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Abstract - Human Activity Recognition (HAR) by employing smart home sensors is a topic that is undergoing intense research 

in the area of ambient-supported living and the basis of ubiquitous computing in smart environments. Recently, HAR majorly 

utilizes Deep Learning (DL) method since they employ representation learning methods that could automatically produce 

maximum factors from raw input datasets resulting from the sensor in the absence of human interference and could detect 

Hidden Layer (HL) patterns in a dataset. The study presents an Improved Manta-Ray Foraging Optimization with Deep 

Autoencoder (IMRFO-DAE) model for HAR. The presented algorithm majorly recognizes the diverse types of human activities. 

The presented IMRFO-DAE model pre-processes the human activity data via a standardization approach to obtain this. Next, 

the IMRFO-DAE method uses the DAE model to perform the Activity Recognition (AR) process. To advance the AR 

accomplishment of the DAE model, the IMRFO method is applied as a hyperparameter optimizer. Moreover, the IMRFO model 

is derived by modifying the initialization of the MRFO model by implementing the chaotic concept. An extensive range of 

simulations was performed to depict the enhanced efficiency of the IMRFO-DAE approach. The simulation results assured the 

improved outcomes of the IMRFO-DAE approach compared to existing approaches. 

Keywords - Human activity recognition, Deep learning, Metaheuristics, MRFO algorithm, Chaotic concept. 

1. Introduction  
HAR has become an active research area for a few years 

because it is applicable in various fields and the rising need 

for convenience services and home automation for older 

people [1, 2]. Of these, AR in Smart Homes, by using 

ubiquitous and simple sensors, has grabbed more interest in 

the ambient intelligence domain and enabled present 

technologies to enhance the living standards of an individual 

within a home atmosphere [3]. The main objective of AR was 

to detect and find complex and simple activities in real-time 

settings utilizing sensor data. HAR has become an important 

research area because of its notable contributions in human-

centric areas of a study intended to enhance the standard of 

life [4], contributes to the transportation, health, and safety in 

smart villages and smart cities, and assists policymakers to 

react efficiently to enhance the qualification of services. HAR 

structure offers data regarding the activity and behavior of the 

subjects [5, 6]. This can usually be attained by recording 

signals from smartphones or smart sensors and processing 

them using ML approaches for recognition [7]. HAR was used 

for continuous patient monitoring with different diseases, 

transportation, daily living activities, sports, and locomotion.  

As smart sensors will be the key new data sources, pattern 

recognition methods and Machine Learning (ML) established 

an excessive contribution to constitute smarter sensor 

applications [22]. Such methods have numerous techniques 

suitable for different regions. The data processing with ML 

approaches includes substantial data types like velocity, 

variety, and volume; data methods like unsupervised and 

supervised methods and using efficient approaches that suit 

the data features [9]. Since data can be produced by many 

sources with accurate data types, it is very significant to adopt 

or apply methods that manage the data features. Furthermore, 

finding the optimal data method suitable for the data was one 

of the critical phases for recognizing patterns and better 

analysing sensor data [10]. 

 

Dahou et al. [11] examine a new HAR method dependent 

upon optimized 2 techniques:  CNN and a newly projected 

optimized technique, AOA, to boost HAR efficiency with 

some resources. The projected CNN was executed for learning 

and extracting features in input data, whereas an improved 

AOA approach, Binary AOA (BAOA), was utilized to select 

the most suitable features. Eventually, the SVM was applied 
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for classifying the Feature Selection (FS) dependent upon 

distinct performances. In [23], the 1D-CNN method is initially 

established betwixt supervised DL to an online HAR data 

classifier. For an automatic selection of a better 

hyperparameter of the CNN technique, 7 methods dependent 

upon meta-heuristic techniques are examined. 

 

Fan and Gao [13] suggest integrating Bee Swarm 

Optimization (BSO) with Deep Q-networking (DQN) for 

carrying out FS and projecting a hybrid FS method, 

BAROQUE, in accordance with these 2 methods. Next 

wrapper system, BAROQUE leverages engaging properties in 

BSO and multi-agent DQN for determining feature subsets 

and implements a classification for evaluating these solutions. 

In BAROQUE, the BSO was utilized for striking a balance 

betwixt exploration as well as exploitation for searching of 

feature spaces, but the DQN gets benefits of the values of RL 

for making the local searching procedure further adaptive and 

more effective. In [14], a novel typical feature fusion and FS-

based process were presented to automate HAR. The 

presented technique contains 3 basic stages optical flow-

oriented motion section extracting and then ROI recognition, 

Gray Level Difference Matrix (GLDM), and shape feature is 

integrated into a single matrix dependent upon superiority 

value index, and eventually, Reyni Entropy Controlled 

Euclidean classification related optimum FS.  

 

Al-Wesabi et al. [25] examine an Optimum DL-related 

HAR (ODL-HAR) technique on node-allowed IoT platforms. 

The presented system proposes to define human action in daily 

life utilizing wearable and IoT gadgets. The projected system 

utilizes the MobileNet_v2 approach as an extracting feature 

and the BiLSTM technique as a classification. For fine-tuning 

hyperparameters contained in BiLSTM approach optimum, 

Chaos Game Optimization (CGO) technique was utilized to 

enhance the detection efficiency. Helmi et al. [16] introduce 

an effective HAR method utilizing a lightweight FS system 

for enhancing the HAR classifier procedure. The established 

FS process, named GBOGWO, proposes to improve the 

efficiency of the Gradient Based Optimizer (GBO) technique 

by utilizing the GWO operator. Initially, the GBOGWO was 

utilized to select suitable features; afterwards, the SVM was 

utilized to classify the actions. 

 

This article develops an Improved MantaRay Foraging 

Optimization with Deep Autoencoder (IMRFO-DAE) 

algorithm for HAR. The presented algorithm majorly 

recognizes the diverse types of human activities. The 

presented model pre-processes the human activity data via a 

standardization approach to obtain this. Next, the IMRFO-

DAE method performs the AR process using the DAE 

algorithm. To enhance the AR performance of the DAE 

algorithm, the IMRFO model is applied as a hyperparameter 

optimizer. Moreover, the IMRFO approach is derived by 

modifying the initialization of the MRFO algorithm by 

utilizing the chaotic concept. A wide range of simulating 

procedures were accomplished to depict the precipitated 

achievement of the IMRFO-DAE approach. 

2. The Proposed Model 
The present research presents an innovative IMRFO-

DAE approach for accurate HAR. The presented IMRFO-

DAE approach majorly recognized the diverse classes of 

HARs. This has a three-state process: pre-processing, AR 

using DAE, and MRFO hyperparameter tuning. Fig. 1 

demonstrates the workflow of the IMRFO-DAE system. 

2.1. AR using DAE Model 

Here, the IMRFO-DAE method performs the AR process 

using the DAE method. The presented approach is a 

feedforwarding neural network with more than one concealed 

layer. This is a kind of unsupervised NN wherein the network 

tries to match output to the input vector [24]. In addition, it is 

utilized for generating lower or higher dimensionality 

representations of inputted datasets. Using the unsupervised 

learning process of compressed info encoding will make NN 

extremely resourceful. 

 

Additionally, this network is trained single layer at a time, 

which reduces the computation resource required to propose 

an efficient paradigm. If the hidden layer is lesser dimensional 

when compared to the input and output layers, then the 

network is utilized for encoding information (compression). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Workflow of IMRFO-DAE system 

Input: Training Dataset 

Data Preprocessing 

Activity Recognition Process 

using Deep Auto encoder Model 

Parameter Tuning Process using  

Manta Ray Foraging Optimization 

Performance Measures Sensitivity, 

Specificity, Accuracy, F-Score, MCC 
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Multi-layered AE is trained successively, which allows 

for the gradual compression of data, which creates what is 

named an SAE. The self-encoding models comprise output, 

input, and hidden layers: 

 

xi = [xi1 , xi2 , xi3 , . . . . , xij]
𝑇

154                    (1) 

 

In the equation, 𝑖 denotes 𝑖-𝑡ℎ flow table featuring 

vectors, and j characterizes every flow table featuring. The 

vector has 𝑗-𝑡ℎ featuring. The concealed layer will be 

encoding and compressing the input featuring vectors of the 

flow table based on the following expression: 

 

encoder = W1xi + b1                   (2) 

 

Now, 𝑊1 indicates the weight connects the inputting and 

conceding layers, xi refers to the input featuring vector of 𝑖-
𝑡ℎ flow table, and 𝑏1 represent the bias of concealed layers. 

Afterwards, the encoding process is finished and defined as 

the result of concealed layers. The resulting layer will be 

decoded and recreated to generate a result of a similar size as 

the inputting layer: 

 

𝑑𝑒𝑐𝑜𝑑𝑒𝑟 =  𝑓(𝑊2(𝑒𝑛𝑐𝑜𝑑𝑒𝑟)𝑖  +  𝑏2)                   (3) 

 

Where 𝑓 represents the activation function, 𝑊2 signifies 

the weighting value amid the inputting and conceding layers, 
(𝑒𝑛𝑐𝑜𝑑𝑒𝑟)𝑖 characterize the stream table featuring vector 

compressed by the coding of the concealed layer, and 𝑏2 

shows the bias of outputting layer. Lastly, the self-encoding 

model can be accomplished by reducing the loss function: 

𝑙𝑜𝑠𝑠 = ∑(𝑥𝑖 − (𝑑𝑒𝑐𝑜𝑑𝑒𝑟)𝑖)
2

𝑁

𝑖=1

                  (4) 

 

Whereas 𝑛 denotes the flow table featuring vectors 

number, 𝑥𝑖  indicate flow table featuring vector’s input, and 

(𝑑𝑒𝑐𝑜𝑑𝑒𝑟)𝑖  represent the outing value of the flow table 

featuring vectors by 𝑥𝑖. 

2.2. Hyperparameter Tuning 

To enhance the AR performance of the DAE model, the 

IMRFO algorithm is applied as a hyperparameter optimizer. 

MRFO is a recently proposed metaheuristic optimization 

technique which stimulates the foraging behavior of MR [18]. 

They have been evolving many different creative and 

impressive foraging strategies, namely somersault, chain, and 

cyclone foraging. They notice a higher abundance of plankton 

as the main goal (the better target solution) at the chain 

foraging phase. Then, they were combined together to 

constitute the foraging chain. Although every individual 

moves toward manta rays and food in front of them. The 

mathematical modelling for 3 foraging methods is discussed 

in the following: 

2.2.1. Chain Foraging Technique 

MRs could identify plankton and swim toward it. 

Consequently, the high concentration of the plankton was 

viewed as the highest destiny for MR and formed a forage 

chain through head‐to‐tail alignment to accomplish these 

configurations. Consequently, every individual is upgraded in 

all the iterations by a better solution. The foraging chain 

behaviors are arithmetically modelled in the following: 
 

𝑥𝑖
𝑡+1 = {

𝑥𝑖
𝑡 + 𝑟. (𝑥𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑖
𝑡) + 𝛼(𝑥𝑏𝜃𝐽𝑡

𝑡 − 𝑥𝑖
𝑡), 𝑖 = 1

𝑥𝑖
𝑡 + 𝑟. (𝑥𝑖−1

𝑡 − 𝑥𝑖
𝑡) + 𝛼(𝑥bes𝑡

𝑡 − 𝑥𝑖
𝑡), 𝑖 = 2: 𝑁

 (5) 

 

In Eq. (5), 𝑥𝑖
𝑡 indicates the 𝑖𝑡ℎ individual location for 𝑡-𝑡ℎ 

iteration; 𝑟 signifies random vector; 𝑥bes𝑡
𝑡  shows the better 

solution for 𝑡𝑡ℎ iterations, 𝑁 indicates the numbering of MR, 

and 𝛼 indicates the weight co-efficient that is given below: 
 

𝛼 = 2 × 𝑟 × √| log (𝑟)|.                          (6) 

2.2.2. Cyclone Foraging Technique 

When a collection of MR identifies plankton in a deep 

watering process, they construct a longer forage chain and 

travel in a spiral toward food. Therefore, the said behavior is 

modelled scientifically to characterize the cyclone forage: 

𝑥𝑖
𝑡+1

= {
𝑥bes𝑡 + 𝑟. (𝑥bes𝑡

𝑡 − 𝑥𝑖
𝑡) + 𝛽(𝑥bes𝑡

𝑡 − 𝑥𝑖
𝑡) , 𝑖 = 1

𝑥bes𝑡 + 𝑟. (𝑥𝑖−1
𝑡 − 𝑥𝑖

𝑡) + 𝛽(𝑥bes𝑡
𝑡 − 𝑥𝑖

𝑡) , 𝑖 = 2: 𝑁
  (7) 

 

In Eq. (7), 𝛽 signifies a weight feature that is utilized in 

forming the spiral form, and it is computed in the following: 
 

𝛽 = 2𝑒𝑟1 (
𝑇 − 𝑡 + 1

𝑇
) . sin(2𝜋𝑟1)                    (8) 

 

In Eq. (8), 𝑡 signifies the existing iteration, 𝑇 represents 

the maximal iteration count, and 𝑟1 denotes a random value. 

The initial part of Eq. (7) illustrates the capability of MRFO 

to apply better solutions. But, to improve exploration 

probabilities, a random location through the search space is 

utilized as a reference location. Thus, the subsequent formula 

is applied in the exploration stage to attain a complete global 

search: 

𝑥𝑟𝑎𝑛𝑑 = 𝐿𝑏 + 𝑟. (𝑈𝑏 − 𝐿𝑏) ,                               (9) 
 

𝑥𝑖
𝑡+1 = {

𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑟𝑎𝑛𝑑
𝑡 − 𝑥𝑖

𝑡) + 𝛽(𝑥𝑟𝑎𝑛𝑑
𝑡 − 𝑥𝑖

𝑡) , 𝑖 = 1

𝑥𝑟𝑎𝑛𝑑 + 𝑟. (𝑥𝑖−1
𝑡 − 𝑥𝑖

𝑡) + 𝛽(𝑥𝑟𝑎𝑛𝑑
𝑡 − 𝑥𝑖

𝑡) , 𝑖 = 2: 𝑁
      

   

      (10) 

 

Whereas 𝑈𝑏 and 𝐿𝑏 denote upper and lower boundaries, 

and 𝑥𝑟𝑎𝑛𝑑 shows random points allocated to explore space. 

2.2.3. Somersault Foraging Technique 

The prey location is deemed as the pivot in this behavior. 

Everyone will swim around the pivot and somersault to a 

novel position. Consequently, they upgrade the position 
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according to the better location, and it is mathematically 

expressed in the following: 

 

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑆. (𝑟2. −𝑟3. 𝑥𝑖
𝑡), 𝑖 = 1,2, 𝑁,                       (11) 

 

In Eq. (11), 𝑆 indicates the somersault factors utilized for 

determining the somersault range of MR, whereas 𝑟2 and 𝑟3 

shows the random number. Individual travels toward any 

location inside the searching region among the symmetrical 

and the current position around the food pivot. The procedure 

of transforming to an optimum resolution can be attained by 

reducing the distance between the position of manta rays and 

better location.  

Thus, the somersault foraging range can be constrained in 

an adapting manner. In MRFO, the early population is 

distributed randomly, which could not assure the distribution 

of search agent space. Unpredictability and Ergodicity are the 

two characteristics of chaotic movement that could generate 

diversification in the early population: 

 

𝑥𝑖+1 = 𝑠𝑖𝑛 (
𝑏𝜋

𝑥𝑖

)                                 (12) 

Whereas 𝑏 is fixed as 0.7. 

 

The IMRFO algorithm derives Fitness Functions (FFs) to 

achieve better classification precision. It sets a non-negative 

integer in characterizing the enhanced achievement of the 

candidate resolution.  The reduced classification erroring rate 

can be considered FF.  

   

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥𝑖) 

=
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
∗ 100                                                          (13) 

 

3. Result Analysis  
The experimental validation of the IMRFO-DAE method 

is investigated by employing two datasets: UCI HAR [19], and 

USC HAD [20] datasets. Tables 1 and 2 represent the detailed 

description of the two datasets. Fig. 2 depicts some sample 

images. 

Table 1. Description of the UCI HAR dataset 

Label Class Sample Nos. 

0 Walking 1722 

1 Walking Upward 1544 

2 Walking Downward 1406 

3 Sitting 1777 

4 Standing 1906 

5 Lying 1944 

Overall Samples 10299 

Table 2. Description of the USC HAD dataset 

Label Class Sample Nos. 

0 Walking Left 70 

1 Walking Downward 70 

2 Running Toward Front 70 

3 Standing 70 

4 Sleeping 70 

5 Elevating Upward 70 

Overall Samples 10299 

 

 
Fig. 2 Sample images 

Table 3. HAR result of IMRFO-DAE model with distinct classes under 

UCI HAR dataset 

Labels Accuy Sensy Specy FScore MCC 

Training (70%) 

0 92.63 74.65 96.29 77.41 73.09 

1 92.90 78.39 95.49 76.98 72.80 

2 93.16 71.12 96.63 73.87 70.02 

3 92.55 78.46 95.49 78.43 73.92 

4 92.72 81.85 95.18 80.61 76.14 

5 92.18 81.88 94.53 79.57 74.78 

Average 92.69 77.72 95.60 77.81 73.46 

Testing (30%) 

0 92.59 71.97 96.60 75.97 71.76 

1 92.69 74.56 95.79 74.89 70.61 

2 92.62 73.24 95.72 73.24 68.96 

3 92.69 80.11 95.31 79.07 74.65 

4 92.36 81.33 94.87 79.79 75.11 

5 92.14 81.59 94.69 80.20 75.31 

Average 92.51 77.13 95.50 77.19 72.73 
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The confusion matrix of the IMRFO-DAE approach to 

the HAR procedure is depicted in Fig. 3. The outputs denoted 

that the IMRFO-DAE algorithm has precisely recognized all 

six kinds of human activities. 

Table 3 and Fig. 4 show comprehensive HAR results of 

the IMRFO-DAE model on the UCI HAR dataset. 

 

 
Fig. 3. Confusion matrix of (a-b) and (c-d) TR and TS datasets of 70:30 under the two datasets
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Fig. 4 Average investigation of the IMRFO-DAE model under the UCI 

HAR dataset 

 
Fig. 5 TACC value and VACC value investigation of IMRFO-DAE 

method under UCI HAR dataset 

 
Fig. 6 TLS and VLS investigation of IMRFO-DAE method under UCI 

HAR dataset 

The IMRFO-DAE model has identified all the human 

activities effectively on 70:30 percent of TR and TS datasets. 

For a sample, on 70% of the TR dataset, the IMRFO-DAE 

approach has gained an average 𝑎𝑐𝑐𝑢_𝑦 of 92.69%, 𝑠𝑒𝑛𝑠_𝑦 of 

77.72%, 𝑠𝑝𝑒𝑐_𝑦 of 95.60%, 𝐹_𝑠𝑐𝑜𝑟𝑒 of 77.81%, and MCC of 

73.46%. Also, on 30% of the TS dataset, the IMRFO-DAE v 

has gained an average 𝑎𝑐𝑐𝑢_𝑦 of 92.51%, 𝑠𝑒𝑛𝑠_𝑦 of 77.13%, 

𝑠𝑝𝑒𝑐_𝑦 of 95.50%, 𝐹_𝑠𝑐𝑜𝑟𝑒 of 77.19%, and MCC of 72.73%. 

The TACC value and VACC value of the IMRFO-DAE 

methodology under the UCI HAR dataset examined on HAR 

achievement in Fig. 5. The figure signifies the IMRFO-DAE 

methodology has demonstrated an upgraded achievement with 

improved TACC value and VACC value. 

The TLS value and VLS value of the IMRFO-DAE model 

under the UCI HAR dataset on HAR achievement are in Fig. 

6. 

The figure showed that the IMRFO-DAE method had 

improved achievement with the lowest TLS and VLS values. 

A detailed ROC analysis of the IMRFO-DAE methodology on 

a dataset of UCI HAR is shown in Fig. 7. The outcome stated 

that the IMRFO-DAE model has revealed its capacity to 

categorize various classes. 

 

 
Fig. 7 ROC curve analysis of IMRFO-DAE approach under UCI HAR 

dataset 

 
Fig. 8 Average analysis of the IMRFO-DAE approach in the USC HAD 

dataset 
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Table 4. HAR output of IMRFO-DAE model with distinct classes under 

USC HAD dataset 

Labels Accuy Sensy Specy FScore MCC 

Training (70%) 

0 92.52 66.67 98.33 76.60 73.41 

1 92.86 82.98 94.74 78.79 74.64 

2 92.18 83.33 94.17 79.65 74.93 

3 92.86 84.00 94.67 80.00 75.79 

4 90.82 70.45 94.40 69.66 64.26 

5 97.28 88.89 98.80 90.91 89.34 

Average 93.08 79.39 95.85 79.27 75.40 

Testing (30%) 

0 92.86 56.25 98.18 66.67 64.20 

1 93.65 91.30 94.17 84.00 80.47 

2 91.27 75.00 93.64 68.57 63.86 

3 94.44 85.00 96.23 82.93 79.65 

4 89.68 69.23 95.00 73.47 67.29 

5 96.83 92.00 98.02 92.00 90.02 

Average 93.12 78.13 95.87 77.94 74.25 

 

 
Fig. 9 TACC and VACC investigation of IMRFO-DAE model in the 

USC HAD dataset 
 

 
Fig. 10 TLS and VLS investigation of IMRFO-DAE model under USC 

HAD dataset 
 

 
Fig. 11 ROC curve analysis of IMRFO-DAE approach under USC HAD 

dataset 

Table 4 and Fig. 8 represent a comprehensive HAR 

outcome of the IMRFO-DAE algorithm on the USC HAD 

dataset. 

The IMRFO-DAE approach has efficiently identified all 

human activities on 70:30 percent of TS datasets. For 

example, on 70% of the TR dataset, the IMRFO-DAE system 

has accomplished average 𝑎𝑐𝑐𝑢𝑦 of 93.08%, 𝑠𝑒𝑛𝑠𝑦  of 

79.39%, 𝑠𝑝𝑒𝑐𝑦 of 95.85%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 7927%, and MCC of 

75.40%. Besides, on 30% of the TS dataset, the IMRFO-DAE 

approach has gained average 𝑎𝑐𝑐𝑢𝑦 of 93.12%, 𝑠𝑒𝑛𝑠𝑦  of 

78.13%, 𝑠𝑝𝑒𝑐𝑦 of 95.87%, 𝐹𝑠𝑐𝑜𝑟𝑒 of 77.94%, and MCC of 

74.25%. 

The TACC value and VACC value of the IMRFO-DAE 

model under the USC HAD dataset are examined on HAR 

achievement in Fig. 9. The figure depicted that the IMRFO-

DAE model has shown an upgraded achievement with the 

highest TACC value and VACC value. It is depicted that the 

IMRFO-DAE methodology has gained higher TACC outputs. 

The values of TLS and VLS of the IMRFO-DAE algorithm 

under the USC HAD database on HAR achievement in Fig. 

10. The figure represented that the IMRFO-DAE 

methodology has exhibited an improved achievement with 

lower TLS and VLS values. It is evident that the IMRFO-DAE 

algorithm has given an outcome to lower VLS outputs. 

A comprehensive ROC examination of the IMRFO-DAE 

algorithm on the USC HAD dataset is illustrated in Fig. 11. 

The output denoted the IMRFO-DAE approach has 

outperformed its capacity in categorizing in various classes. 

Table 5 gives a comprehensive relational study of the 

IMRFO-DAE model with other DL approaches. Fig. 12 

presents comparative results of the IMRFO-DAE model on 

the UCI HAR dataset. The simulation outcome denoted that 

the CNN-LSTM system has depicted a lower 𝑎𝑐𝑐𝑢_𝑦 of 

87.339%. Along with that, the CNN and LSTM methods have 

revealed certainly enhanced 𝑎𝑐𝑐𝑢_𝑦 of 89.456% and 89.674%  
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Fig. 12 Comparative analysis of IMRFO-DAE approach under the UCI 

HAR dataset 

 
Fig. 13. Comparative investigation of the IMRFO-DAE method under 

the USC HAD dataset

Table 5. Comparative investigation of the IMRFO-DAE model with 

other models under the UCI HAR dataset and USC HAD dataset 

Models UCI HAR USC HAD 

CNN 89.456 85.264 

LSTM 89.674 83.084 

CNN-LSTM 87.339 87.414 

Conv. LSTM 90.851 84.862 

IMRFO-DAE 92.690 93.120 

-subsequently. Although the Conv-LSTM model has reported 

near optimal 𝑎𝑐𝑐𝑢𝑦 of 90.851%, the IMRFO-DAE model 

exhibited its supremacy with maximum 𝑎𝑐𝑐𝑢𝑦 of 92.690%. 

Fig. 13 offers a comparative outcome of the IMRFO-DAE 

approach on the USC HAD database. 

The simulation outcome referred that the LSTM system 

has revealed lesser 𝑎𝑐𝑐𝑢𝑦 of 83.084%. Followed by the Conv-

LSTM and CNN systems have exposed certainly greater 

𝑎𝑐𝑐𝑢𝑦 of 84.862% and 85.264%, respectively. But, the CNN-

LSTM model has reported near optimum 𝑎𝑐𝑐𝑢𝑦 of 87.414%, 

the IMRFO-DAE algorithm displayed its supremacy with 

superior 𝑎𝑐𝑐𝑢𝑦 of 93.12%. These outputs demonstrate the 

improved achievement of the IMRFO-DAE approach. 

4. Conclusion 
In the present study, a novel IMRFO-DAE algorithm for 

accurate HAR. The presented IMRFO-DAE algorithm 

majorly recognized the diverse classes of human activities. 

The presented model pre-processed the human activity data 

via a standardization approach to obtain this.  

Then, the IMRFO-DAE algorithm performs the AR 

process using the DAE model. For enhancing the activity 

detection performance of the DAE algorithm, the IMRFO 

algorithm is applied as a hyperparameter optimizer. 

Moreover, the IMRFO model is derived by modifying the 

initialization of the MRFO model utilizing the chaotic 

concept. An extensive range of simulations were carried out 

to demonstrate the enhanced performance of the IMRFO-DAE 

system.  

The simulation results assured the improved outcomes of 

the IMRFO-DAE approach compared to existing approaches. 

In the future, the deep ensemble fusion algorithm can be 

employed to optimize the recognition performance.
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