
International Journal of Engineering Trends and Technology Volume 71 Issue 8, 216-224, August 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I8P219 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Approach to Detect and Prevent SQL Injection and

XSS Vulnerability in the Web Application

Shekhar Disawal1, Ugrasen Suman2

1,2School of Computer Science & IT, Devi Ahilya University, Indore, M.P., India

1Corresponding Author : shekhar.disawal@gmail.com

Received: 10 April 2023 Revised: 16 June 2023 Accepted: 13 July 2023 Published: 15 August 2023

Abstract - SQL Injection (SQLI) and Cross-Site Scripting (XSS) are commonly exploited vulnerabilities in web

applications, particularly those connected to sensitive data like banking, finance, and e-commerce. These attacks allow the

attackers to gain unauthorized access to the system and manipulate or delete crucial data. The attack is carried out by

injecting malicious SQL statements into a query through an unvalidated input field. As a result, it is crucial to find effective

solutions to detect and prevent these vulnerabilities in web applications. Although several methods have been proposed by

researchers, existing solutions have limitations and inefficiencies in protecting against web attacks. In this paper, we

propose a Web Vulnerability-Detection Prevention Methodology (WV-DPM) that can effectively detect and prevent SQL

injection and XSS attacks. To evaluate the effectiveness of our proposed methodology, we have implemented it and

compared it with existing methodologies.

Keywords - SQL injection, Prevention, Detection, Vulnerability, Web application.

1. Introduction
Data is a very important part of any business. Today,

most organizations want to increase profit and improve

their relationships and customer communication using web

applications [1]. The database is the backbone of web

applications such as Oracle, MSSQL, MySQL, and MS

Access [2]. Most users use their online platforms for

business and other purposes. As internet usage grows, there

is a need to provide secure and crucial data

communications. In January 2018, the population of

internet users saw a significant boost, with a reported

increase to 3.48 billion individuals. This figure continued

to climb in January 2019, reaching a staggering 4.39

billion users, representing a notable surge from the

previous year [3].

With the increased popularity of web applications in

various fields, such as social media, finance, and health,

web vulnerabilities have become a serious concern. Many

unwanted activities occur among users as a result of

insecure web applications due to flaws or loopholes in web

applications. Web security flaws can threaten personal

details and other precious things. A user tries to request a

web server using HTML forms, URLs, or other fields

where data can be entered. The unfiltered form permits

SQL injection via users. The database continuously

processes the form data without verification [4].

Mostly, the attackers have knowledge of web

application development, and injecting malicious script

into a web page viewed by a remote location on the

website is known as a Cross-Site scripting attack. The most

common online application security issue is cross-site

scripting (XSS), making web application security an

essential concern [5]. SQL injection and XSS attacks are

classified into several categories, which are explained in

subsequence subsections.

1.1. SQL Injection Attack

An SQL injection attack is launched when a hacker

exploits a vulnerability in a website's login form to gain

access to or alter the database. SQL injection

vulnerabilities allow attackers to directly submit

commands to the online application's database,

compromising privacy and effectiveness [6]. SQL Injection

can be six types and how they are executed, but also in the

data they gather, the data they modify, the commands they

run, and the services they disrupt [7]. SQL injection attacks

can take many forms, but some of the most common ones

include Boolean, Error, Union, Like, Batch Query, and

Encoded.

A Boolean-based SQL injection attack is a type of

cyber-attack where an attacker injects an SQL query into a

vulnerable application to obtain information from a

database. The attacker can manipulate the query to force

the application to respond with a different output based on

whether the query evaluates to true or false. The attacker

can then deduce whether the payload used in the attack

returns a true or false value, even though no actual data

from the database is returned. This attack is often time-

consuming since the attacker needs to go through the

database one character at a time. An error-based SQL

injection attack works by putting invalid data into the

query, which causes a database error. The attacker can then

look for errors made by the database and use those errors

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Shekhar Disawal & Ugrasen Suman / IJETT, 71(8), 216-224, 2023

217

to learn more about how to use the SQL query to change

the database. A Union-based SQL injection attack takes

advantage of the UNION operator in SQL, which is used to

join two SQL statements or queries. The attacker injects

another query in place of plain text and uses the UNION

keyword at the beginning of the query. This causes the

database to return both desired and intended results. A like-

based SQLI attack is a sort of cyber-attack in which

attackers utilize flaws in an application's search capability

to impersonate a specific user. The attacker can inject

input, which includes the LIKE operator, to change the

behaviour of the query. A Batch SQL injection query

attack injects a malicious query into the database server by

using multiple queries at the same time. The attacker can

terminate the original query with a semicolon and inject a

malicious query into the database server. Encoded-based

SQL Injection attack uses encoded input to evade detection

by security measures such as firewalls or intrusion

detection systems.

1.2. Cross-Site Scripting (XSS) Attack

XSS is a type of cyberattack where hackers insert

harmful code into web pages displayed by a reputable web

application. This deceitful content appears trustworthy and

is treated as normal content by the web application, making

it difficult to detect. Users might be sent to harmful

websites without their permission if a website has been

compromised and subsequent malware has been installed.

The attacker may also hijack the entire user session, steal

login information, and access sensitive data. There are

three types of XSS vulnerabilities: Reflected, Stored, and

Document Object Model (DOM)-based. When dynamic

material on a website (often JavaScript) is manipulated by

an attacker and then executed, this is called a DOM-based

vulnerability. Web applications are susceptible to stored

XSS flaws if they save potentially harmful user data for

later processing. Given that an attacker may use this flaw

to alter any data in the database, it is one of the most severe

forms of XSS vulnerability [1]. Reflected XSS

vulnerabilities are a type of security flaw that differs from

other types of XSS vulnerabilities because they target users

who view or load a harmful web address.

Many different tactics have been recorded in the

research that tries to lessen the escalating threats posed by

these attacks; nevertheless, very few of these strategies

have been able to address the entire scope of the problem.

Numerous security solutions have been put forward to stop

unauthorized access to data and information, but attackers

keep making new security holes that can be used [8,27]. It

is crucial to develop new approaches to detect and prevent

cyber threats as they become more advanced and

sophisticated.

The structure of the paper is as follows Section 1

describes introductory aspects of SQLI and XSS attacks.

Section 2 presents the related work for web application

vulnerability detection and prevention. Section 3 explains

the proposed Web Vulnerability-Detection Prevention

Methodology (WV-DPM). Section 4 represents the

experiment work. The discussion is in Section 5, and the

conclusion is in Section 6.

2. Related Work
SQL injection (SQLI) and cross-site scripting (XSS)

are two types of assaults that have led to the development

of a number of different methods for their detection and

prevention. By utilizing data encryption methods, PHP

escape methods, pattern-matching strategies, and

instruction set randomization, SQL injection vulnerabilities

and XSS attacks have been largely mitigated. Static,

dynamic, and hybrid detection are the core components of

the majority of SQL injection detection systems. Static

detection, or "white box testing," is the practise of using

static analysis to find bugs and ensure that code is proper.

We added support for spotting tautology attacks in the

white-box test. Although useful, this method is limited in

that it can only detect certain assaults [8].

Dynamic detection refers to the process of either

performing dynamic penetration testing or generating

analytical models on-the-fly for web-based applications.

This technique involves parsing SQL statements into

syntax trees and applying stain analysis to identify any

potential SQL injection attacks [27]. In order to

discriminate between genuine SQL queries and malicious

ones, a better pattern-matching approach was

recommended for a signature-based SQLI attack

identification framework. This would allow for the

differentiation between legitimate and malicious SQL

queries. [10]. A mapping model was proposed for SQLI

identification and avoidance [11].

Hybrid detection employs pattern matching to identify

and obstruct SQL injection attempts, with AMNESIA

being a prime example. This technique involves statically

analyzing the web application to construct a model of the

SQL queries. Afterwards, it observed dynamic queries.

Non-compliant queries are prohibited by SQLIA [12].

Another method for detecting and combating SQL

injection is based on URL-SQL mapping. Several

unidentified factors impact the execution of a SQL

statement; therefore, they extracted the specified URL and

SQL query to construct a request-to-query mapping model.

If invariants in the regular state of the web application are

not completely extracted, it will give false alarms and false

negative results [13].

The SHA-1 hashing method is a security measure that

can prevent SQL injection attacks from affecting batch

queries. This method involves retrieving attribute values

for queries from stored inputs and using the SHA-1

hashing algorithm to encode them. Before carrying out the

task, any new input is converted into a hash and compared

with the hash of the previously stored input. The query is

denied if the hashed inputs are identical [14]. The Boyer-

Moore algorithm was introduced as a means of identifying

and preventing SQL injection attacks in input values. A

hybrid approach uses the best parts of static and dynamic

approaches to find possible vulnerabilities. The static

Shekhar Disawal & Ugrasen Suman / IJETT, 71(8), 216-224, 2023

218

approach checks the SQL query during the writing stage to

identify any flaws, while the dynamic approach checks

queries during runtime. The algorithm matches the input

query with stored queries and compares the results with the

expected valid query. If a vulnerability is detected in a

secure system, the query is rejected. On the other hand, the

dynamic approach examines incoming queries using an

algorithm that detects vulnerabilities and discards them.

The proposed approach aims to enhance the security of

databases by preventing SQL injection attacks [15].

XSS is the most common form of web application

vulnerability. Wherever a web application takes user input,

such a vulnerability can potentially insert malicious code.

Countless strategies and methodologies have been

implemented to sniff out XSS vulnerabilities lurking in

source code. One such method is the HTML context-

sensitive technique, which employs a combination of taint

analysis and defensive programming to pinpoint XSS

vulnerabilities that may exist in the source code of PHP-

based applications [28].

Despite the continuous evolution of web applications,

web vulnerabilities remain an ongoing challenge,

demanding ever-vigilant attention from security experts.

We identified some limitations in existing SQLI and XSS

vulnerability detection and prevention approaches. Limited

coverage may not be able to detect or prevent all possible

attack scenarios. The majority of mitigation solutions may

merely clean input data or escape characters, which may

not be sufficient to prevent attacks. Certain detection and

prevention technologies may cause considerable

performance overhead in the application, affecting the user

experience and making them unsuitable for high-traffic

applications.

3. Web Vulnerability – Detection Prevention

Methodology
We have presented a Web Vulnerability-Detection

Prevention Methodology (WV-DPM) for detecting and

preventing various types of SQLI and XSS attacks. The

patterns of each assault are analyzed, and potential

countermeasures are developed based on these analyzed

patterns. Fig.1 presents the system architecture of the WV-

DPM. The model has six different phases, i.e. planning &

scope, asset discovery, attack detection, attack simulation

& exploitation, remediation of risk, and analysis &

reporting.

The WV-DPM model is a step-by-step approach for

identifying web vulnerabilities, with a particular focus on

SQLI and XSS attacks. This model can be highly

beneficial for developers who want to create secure web

applications. We have designed an algorithm that utilizes

the Rabin-Karp string-matching algorithm and developed a

filter function implemented when a query is submitted.

This novel feature ensures that malicious inputs are not

stored in the database. The filter function blocks any

malicious content and notifies the user of the illegal

activity. The overall effect of this method is to make web

applications safer and more resistant to cyberattacks.

Fig. 1 WV-DPM

Remediation of Risk

• Elimination of attack using algorithm for

preventing SQL Injection and XSS Attack

(APSXA) Attack

• Development of Filter Function

Planning & Scope

• Identification of Attack

• Documentation of Attack

Asset Discovery

• Asset Identification

• Documentation of Asset

Attack Simulation & Exploitation

• Development of Web application

• Exploitation of Attack in Web application

Attack Detection

• Identifiction of Attack using specific syntax

Analysis and Reporting

• Identification of attack

• Documentation of attack

Shekhar Disawal & Ugrasen Suman / IJETT, 71(8), 216-224, 2023

219

A detailed description of each phase is as follows:

3.1. Planning & Scope

Planning and scope refers to the process of identifying,

assessing, and addressing potential security risks and

vulnerabilities in web applications. The scope of web

vulnerability planning typically involves identifying the

assets and resources that need to be protected, such as

sensitive data or functionality that could be exploited by

attackers. We have classified web vulnerabilities and

identified SQLI and XSS attacks [17].

SQL injection patterns composed utilizing special

characters and keywords are presented in Table 1 and

Table 2 [18]. The malicious programs used to launch

various attacks are built from these characters and

keywords, which are then used in their final form. If these

injection codes can be detected and recognized according

to the character and keywords mentioned in Table 1 and

Table 2, then identifying and preventing these types of

attacks would be considerably easier. Table 3 comprises

the injection codes that are used by all forms of attacks

[18].

Table 1. SQL-Injection code composed using special characters

S.No. Character Detail

1 ’
For indicating a string of

characters

2 %
An Indicator for Wildcard

Attributes

3 ; Query ending operator

4 + or || Concatenate Strings

5 = Assignment Operator

6 -- or # Single line comment

7 /* ….. */ Multiple line comment

8
>,<, >=,<=, ==, !=

or <>
operators for comparison

3.2. Asset Discovery

It involves identifying and documenting all the assets,

such as web applications, databases, and servers within an

organization's infrastructure accessible from the internet.

Table 2. SQL-Injection code composed using keywords

S.No. Keyword Detail

1 UNION Utilized for Union-based injection attack.

2 OR Utilized for Boolean-based injection attack.

3 DROP Utilized for the purpose of deleting the whole database table.

4 DELETE Utilized for removing information from a database table.

5 TRUNCATE Utilized for clearing out information from a specified table in a database.

6 SELECT Utilized for retrieving records from a database table.

7 UPDATE Utilized for modification of records in a database table.

8 INSERT Utilized for adding records in a database.

9 Like Utilized in conjunction with the% to choose a record that contains a certain string pattern.

10 CONVERT Utilized error-based SQL injection to induce the database server to show some warning messages.

Table 3. Various injection code syntaxes with the prevalent attack patterns

S.No.
Type of Injection

Assault
Recurring Style Example

1 Boolean SQLI
’ OR ‘…’=|>|>=|<|<=|<>|!= ‘…’

;#
SELECT * FROM test WHERE name = '' OR 1=1--';

2 Union SQLI ’ union select * from ….. ;# ‘UNION.SELECT ALL 1, database(),3,4-- -

3 Error-based SQLI ’ … convert (|averag(|round(…)
‘ OR 1=1 GROUP BY CONCATSD_WS (‘-’, version(),

FLOOR (rand (0)*2)) having max(0)#

4
Batch Query

SQLI

’; drop| delete|insert|update|select

* ……;#
'; SELECT * FROM test; --

5 Like-based SQLI ’ OR…. Like ’ ….%’; # ' OR 1=1 AND user_name LIKE '%h%'

6 Encoded SQLI
& # x79 & # x78 & # x32 & #

x82
%27%20OR%201=1%20--%20

7
Cross-Site

Scripting
<script> ….. ’ …….; < /script> < img src ="javascript: alert (' you are under web attack')">

Shekhar Disawal & Ugrasen Suman / IJETT, 71(8), 216-224, 2023

220

Asset discovery helps security professionals to

identify all the potential attack surfaces that malicious

actors could target. By knowing the assets available in the

infrastructure, we can prioritize their efforts and focus on

securing the most critical assets.

3.3. Attack Detection

In this phase, we have identified types of patterns to

detect SQLI and XSS attacks. The process description is as

follows:

The methods listed for identifying SQL injection and

XSS attacks include examining specific patterns in user

input, such as the presence of certain keywords or

characters. Different types of attacks can be identified by

the specific syntax used, such as Boolean, Union, Error,

Batch query, Like-based SQL, Encoded SQL Injection, and

XSS attacks. The following methods can be used to

identify the various forms of SQL injection and XSS

attacks:

3.3.1. Boolean-Based SQLI Attack

Table 3 illustrates that most Boolean-based SQL

injection strings include a single quotation ('), OR, and a

true assertion, such as "y" and "5+3" = "10".

3.3.2. Union-Based SQLI Attack

The majority of union-based SQLI strings begin with a

single quotation ('), then a UNION keyword, followed by

the SQL keyword SELECT, one or more identifiers, the

SQL keyword FROM, one or more identifiers, and finally

a semicolon (;) with a hash (#). To illustrate, consider the

example: "union select * from users; #.

3.3.3. Error-Based SQLI Attack

User input that begins with a single quotation

character (') and continues with zero or more SQL

functions is likely to be of this type. We can see this in the

expressions 121' convert (float, 'xyz'), ‘ A' avg

('&!%$#@*'), and 'round ('xyz', 2).

3.3.4. Batch Query SQLI Attack

Valid SQL statements begin with a single quote (') and

terminate with a semicolon (;) and a hash (#). As an

illustration, consider the example: abc'; delete * from

Icstable; # or '; drop table Ics; #.

3.3.5. Like-Based SQLI Attack
According to Table 3, like-based SQL injection

attacks can be spotted when the input string contains a

single quotation (') followed by the logical operator OR,

one or more identifiers, the SQL term LIKE, a single

quotation, the wildcard operator (%), a single quotation,

and a semicolon with a hash. Example: "OR uname LIKE

"D%"# and "OR pwd LIKE "%4%';#".

3.3.6. Encoded-Based SQL Injection

It involves encoding malicious SQL code into non-

readable characters, such as ASCII or Unicode. This can

bypass input validation checks, allowing attackers to

execute SQL code. The injected code is encoded using

ASCII encoding and translates to 'admin'. Example:

SELECT * FROM Ics WHERE uname = 'admin';.

3.3.7. Cross-Site Scripting (XSS) Attack

As in <script>alert('XSS');</script>, the input string

has a JavaScript open tag "<script>" followed by zero or

more characters and/or a single quotation ('). If an XSS

attack were to be encoded, a JavaScript opening tag

"script>" would be succeeded by one or more ASCII

codes, hexadecimal numbers, HTML names, or HTML

numbers that represent characters, including the possibility

of a single quote ('), as exemplified by the input string

<script> alert(XSS); < /script>.

3.4. Attack Simulation and Exploitation

Attack simulation and exploitation are important

aspects of testing the security of web applications. In this

context, attack simulation refers to the process of

simulating attacks that a malicious hacker might use to

exploit vulnerabilities. Exploitation refers to the actual

execution of an attack to take advantage of the

vulnerability. We have created a vulnerable web

application to simulate a SQL injection and XSS attack.

We did manual testing for each type of SQLI and XSS

attack mentioned in Table 3 using a different set of

characters and phrases same as the attacker’s mind.

3.5. Remediation of Risk

As vulnerabilities have been identified and prioritized,

remediation is carried out to eliminate or mitigate them.

This may involve applying patches, updating software,

reconfiguring security controls, or redesigning the web

application architecture.

At this phase, we have developed an algorithm for

preventing SQLI and XSS Attacks (APSXA) and

developed a filter function to block the malicious input.

The algorithm is described as follows.

Algorithm: Algorithm for preventing SQLI and XSS

Attacks (APSXA).

Input: I: an array of user input values, each from a form

text field.

Output: Blocks the unauthorized user's access, resets

HTTP request and gives a warning message or grants

access.

Description: The function takes in user input values from

each form text field and sums them up to create a single

string I. The function then converts I from ASCII to a

string format and checks it for various security

vulnerabilities using the following sub-functions:

A1 = check_boolean_based_SQLI: checks for boolean-

 based SQLI

A2 = check_union_based_SQLI: checks for union-

 based SQLI

Shekhar Disawal & Ugrasen Suman / IJETT, 71(8), 216-224, 2023

221

A3 = check_error_based_SQLI: checks for error-based

 SQLI

A4 = check_batch_query_SQLI: checks for batch query

 SQLI

A5 = check_like_based_SQLI: checks for like-based

 SQLI

A6 = check_Encoded_based_SQLI: checks for

 encoded-based SQLI

A7 = check_Xss: checks for cross-site scripting (XSS)

If any sub-functions return true, the function blocks

the user's access, resets the HTTP connection, and displays

an alert message. Else, the function grants the user access.

Protecting a website from SQL injection and XSS

assaults is the primary purpose of the filter() method. Data

was sent to the function through the POST method via a

web form. In order to thwart encoded injection attempts,

the function first changes any ASCII strings it finds in the

incoming data.

If the input data is not empty, the function then calls

other functions to check for specific forms of attack, such

as Boolean-based SQLI, Union-based SQLI, Error-based

SQLI, Batch query SQLI, Like-based SQLI, Encoded-

based SQLI, and XSS. The outcomes of these checks are

represented as variables A1, A2, A3, A4, A5, A6 and A7,

respectively.

Filter Function: Check variable types A1, A2, A3, A4, A5,

A6 and A7.

Input: A string input to check for A1/A2/A3/A4/A5/A6/

A7.

Output: Indicating whether the input contains A1, A2, A3,

A4, A5, A6 and A7 or not.

Description: Define injection patterns, input operators,

and relational operators.

For each injection pattern (A1/A2/A3/A4/A5/A6/A7) in

the injection patterns array:

a. Check if the input contains the injection pattern using

the Rabin-Karp Search function.

b. If the injection pattern is found:

i. If this is the first injection pattern, check if the input

contains any input operators.

1. If no input operators are found, set the result to false and

break the loop.

ii. If this is the third injection pattern, check if the input

contains any relational operators.

1. If no relational operators are found, set the result to false

and break the loop.

iii. If this is the last injection pattern, set the result to true.

iv. Update the input by removing the injection pattern

using the slice and end functions.

c. If the injection pattern is not found, set the result to false

and break the loop.

Return the result.

If any of these checks return positive results,

indicating an attack has been found, the function will stop

the user, resume the HTTP request, and show an alert

message. If not, the function will provide access to the

user.

3.6. Analysis and Reporting

Web application vulnerability analysis and reporting

involve identifying, categorizing, and prioritizing potential

security weaknesses in a web application. We have

performed manual testing for SQLI and XSS attacks and

identified that they require a unique set of characters and

phrases that hackers must exploit to carry out their

malicious activities. The input field in the web application

should be properly validated. We have used a string-

matching algorithm in the submit button and stored

malicious content in a database table record. It is shown in

Fig. 2: The database attributes such as, including types of

attacks, input strings field, time stamps record, and

message status, were all captured. Through this process,

we can analyze attacks and take safe steps to secure our

web application.

Fig. 2 Attack detection interface showing the records

Shekhar Disawal & Ugrasen Suman / IJETT, 71(8), 216-224, 2023

222

Table 4. Comparative analysis of existing techniques and the proposed approach

Methodology Reference

Types of attack

Boolean

SQLI

Like

SQLI

Union

SQLI

Error

SQLI

Batch

query

SQLI

Encoded

SQLI

Cross-site

scripting

Data encryption

algorithm

K. D'silva et. al. [19] Y Y Y Y Y Y N

U. Upadhyay et al. [20] Y Y Y Y Y Y N

Q. Temeiza et. al. [14] Y Y Y Y Y Y N

A. John et al. [21] Y Y Y Y Y Y N

Instruction set

randomization

C. Ping et al. [22] Y Y Y Y Y N N

G. Buja et. al. [23] Y Y Y Y Y N N

String matching

algorithm

A. Ghafarian [24] Y Y Y Y Y N Y

A.Ramesh et al. [29] Y Y Y Y Y N Y

M.A. Prabakar et. al. [26] Y Y Y Y Y N Y

WV-DPM Model Y Y Y Y Y Y Y

4. Experiment
The experiment of various attacks performed on the

Apache Web Server. The Apache XAMPP Server web

server and the PHP programming language were used to

implement the WV-DPM paradigm. Due to its broad use

and acceptance in developing web-based applications that

depend on database integration, PHP was particularly

selected as the server-side programming language.

The assault was launched using Windows operating

systems on localhost. The browsers used to initiate the

attack were Opera (version 74.0.3911.107), Google

Chrome (version 109.0.5414.122), Mozilla Firefox

(version 72.0), and Microsoft Edge (version

110.0.1587.46). The target database was saved on the

MySQL database. The test was carried out on the localhost

XAMPP server.

Using the test strategy laid out in Table 3, an effort

was made to submit several documented instances of SQL

injection and cross-site scripting attacks. Different types of

attack input strings are included in the test cases that make

up the test plan. The web application's input fields were

used to supply the input strings. The request would be

blocked when an attack is detected. It was recorded in a

database table illustrated in Fig. 2 that the types of attacks,

input strings code submitted, time stamps, and attack status

were all captured. Based on the results of the different

attempts, the proposed approach found and stopped all of

the attacks.

5. Discussion
The proposed technique was compared to existing

methodologies in the field of web application security.

Specifically, four articles were analyzed that focused on

data encryption techniques, two articles on instruction set

randomization, and three articles on string matching

algorithms.

The results of this comparative analysis are

summarized in Table 4. It was found that all six types of

SQL injection attacks can be prevented by existing

techniques that use data encryption algorithms, although

XSS attacks may still be possible. On the other hand, the

suggested WV-DPM approach was proven effective

against all six distinct forms of SQL injection attacks,

including XSS and encoded injection attempts. It also

noted that all other known solutions have their limitations

and drawbacks, which makes the proposed WV-DPM

methodology a highly promising approach for improving

the security of web applications. These findings suggest

that WV-DPM can be an effective technique for preventing

web vulnerabilities and can help developers create more

secure web applications.

6. Conclusion
The WV-DPM model proposed in this paper offers an

effective solution to detect and prevent SQL injection and

XSS attacks in web applications. By studying the different

types and patterns of these attacks in a systematic way, the

model would be able to find and stop them, log the attack

in the database, and send out a "blocked" message. The

comparison with existing techniques shows that WV-DPM

is a more efficient approach in stopping all six types of

SQL injection attacks, including cross-site scripting and

encoded injection attacks.

The results of this research demonstrate the

importance of continuously improving web application

security to prevent cyber-attacks. With the increasing

number of web-based applications and services, it is

crucial to have effective and efficient methods in place to

identify and prevent potential vulnerabilities. The WV-

DPM model significantly contributes to this area of

research by providing a comprehensive solution that can

help developers create more secure web applications and

reduce the risk of vulnerabilities being exploited.

Shekhar Disawal & Ugrasen Suman / IJETT, 71(8), 216-224, 2023

223

References
[1] Sudhakar Choudhary, Arvind Kumar Jain, and Anil Kumar, “A Detail Survey on Various Aspects of SQLIA,” International

Journal of Computer Applications, vol. 161, no. 12, pp. 34–39, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[2] Mazoon Al Rubaiei et al., “SQLIA Detection and Prevention Techniques,” 9th International Conference on System Modeling &

Advancement in Research Trends, pp. 115–121, 2020. [CrossRef] [Publisher Link]

[3] Acunetix Web Application Vulnerability Report 2019, 2019. [Online]. Available: https://www.acunetix.com/white-papers/acunetix-

web-application-vulnerability-report-2019/

[4] Qi Li et al., “LSTM-based SQL Injection Detection Method for an Intelligent Transportation System,” IEEE Transactions on

Vehicular Technology, vol. 68 no. 5, pp. 4182-4191, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[5] Shashank Gupta, and B. B. Gupta, “XSS-Secure as a Service for the Platforms of Online Social Network-Based Multimedia Web

Applications in Cloud,” Multimedia Tools and Applications, vol. 77, no. 4, pp. 4829-4861, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[6] Peng Tang et al., “Detection of SQL Injection Based on Artificial Neural Networks,” Knowledge-Based Systems, vol. 190, 2020.

[CrossRef] [Google Scholar] [Publisher Link]

[7] Da-Yu Kao, Chung-Jui Lai, and Ching-Wei Su, “A Framework for SQL Injection Investigations: Detection, Investigation, and

Forensics,” IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2838–2843, 2018. [CrossRef] [Google

Scholar] [Publisher Link]

[8] Gary Wassermann et al., “Static Checking of Dynamically Generated Queries in Database Applications,” ACM Transactions on

Software Engineering and Methodology, vol. 16, no. 4, pp. 14-es, 2007. [CrossRef] [Google Scholar] [Publisher Link]

[9] Aqsa Afroz et al., “An Algorithm for Prevention and Detection of Cross-Site Scripting Attacks,” SSRG International Journal of

Computer Science and Engineering, vol. 7, no. 7, pp. 8-18, 2020. [CrossRef] [Publisher Link]

[10] Benjamin Appiah, Eugene Opoku-Mensah, and Zhiguang Qin, “SQL Injection Attack Detection Using Fingerprints and Pattern

Matching Technique,” 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 583–587,

2017. [CrossRef] [Google Scholar] [Publisher Link]

[11] Rathod Mahesh Pandurang, and Deepak C. Karia, “A Mapping-Based Model for Preventing Cross-Site Scripting and SQL Injection

Attacks on Web Application and its Impact Analysis,” 1st International Conference on Next Generation Computing Technologies

(NGCT), pp. 414–418, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[12] William G J Halfond, and Alessandro Orso, “AMNESIA: Analysis and Monitoring For Neutralizing SQL-Injection Attacks,”

Proceedings of the 20th IEEE/ACM International Conference on Automated Software Engineering, pp. 174–183, 2005. [CrossRef]

[Google Scholar] [Publisher Link]

[13] Zeli Xiao et al., “An Approach for SQL Injection Detection Based on Behavior and Response Analysis,” IEEE 9th International

Conference on Communication Software and Networks (ICCSN), pp. 1437–1442, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[14] Qais Temeiza, Mohammad Temeiza, and Jamil Itmazi, “A Novel Method for Preventing SQL Injection using SHA-1 Algorithm

and Syntax-Awareness,” Joint International Conference on Information and Communication Technologies for Education and

Training and International Conference on Computing in Arabic (ICCA-TICET), pp. 1-4, 2017. [CrossRef] [Google Scholar]

[Publisher Link]

[15] Geogiana Buja et al., “Detection Model for SQL Injection Attack: An Approach for Preventing a Web Application from the SQL

Injection Attack,” IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE), pp. 60–64, 2014. [CrossRef]

[Google Scholar] [Publisher Link]

[16] Dian kurnia, Hendry, and Muhammad Syahputra Novelan, “The Forensic Approach Uses Snort from SQL Injection Attacks on the

Server,” International Journal of Computer Trends and Technology, vol. 68, no. 6, pp. 51-56, 2020. [CrossRef] [Publisher Link]

[17] Shekhar Disawal, and Ugrasen Suman, “An Analysis and Classification of Vulnerabilities in Web-Based Application

Development,” 8th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 782-785, 2021.

[Google Scholar] [Publisher Link]

[18] Oluwakemi Christiana Abikoye et al., “A Novel Technique to Prevent SQL Injection and Cross-Site Scripting Attacks Using

Knuth-Morris-Pratt String Match Algorithm,” EURASIP Journal on Information Security, vol. 2020, no. 14, 2020. [CrossRef]

[Google Scholar] [Publisher Link]

[19] Karis D'silva et al., “An Effective Method for Preventing SQL Injection Attack and Session Hijacking,” IEEE International

Conference on Recent Trends in Electronics Information & Communication Technology (RTEICT), pp. 697–701, 2017. [CrossRef]

[Google Scholar] [Publisher Link]

[20] Utpal Upadhyay, and Girish Khilari, “SQL Injection Avoidance for Protected Database with ASCII using SNORT and Honeypot,”

International Conference on Advanced Communication Control and Computing Technologies (ICACCCT), pp. 596–599, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[21] Ashish John, Ajay Agarwal, and Manish Bhardwaj, “An Adaptive Algorithm to Prevent SQL Injection,” American Journal of

Networks and Communications, vol. 4, no. 3-1, pp. 12–15, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[22] Chen Ping et al., “Research and Implementation of SQL Injection Prevention Method based on ISR,” IEEE International

Conference on Computer and Communications, pp. 1153–1156, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[23] G. Buja, K. B. Abd Jalil, et al., “Detection model for SQL injection attack: an approach for preventing a web application from the

SQL injection attack,” Symposium on Computer Applications and Industrial Electronics, IEEE, pp. 60–64, 2014. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.5120/ijca2017913411
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Detail+Survey+on+Various+Aspects+of+SQLIA&btnG=
https://www.ijcaonline.org/archives/volume161/number12/27203-2017913411
https://doi.org/10.1109/SMART50582.2020.9336795
https://ieeexplore.ieee.org/document/9336795
https://doi.org/10.1109/TVT.2019.2893675
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=LSTM-based+SQL+injection+detection+method+for+an+intelligent+transportation+system%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/abstract/document/8616823
https://doi.org/10.1007/s11042-016-3735-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=XSS-secure+as+a+service+for+the+platforms+of+online+social+network-based+multimedia+web+applications+in+cloud%2C%E2%80%9D+&btnG=
https://link.springer.com/article/10.1007/s11042-016-3735-1
https://doi.org/10.1016/j.knosys.2020.105528
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Detection+of+SQL+injection+based+on+artificial+neural+networks&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950705120300332
https://doi.org/10.1109/SMC.2018.00483
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Framework+for+SQL+Injection+Investigations%3A+Detection%2C+Investigation%2C+and+Forensics%2C&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Framework+for+SQL+Injection+Investigations%3A+Detection%2C+Investigation%2C+and+Forensics%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/8616479
https://doi.org/10.1145/1276933.1276935
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Static+checking+of+dynamically+generated+queries+in+database+applications%2C%E2%80%9D+&btnG=
https://dl.acm.org/doi/abs/10.1145/1276933.1276935
https://doi.org/10.14445/23488387/IJCSE-V7I7P102
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=407
https://doi.org/10.1109/ICSESS.2017.8342983
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SQL+injection+attack+detection+using+fingerprints+and+pattern+matching+technique%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/abstract/document/8342983
https://doi.org/10.1109/NGCT.2015.7375152
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+mapping-based+model+for+preventing+cross-site+scripting+and+SQL+injection+attacks+on+web+application+and+its+impact+analysis&btnG=
https://ieeexplore.ieee.org/abstract/document/7375152
https://doi.org/10.1145/1101908.1101935
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AMNESIA%3A+Analysis+and+monitoring+for+neutralizing+SQL-injection+attacks%2C%E2%80%9D&btnG=
https://dl.acm.org/doi/abs/10.1145/1101908.1101935
https://doi.org/10.1109/ICCSN.2017.8230346
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+approach+for+SQL+injection+detection+based+on+behavior+and+response+analysis%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/abstract/document/8230346
https://ieeexplore.ieee.org/abstract/document/8230346
https://doi.org/10.1109/ICCA-TICET.2017.8095285
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+method+for+preventing+SQL+injection+using+SHA-1+algorithm+and+syntax-awareness%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/abstract/document/8095285
https://doi.org/10.1109/ISCAIE.2014.7010210
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%E2%80%9CDetection+model+for+SQL+injection+attack%3A+an+approach+for+preventing+a+web+application+from+the+SQL+injection+attack%2C%E2%80%9D+&btnG=
https://ieeexplore.ieee.org/abstract/document/7010210
https://doi.org/10.14445/22312803/IJCTT-V68I6P109
https://ijcttjournal.org/archives/ijctt-v68i6p109
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Analysis+and+Classification+of+Vulnerabilities+in+Web-Based+Application+Development%E2%80%9D&btnG=
https://ieeexplore.ieee.org/abstract/document/9441467
https://doi.org/10.1186/s13635-020-00113-y
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+technique+to+prevent+SQL+injection+and+cross-site+scripting+attacks+using+Knuth-Morris-Pratt+string+match+algorithm&btnG=
https://link.springer.com/article/10.1186/s13635-020-00113-y
https://doi.org/10.1109/RTEICT.2017.8256687
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+effective+method+for+preventing+SQL+injection+attack+and+session+hijacking%2C%E2%80%9D+I&btnG=
https://ieeexplore.ieee.org/abstract/document/8256687
https://doi.org/10.1109/ICACCCT.2016.7831710
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=SQL+injection+avoidance+for+protected+database+with+ASCII+using+SNORT+and+honeypot%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/7831710
https://doi.org/10.11648/j.ajnc.s.2015040301.13
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+adaptive+algorithm+to+prevent+SQL+injection%2C&btnG=
https://www.sciencepublishinggroup.com/journal/paperinfo?journalid=132&doi=10.11648/j.ajnc.s.2015040301.13
https://doi.org/10.1109/ISCAIE.2014.7010210
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+and+implementation+of+SQL+injection+prevention+method+based+on+ISR%2C%E2%80%9D+&btnG=
https://ieeexplore.ieee.org/abstract/document/7924885
https://doi.org/10.1109/ISCAIE.2014.7010210
https://scholar.google.com/scholar?cluster=9728093461898857327&hl=en&as_sdt=0,5&authuser=1
https://ieeexplore.ieee.org/abstract/document/7010210

Shekhar Disawal & Ugrasen Suman / IJETT, 71(8), 216-224, 2023

224

[24] Ahmad Ghafarian, “A Hybrid Method for Detection and Prevention of SQL Injection Attacks,” IEEE Computing Conference, pp.

833–838, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[25] Nilesh Yadav, and Narendra Shekokar, "SQLI Detection Based on LDA Topic Model," International Journal of Engineering

Trends and Technology, vol. 69, no. 11, pp. 47-52, 2021. [CrossRef] [Publisher Link]

[26] M. Amutha Prabakar, M. Karthikeyan, K. Marimuthu, “An Efficient Technique for Preventing SQL Injection Attack Using Pattern

Matching Algorithm,” IEEE International Conference on Emerging Trends in Computing, Communication and Nanotechnology,

pp. 503–506, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[27] Debasish Das, Utpal Sharma, and D.K. Bhattacharyya, “An Approach to Detection of SQL Injection Vulnerabilities Based on

Dynamic Query Matching,” International Journal of Computer Applications, vol. 1, no. 25, pp. 28-34, 2010. [CrossRef] [Google

Scholar] [Publisher Link]

[28] Mukesh Kumar Gupta, Mahesh Chand Govil, and Girdhari Singh, “A Context-Sensitive Approach for Precise Detection of Cross-

Site Scripting Vulnerabilities,” International Conference on Innovations in Information Technology (IIT), pp. 7-12, 2014.

[CrossRef] [Google Scholar] [Publisher Link]

[29] Ashwin Ramesh, Anirban Bhowmick, and Anand Vardhan Lal et al., “An Authentication Mechanism to Prevent SQL Injection by

Syntactic Analysis,” International Conference on Trends in Automation, Communications and Computing Technology (I-TACT-

15), pp. 1–6, 2015. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/SAI.2017.8252192
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+method+for+detection+and+prevention+of+SQL+injection+attacks%2C+IEEE+Comput+Conference%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/abstract/document/8252192
https://doi.org/10.14445/22315381/IJETT-V69I11P206
https://ijettjournal.org/archive/ijett-v69i11p206
https://doi.org/10.1109/ICE-CCN.2013.6528551
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+efficient+technique+for+preventing+SQL+injection+attack+using+pattern+matching+algorithm%2C%E2%80%9D&btnG=
https://ieeexplore.ieee.org/abstract/document/6528551
https://doi.org/10.5120/462-766
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Approach+to+Detection+of+SQL+Injection+Vulnerabilities+Based+on+Dynamic+Query+Matching%2C%E2%80%9D&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Approach+to+Detection+of+SQL+Injection+Vulnerabilities+Based+on+Dynamic+Query+Matching%2C%E2%80%9D&btnG=
https://www.ijcaonline.org/archives/volume1/number25/462-766
https://doi.org/10.1109/INNOVATIONS.2014.6987553
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Context-Sensitive+Approach+for+Precise+Detection+of+Cross-Site+Scripting+Vulnerabilities%E2%80%9D&btnG=
https://ieeexplore.ieee.org/abstract/document/6987553
https://doi.org/10.1109/ITACT.2015.7492650
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+authentication+mechanism+to+prevent+SQL+injection+by+syntactic+analysis%2C%E2%80%9D+International+conference+on+trends+in+automation%2C+communications+and+Computing+Technology+%28I-TACT-15%29%2C+&btnG=
https://ieeexplore.ieee.org/abstract/document/7492650

