. Here, we prefer

accuracy over speed. Therefore, we can conclude that the

Random Forest is better for the recursive class classification

problem among all six decision tree classifiers.

5.3. Analysis

The machine learning approach is extensively used in the

programming language domain for various tasks. This paper

used six ML models to classify the class declaration patterns.

We aim to acquaint the recursive classes in the source code

with the help of ML models. As we already discussed,

recursive classes are less frequent in Java projects—these

results in an imbalanced dataset.

However, we successfully reduced the imbalance

through resampling. The prepared dataset trains and validates

ML models for the classification problem. There are several

performance metrics available to evaluate ML algorithms for

classification problems. We categorized these metrics as

confusion matrix-dependent and classification dependent.

 A confusion matrix holds information regarding actual

classes and predicted classes. The accuracy can be calculated

in both positive and negative aspects. Therefore, confusion

table-based metrics are considered more accurate for

performance evaluation. The metrics such as TPR (True-

Positive Rate), FPR (False-positive Rate), Precision, Recall,

F-score, ROC, and PRC use the information from the

confusion matrix. These metrics tell how accurately and

inaccurately a class is classified from the given dataset.

Higher values of these metrics (except FPR) indicate higher

accuracy.

 As mentioned in Table 2, we noticed metrics values for

the two classifiers, namely Hoeffiding and Decision Stump

Tree. We found that the number of incorrectly classified

instances is comparatively higher in these two classifiers,

causing a decrease in metrics values. Accuracy and Kappa

metrics are classification dependent.

Table 2. Performance metrics

Classifiers TP Rate FP Rate Accuracy Precision Recall F-Score Kappa ROC PRC

Random Tree 0.985 0.062 0.985 0.985 0.985 0.985 0.945 0.962 0.975

J48 Decision

Tree
0.991 0.016 0.991 0.991 0.991 0.991 0.967 0.987 0.988

Hoeffding Tree 0.831 0.783 0.831 0.770 0.831 0.781 0.072 0.539 0.759

Logistics Tree 0.991 0.031 0.991 0.991 0.991 0.991 0.967 0.985 0.990

Decision Stump

Tree
0.890 0.183 0.889 0.905 0.890 0.895 0.632 0.790 0.849

Random Forest 0.994 0.016 0.994 0.994 0.994 0.994 0.978 1.000 1.000

Neha Kumari & Rajeev Kumar / IJETT, 71(8), 76-84, 2023

82

Fig. 1 Time taken by classifiers

Accuracy is the measurement of correct predictions out of

the total predictions. However, accuracy cannot be considered

a sufficient performance matrix as it hides or ignores

abnormalities. The Kappa matrix compares observed accuracy

with randomly expected accuracy. The 100% Kappa values

indicate perfect classification accuracy.

Among all six classifiers, we find that the accuracy of four

is very good, with minor differences. These four classifiers are

Random tree, J48, LMT, and Random Forest tree. Among

them, the most accurate classifier is the Random Forest which

follows ensemble learning for classification.

The other two classifiers with less accuracy are Hoeffding

and the Decision Stump tree. The accuracy is lower since the

dataset has a lower volume of data, and Hoeffding requires

high-volume data to perform well. Also, the decision of the

stump tree depends on a single attribute, though the

classification problem does not depend only on a single

attribute of the dataset.

5.3.1. Comparative Analysis

Keeping disjoint shape (recursive class) and materials

(non-recursive) is one of the simple methods to eliminate the

chances of code failure due to recursive generics [4]. To

validate their claim, they analyze millions of Java codes in the

form of a usage graph. The usage graph shows self-loop for

class-level cycles and ignores parameter-level cycles. For

example, the graph shows self-loop in T extends

Comparable<T>, but it does not show self-loop in T<E

extends Comparable<E>>.

The self-loop at the parameter level can easily be detected

by analyzing the source code. Using machine learning

approaches, the source code analysis becomes trivial. Also,

their analysis method only finds 17 recursive patterns in

millions of Java codes. However, our dataset prepared by

fetching essential program constructs from 10 Java projects

has 55 recursive patterns.

6. Conclusion
In this paper, we perform a comparative analysis among

six decision-tree-based classifiers for classifying recursive

and non-recursive generic types at class declaration. The

classifiers are trained and tested on the given data from the

dataset. The dataset was prepared by collecting data from ten

open Java projects. The analysis depends on the results of nine

performance metrics. These nine metrics’ results reassert that

the ensemble-based Random Forest is the most accurate.

The paper focuses on classifying the recursive and non-

recursive generic types at class declaration. The dataset can be

used in future work to model bug pattern prediction in the

recursive class declaration. We propose to expand the dataset

with more attributes and data. Hence, the dataset can further

train ML models to predict unsound recursive patterns like

expansive inheritance.

References
[1] Luca Cardelli, and Peter Wegner, “On Understanding Types, Data Abstraction and Polymorphism,” ACM Computing Surveys, vol. 17, no.

4, pp. 471–523, 1985. [CrossRef] [Google Scholar] [Publisher Link]

[2] María Lucía Barrón–Estrada, and Ryan Stansifer, “Inheritance, Generics and Binary Methods in Java,” Computing and Systems, vol. 7,

no. 2, pp. 113–122, 2003. [Google Scholar] [Publisher Link]

[3] Peter Canning et al., “F-Bounded Polymorphism for Object-Oriented Programming,” Proceedings of the Fourth International Conference

on Functional Programming Languages and Computer Architecture, pp. 273–280, 1989. [CrossRef] [Google Scholar] [Publisher Link]

[4] Ben Greenman, Fabian Muehlboeck, and Ross Tate, “Getting F-Bounded Polymorphism Into Shape,” ACM SIGPLAN Notices, vol. 49, no.

6, pp. 89–99, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[5] Daniel Smith, and Robert Cartwright, “Java Type Inference is Broken: Can We Fix It?,” Proceedings of the 23rd ACM SIGPLAN

Conference on Object-Oriented Programming Systems Languages and Applications, pp. 505–524, 2008. [CrossRef] [Google Scholar]

[Publisher Link]

[6] Ross Tate, Alan Leung, and Sorin Lucian Lerner, “Taming Wildcards in Java’s Type System,” Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, pp. 614–627, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[7] Stefan Wehr, Ralf Lämmel, and Peter Thiemann, “JavaGI: Generalized Interfaces for Java,” European Conference on Object-Oriented

Programming, pp. 347–372, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[8] Monalisa Jena, and Satchidananda Dehuri, “Decision Tree for Classification and Regression: A State-of-the-Art Review,” Informatica, vol.

44, no. 4, pp. 405–420, 2020. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1145/6041.6042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+Understanding+Types%2C+Data+Abstraction+And+Polymorphism&btnG=
https://dl.acm.org/doi/abs/10.1145/6041.6042
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Inheritance%2C+generics+and+binary+methods+in+Java&btnG=
https://www.scielo.org.mx/scielo.php?pid=S1405-55462003000400005&script=sci_arttext&tlng=en
https://doi.org/10.1145/99370.99392
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=F-Bounded+Polymorphism+For+Object-Oriented+Programming&btnG=
https://dl.acm.org/doi/10.1145/99370.99392
https://doi.org/10.1145/2666356.2594308
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Getting+F-Bounded+Polymorphism+Into+Shape&btnG=
https://dl.acm.org/doi/abs/10.1145/2666356.2594308
https://doi.org/10.1145/1449764.1449804
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Java+Type+Inference+Is+Broken%3A+Can+We+Fix+It%3F&btnG=
https://dl.acm.org/doi/abs/10.1145/1449764.1449804
https://doi.org/10.1145/1993498.1993570
https://scholar.google.com/scholar?q=Taming+Wildcards+In+Java%E2%80%99s+Type+System&hl=en&as_sdt=0,5
https://dl.acm.org/doi/abs/10.1145/1993498.1993570
https://doi.org/10.1007/978-3-540-73589-2_17
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=JavaGI%3A+Generalized+Interfaces+for+Java&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-73589-2_17
https://doi.org/10.31449/inf.v44i4.3023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Decision+Tree+For+Classification+And+Regression%3A+A+State-Of-The+Art+Review&btnG=
https://informatica.si/index.php/informatica/article/view/3023

Neha Kumari & Rajeev Kumar / IJETT, 71(8), 76-84, 2023

83

[9] Andrew J Kennedy, and Benjamin C Pierce, “On Decidability of Nominal Subtyping with Variance,” Proceeding FOOL/WOOD ACM,

2007. [Google Scholar] [Publisher Link]

[10] P. Wadler, and S. Blott, “How to Make Ad-Hoc Polymorphism Less Ad Hoc,” Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pp. 60–76, 1989. [CrossRef] [Google Scholar] [Publisher Link]

[11] Tumula Mani Harsha et al., “Survey on Resume Screening Mechanisms,” SSRG International Journal of Computer Science and

Engineering, vol. 9, no. 4, pp. 14-22, 2022. [CrossRef] [Publisher Link]

[12] Fitzroy Nembhard, Marco Carvalho, and Thomas Eskridge, “Extracting Knowledge from Open Source Projects to Improve Program

Security,” Proceeding SoutheastCon, IEEE, pp. 1–7, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[13] Timothy Chappelly et al., “Machine Learning for Finding Bugs: An Initial Report,” Proceeding IEEE Workshop on Machine Learning

Techniques for Software Quality Evaluation, pp. 21–26, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[14] Nevena Rankovic et al., “Influence of Input Values on the Prediction Model Error using Artificial Neural Network Based on Taguchi’s

Orthogonal Array,” Concurrency and Computation: Practice and Experience, vol. 34, no. 20, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[15] Neha Kumari, and Rajeev Kumar, “Profiling JVM for AI Applications using Deep Learning Libraries,” Machine Learning for Predictive

Analysis Springer Singapore, pp. 395–404, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[16] Miltiadis Allamanis, and Charles Sutton, “Mining Source Code Repositories at Massive Scale using Language Modeling,” Proceeding 10th

Working Conference on Mining Software Repositories, IEEE, pp. 207–216, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[17] Rudolf Ferenc et al., “A Public Unified Bug Dataset for Java and its Assessment Regarding Metrics and Bug Prediction,” Software Quality

Journal, vol. 28, pp. 1447–1506, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[18] Alexander LeClair, and Collin McMillan, “Recommendations for Datasets for Source Code Summarization,” arXiv Preprint, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[19] Miltiadis Allamanis et al., “Suggesting Accurate Method and Class Names,” Proceedings of the 10th Joint Meeting on Foundations of

Software Engineering, pp. 38–49, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[20] Uri Alon et al., “A General Path-Based Representation for Predicting Program Properties,” Proceeding ACM SIGPLAN Notices, pp. 404–

419, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[21] Nayak Suvra et al., “Comparative Analysis of Har Datasets Using Classification Algorithms,” Computer Science and Information Systems,

vol. 19, no. 1, pp. 47–63, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[22] Sumitra Nuanmeesri, Wongkot Sriurai, and Nattanon Lamsamut, “Stroke Patients Classification using Resampling Techniques and Decision

Tree Learning,” International Journal of Engineering Trends and Technology, vol. 69, no. 6, pp. 115–120, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[23] Eibe Frank et al., “Weka-A Machine Learning Workbench for Data Mining,” Data Mining and Knowledge Discovery Handbook Springer,

pp. 1269–1277, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[24] Ritu Ratra, and Preeti Gulia, “Experimental Evaluation of Open-Source Data Mining Tools (Weka and Orange),” International Journal of

Engineering Trends and Technology, vol. 68, no. 8, pp. 30–35, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[25] Jens Dietrich et al., “Xcorpus–An Executable Corpus of Java Programs,” Journal of Object Technology, vol. 16, no. 4, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

[26] Cristina V. Lopes et al., “Dejavu: A Map of Code Duplicates on GitHub,” Proceeding ACM Programming Languages, vol. 1, no. 84, pp.

1-28, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[27] G. Anil Kumar, “Research Methodology on Code Clone Detection with Refactoring using Textual and Metrics Analysis in

Software,” SSRG International Journal of Computer Science and Engineering, vol. 2, no. 12, pp. 19-23, 2015. [CrossRef] [Publisher

Link]

[28] Robin Milner, “A Theory of Type Polymorphism in Programming,” Journal of Computer and System Sciences, vol. 17, no. 3, pp. 348-375,

1978. [CrossRef] [Google Scholar] [Publisher Link]

[29] Mark Day et al., “Subtypes vs. Where Clauses: Constraining Parametric Polymorphism,” Proceedings of the Tenth Annual Conference on

Object-Oriented Programming Systems, Languages, and Applications, pp. 156-168, 1995. [CrossRef] [Google Scholar] [Publisher Link]

[30] John Altidor, Shanshan Huang, and Yannis Smaragdakis, “Taming the Wildcards: Combining Definition-and Use-Site Variance,” ACM

SIGPLAN Notices, vol. 46, no. 6, pp. 602-613, 2011. [CrossRef] [Google Scholar] [Publisher Link]

[31] Luis Mastrangelo, Matthias Hauswirth, and Nathaniel Nystrom, “Casting About in the Dark: An Empirical Study of Cast Operations in Java

Programs,” Proceedings of the ACM on Programming Languages, pp. 1-31, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[32] Kim B. Bruce, “Some Challenging Typing Issues in Object-Oriented Languages,” Electronic Notes in Theoretical Computer Science, vol.

82, no. 8, pp. 1-29, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[33] Erik Ernst, “Family Polymorphism,” European Conference on Object-Oriented Programming, Springer Berlin Heidelberg, pp. 303-326,

2001. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=On+Decidability+Of+Nominal+Subtyping+With+Variance&btnG=
https://repository.upenn.edu/entities/publication/42b082af-f28d-4a84-b515-5abbfb0f99bd
https://doi.org/10.1145/75277.75283
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+To+Make+Ad-Hoc+Polymorphism+Less+Ad+Hoc&btnG=
https://dl.acm.org/doi/abs/10.1145/75277.75283
https://doi.org/10.14445/23488387/IJCSE-V9I4P103
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=470
https://doi.org/10.1109/SECON.2018.8478906
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Extracting+Knowledge+From+Open+Source+Projects+to+Improve+Program+Security&btnG=
https://ieeexplore.ieee.org/abstract/document/8478906
https://doi.org/10.1109/MALTESQUE.2017.7882012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+For+Finding+Bugs%3A+An+Initial+Report&btnG=
https://ieeexplore.ieee.org/abstract/document/7882012
https://doi.org/10.1002/cpe.6831
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Influence+Of+Input+Values+On+The+Prediction+Model+Error+Using+Artificial+Neural+Network+Based+On+Taguchi%E2%80%99s+Orthogonal+Array&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6831
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6831
https://link.springer.com/chapter/10.1007/978-981-15-7106-0_39
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Profiling+Jvm+for+Ai+Applications+Using+Deep+Learning+Libraries&btnG=
https://link.springer.com/chapter/10.1007/978-981-15-7106-0_39
https://doi.org/10.1109/MSR.2013.6624029
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mining+Source+Code+Repositories+at+Massive+Scale+Using+Language+Modeling&btnG=
https://ieeexplore.ieee.org/abstract/document/6624029
https://doi.org/10.1007/s11219-020-09515-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Public+Unified+Bug+Dataset+For+Java+And+Its+Assessment+Regarding+Metrics+And+Bug+Prediction&btnG=
https://link.springer.com/article/10.1007/s11219-020-09515-0
https://doi.org/10.48550/arXiv.1904.02660
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recommendations+For+Datasets+For+Source+Code+Summarization&btnG=
https://arxiv.org/abs/1904.02660
https://doi.org/10.1145/2786805.2786849
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Suggesting+Accurate+Method+And+Class+Names&btnG=
https://dl.acm.org/doi/abs/10.1145/2786805.2786849
https://doi.org/10.1145/3296979.3192412
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+General+Path-Based+Representation+for+Predicting+Program+Properties&btnG=
https://dl.acm.org/doi/abs/10.1145/3296979.3192412
https://doi.org/10.2298/CSIS201221043N
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+Analysis+Of+Har+Datasets+Using+Classification+Algorithms&btnG=
https://doiserbia.nb.rs/Article.aspx?id=1820-02142100043N
https://ijettjournal.org/archive/ijett-v69i6p217
https://scholar.google.com/scholar?q=Stroke+Patients+Classification+Using+Resampling+Techniques+and+Decision+Tree+Learning&hl=en&as_sdt=0,5
https://scholar.google.com/scholar?q=Stroke+Patients+Classification+Using+Resampling+Techniques+and+Decision+Tree+Learning&hl=en&as_sdt=0,5
https://ijettjournal.org/archive/ijett-v69i6p217
https://doi.org/10.1007/978-0-387-09823-4_66
https://scholar.google.com/scholar?q=Weka-A+Machine+Learning+Workbench+for+Data+Mining&hl=en&as_sdt=0,5
https://link.springer.com/chapter/10.1007/978-0-387-09823-4_66
https://doi.org/10.14445/22315381/IJETT-V68I8P206S
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Experimental+Evaluation+of+Open-Source+Data+Mining+Tools+%28Weka+and+Orange%29&btnG=
https://ijettjournal.org/archive/ijett-v68i8p206s
http://dx.doi.org/10.5381/jot.2017.16.4.a1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Xcorpus%E2%80%93An+Executable+Corpus+Of+Java+Programs&btnG=
https://mro.massey.ac.nz/handle/10179/12042
https://doi.org/10.1145/3133908
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=D%C2%B4Ej%60Avu%3A+A+Map+of+Code+Duplicates+on+Github&btnG=
https://dl.acm.org/doi/abs/10.1145/3133908
https://doi.org/10.14445/23488387/IJCSE-V2I12P106
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=101
https://www.internationaljournalssrg.org/IJCSE/paper-details?Id=101
https://doi.org/10.1016/0022-0000(78)90014-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Theory+Of+Type+Polymorphism+In+Programming&btnG=
https://www.sciencedirect.com/science/article/pii/0022000078900144
https://doi.org/10.1145/217838.217852
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Subtypes+vs.+Where+Clauses%3A+Constraining+Parametric+Polymorphism&btnG=
https://dl.acm.org/doi/abs/10.1145/217838.217852
https://doi.org/10.1145/1993316.1993569
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Taming+The+Wildcards%3A+Combining+Definition-And+Use-Site+Variance&btnG=
https://dl.acm.org/doi/abs/10.1145/1993316.1993569
https://doi.org/10.1145/3360584
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Casting+About+In+The+Dark%3A+An+Empirical+Study+of+Cast+Operations+in+Java+Programs&btnG=
https://dl.acm.org/doi/abs/10.1145/3360584
https://doi.org/10.1016/S1571-0661(04)80799-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Some+Challenging+Typing+Issues+in+Object-Oriented+Languages&btnG=
https://www.sciencedirect.com/science/article/pii/S1571066104807990
https://doi.org/10.1007/3-540-45337-7_17
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Family+Polymorphism&btnG=
https://link.springer.com/chapter/10.1007/3-540-45337-7_17

Neha Kumari & Rajeev Kumar / IJETT, 71(8), 76-84, 2023

84

[34] Francisco Ortin, Guillermo Facundo, and Miguel Garcia, “Analyzing Syntactic Constructs of Java Programs with Machine Learning,”

Expert Systems with Applications, vol. 215, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[35] Ewan Tempero et al., “The Qualitas Corpus: A Curated Collection of Java Code for Empirical Studies,” Proceeding 17th Asia Pacific

Software Engineering Conference, IEEE, pp. 336–345, 2010. [CrossRef] [Google Scholar] [Publisher Link]

[36] Imad Eddine Araar, and Hassina Seridi, “Software Features Extraction from Object-Oriented Source Code using an Overlapping Clustering

Approach,” Informatica, vol. 40, no. 2, 2016. [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.eswa.2022.119398
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analyzing+Syntactic+Constructs+of+Java+Programs+With+Machine+Learning&btnG=
https://www.sciencedirect.com/science/article/pii/S0957417422024162
https://doi.org/10.1109/APSEC.2010.46
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+Qualitas+Corpus%3A+A+Curated+Collection+of+Java+Code+for+Empirical+Studies&btnG=
https://ieeexplore.ieee.org/abstract/document/5693210
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Features+Extraction+from+Object-Oriented+Source+Code+Using+an+Overlapping+Clustering+Approach&btnG=
https://informatica.si/index.php/informatica/article/view/1121

