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Abstract - Mild Cognitive Impairment (MCI) is known to be a condition in older adults presenting cognitive impairment 

symptoms in the absence of functional impairment. This could be a transitional stage to developing Alzheimer’s disease (AD), 

but it does not always lead to AD. Early detection of MCI symptoms is vital in determining personalized interventions to slow 

down the MCI progression. This study proposes a survival analysis approach based on deep learning techniques to predict the 

probability of an individual transitioning from a cognitively healthy stage to MCI at a given time point by utilizing activity data 

captured through unobtrusive sensors by continuously monitoring the older adults’ daily routines. The performance of the 

proposed models, Neural Multi-Task Logistic Regression and Non-Linear Cox, in predicting the probability of time-to-transition 

are examined and compared against the Standard Cox PH model. The two well-known metrics, Concordance Index (CI) and 

Integrated Brier Score (IBS), are used to evaluate the model performance. Additionally, the features are ranked based on the 

model-learned weights and results are interpreted. Deep learning-based models perform better than the standard Cox PH model, 

with the best average CI of 0.714 and IBS of 0.119. The results suggest that the proposed models can accommodate the nonlinear 

elements from the data and account for the fact that the rate of progression of two individuals will vary with time. Feature 

ranking reveals the age and years of education to be in the top 5, in addition to features from sleep and mobility domains which 

are clinically meaningful. This study demonstrates that a practical, less expensive, and non-invasive way of observing older 

adults’ activity routines coupled with computing advancements such as deep learning techniques offer phenomenal opportunities 

for early detection of MCI transition. 

Keywords - Activities of daily living, Alzheimer’s disease, Deep learning, Mild cognitive impairment, Time-to-event prediction, 

Unobtrusive sensor.  

1. Introduction 
Mild cognitive impairment (MCI) is known to be a 

condition in older adults presenting the symptoms of cognitive 

impairment in the absence of functional impairment. MCI 

could be a transitional stage to developing Alzheimer’s 

disease (AD), but it does not always lead to the AD stage. 

Besides impacting the physical and psychological health of 

individuals, the AD condition has a profound impact on the 

social/economic aspects of not just the individuals with this 

condition but society at large. Therefore, detecting the 

symptoms of the MCI condition, a prodromal stage is 

important as early as possible. Several studies [1, 2] reported 

the association between this cognitive decline and activities of 

daily living (ADLs)/daily routines. Conventional assessment 

methods/tools (e.g., self-reporting, informant reporting 

questionnaires) are not designed to observe the subtle intra-

individual changes known to occur over time when older 

adults perform cognitively mediated activities.[3] This 

informs the need for a mechanism that is more practical, less 

expensive and non-invasive to continuously observe daily 

routines and provide reliable indications for subtle yet 

meaningful changes. Technology advancements such as 

wireless sensors and data analytics can now be adopted in 

continuous monitoring and realize an ecologically valid 

assessment mechanism for their real-world 

cognitive/functional changes.[4]  

 

Since AD is degenerative in nature, it is important to 

understand the disease trajectory associated with this 

degeneration through disease progression modeling methods 

and plan for individualized interventions. The ‘time-to-event’ 

modeling with survival analysis is one such disease 

progression modeling approach which predicts the probability 

https://www.internationaljournalssrg.org/
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that an event of interest happens at a particular time. Early 

detection of the transition to the MCI stage (the event of 

interest in the context of this study) is crucial in older adults, 

and time-to-event modeling can be adopted to understand this 

transition process and estimate the probability of transition 

occurring at a given time.[5]  

 

Two well-known classical models are the Kaplan-Meier 

model (KM) and Cox proportional hazard model (Cox PH). 

KM is a popular univariate method and computes the survival 

probability at the population level, not at the individual subject 

level. The Cox PH model computes the survival probability at 

the individual subject level while describing a linear 

relationship between survival distribution and the subject’s 

covariates/risk factors.[6] The main drawback of this method 

is the assumption that the rate at which the event of interest 

occurs for any two subjects must be constant over time. 

 

Therefore, modeling the individualized progression to 

MCI does not find KM and Cox PH methods a good fit and 

rather requires methods that can accommodate the nonlinear 

elements from the data and account for the fact that the rate of 

progression of two individuals will vary with time. The state-

of-the-art deep learning techniques are found to address these 

requirements. 

2. Related Works – “Deep Learning-Based 

Survival Analysis” to Model AD Progression 
Sharma et al. [7] simulated the disease progression based 

on patient profiles through deep neural networks-based 

survival methods while utilizing the National Alzheimer’s 

Coordinating Center (NACC) supplied dataset. Nakagawa et 

al. [8] examined if it was feasible with deep survival analysis 

to predict the transition of cognitively normal subjects and 

MCI subjects to the AD stage by leveraging brain magnetic 

resonance imaging (MRI) data found in the Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) database.  

Mirabnahrazam et al. [9] also utilized the ADNI dataset 

and examined the influence of numerous features/factors 

derived from multiple data modalities (e.g., MRI, genetic 

assessments, Cerebrospinal Fluid) on the disease progression. 

Wu et al. [10] devised an approach using deep learning 

techniques to estimate the probabilities of time to conversion 

by leveraging multiple visit details obtained from the NACC 

database. All these studies demonstrated that the survival 

analysis based on state-of-the-art deep learning could 

outperform the standard Cox PH method. However, each of 

these studies utilized the dataset corresponding to point-in-

time assessments/ evaluations comprising of either of the 

below or a combination:  

• Subject demographics, medical history, 

cognitive/behavioral/functional scores etc., were 

collected through self-reporting, informant reporting 

questionnaires and clinical assessments (e.g., NACC 

dataset). 

• Neuroimaging, genetics, other biomarkers etc. (e.g., 

ADNI dataset). 

 

There are certain shortcomings observed with the above-

said datasets. Firstly, point-in-time assessments consume lots 

of time and may not necessarily observe intra-individual 

changes effectively. Secondly, the questionnaire-based 

assessments could not produce objective results. Thirdly, 

datasets of imaging and biospecimen modalities involve high 

costs and are invasive in nature. To address these 

shortcomings, there is a continued need to identify daily 

activities-based markers that are “clinically relevant, non-

invasive, cost-effective, and scalable” to reach the growing 

population of older adults. [11] 

 

3. Research Questions and Contributions 
In exploring to address the above-mentioned problem, 

this study seeks answers to the following questions: 

• How well do the activity measures computed from 

non-wearable sensors aid in predicting the 

probability of time-to-transition (from cognitively 

healthy stage to MCI)?  

• Can a deep learning-based survival analysis 

approach consider nonlinear elements in the complex 

activity patterns for the predictions? 

• How well is the individualized distribution of 

survival probability over time estimated using the 

activity measures as risk variables? 

 

3.1. Hypothesis 

The activity data captured through continuous monitoring 

of older adults’ daily activities via non-wearable sensors 

(gathered from a longitudinal study) provide sufficient 

information to detect the probability of time-to-transition. 

3.2. Key Contributions from this Study can be Described as 

follows: 

• Leveraging activity data captured via unobtrusive 

sensors in survival modeling for MCI 

transition/progression. 

• Non-linear dependencies among the features – 

modelled effectively through deep learning 

techniques and demonstrated improved prediction 

performance over the traditional linear modeling 

techniques. 

 

In this study, the survival models based on two deep 

learning techniques, namely Neural Multi-Task Logistic 

Regression (N-MTLR), Non-Linear Cox (NL Cox), were 

developed and compared against the traditional survival Cox 

PH in predicting the probability of time-to-conversion from 

cognitively healthy stage to MCI.
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Fig. 1 Schematic of the complete survival analysis workflow adopted in this study 

 

Table 1. Demographic details of subjects in study 

Demographic Variable 
Male; 

Count =11 

Female; 

Count =46 

Baseline Age - years, 

mean (SD) 
83.35 (7.5) 82.5 (8.0) 

Years of Schooling, 

mean (SD) 
16.8 (2.1) 15.3 (2.28) 

Mean elapsed duration 

of sensor monitoring – 

months 

32.8 30.1 

MMSE Score at the 

start, mean (SD) 
28.72 (1.42) 29.17 (0.95) 

 

4. Materials and Methods 
This study examines the use of older adults’ activity 

patterns/trends observed via longitudinal monitoring in 

predicting the stage at which the disease has progressed, 

specifically, transition to MCI by leveraging survival 

modeling techniques. Observations from the intra-individual 

functional/ behavioral changes (including the minute changes) 

occurring over time provide invaluable information regarding 

the transition points that older adults might be approaching. 

Figure 1 depicts the schematic of the survival analysis 

workflow, which includes cleaning activity data derived from 

sensor raw data, assigning appropriate cognitive stage labels, 

event variables and activity features consolidation, modeling, 

and evaluation. 

 

4.1.  Data Collection, Analysis & Pre-processing 

The “Oregon Center for Aging and Technology” 

(“ORCATECH”) is a research institute, part of “Oregon 

Health & Science University” (OHSU), USA [4], that 

supplied the dataset required for this study. As part of a 

“longitudinal community cohort study”, ORCATECH 

deployed a home-based activity assessment platform at 

hundreds of senior homes, and this platform included several 

non-wearable sensors to monitor and capture daily activity 

patterns continuously.  

 

Passive infrared (PIR) motion sensors, Wireless contact 

switches, and Sleep mats were those non-wearable sensors, to 

name a few. Activity data captured typically correspond to 

physical mobility, sleep, room transitions, out-of-home visits 

etc. All subjects gave written informed consent prior to 

participating in study activities. 

 

• Continuously 

monitored activity data 

from sensors 

• Right censored data 

Input 

• Subjects selection 

• Duplicate data removal 

• Impute missing values of 
activity measures 

Data Pre 

Processing 

• Ground truth labeling of 

activity data based on 

clinical 
assessment/neuropsycholo

gical assessment scores 

Data Labeling 

• Aggregate the granular (day-

level) 
    activity data 

• Derive variables such as 

• Time to the event (time to  

     transition to MCI) 

• Event Indicator 

• Other covariate variables 

Survival Event 

Determination 

 

Model based Analysis 

N-MTLR 

NL COX PH 

Standard 

COX PH 

Deep Learning Models 

Baseline Model 
Compar

ison 

 

 

 

Performance Evaluation 

Concordance Index 

Integrated Brier 
Score 

Individual 

Progression Rate 
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Fig. 2 Labeling the cognitive stages throughout the subject’s activity timeline 

 

The OHSU’s Institutional Review Board (IRB #2353) 

had approved the necessary research protocol followed in 

ORCATECH’ study.  

 

Besides sensor-based monitoring, annual clinical 

assessments of study subjects were done by qualified health 

professionals. Annual clinical assessment data typically 

included demographics, functional assessments, health 

assessments, and neuropsychological test scores. Inclusion 

criteria for the study subjects were the age being 70 years and 

above (at the time of onboarding), cognitively healthy 

(indicated by “Clinical Dementia Rating – CDR” less than 0.5; 

Score of “Mini-Mental State Examination – MSME” more 

than 24) and health condition relevant to age. For further 

details on in-home sensor arrangements, participants’ 

recruitment criteria and clinical assessments, readers can refer 

to [4]. 

 

Activity data supplied by ORCATECH contained the 

daily activity measures (per subject) derived from raw sensor 

signals. ORCATECH applied various proprietary algorithms 

on raw sensor signals data and derived these measures (e.g., 

walking speed, number of walks, sleep duration). Out of the 

total 125,119 records of day-level sensor data supplied, 51,505 

number of records were finalized after pre-processing (e.g., 

linking sensor data to clinical assessment data and removing 

duplicate/invalid records). This final dataset taken for analysis 

corresponds to a total of 57 subjects, and Table 1 shows the 

demographics of these subjects. 

 

4.2.  Data Labeling for Cognitive Stage Shift 

This study leveraged the neuropsychological test scores 

to assign labels to activity data. These labels indicate the 

subject's ‘cognitive stage’ at a particular time. Petersen criteria 

[12] were adopted for diagnostic labeling to derive point-in-

time labels in every subject’s activity timeline, such as, ‘CH’ 

(“Cognitively Healthy”), ‘MCI’ (“Mild Cognitive 

Impairment”) and ‘SI’ (“Severely Impaired"). Since the 

transition to MCI is not a sudden event but rather a gradual 

process, this study introduced a label/stage called 

‘Transitioning’ (TR) and assigned it to all activity data that fall 

between stages ‘CH’ and ‘MCI’ when a subject experienced 

this transition.  

Figure 2 illustrates the example scenarios in this labeling 

approach. For further granular details of data labeling, refer to 

the previous work. [13]

  

Baseline assessment 
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“CH” 

1
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 year assessment 
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Activity data (sensor) 
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Label for activity data 

segments 

“TR” “MCI” 

Baseline assessment 

point - Label CH 

“TR” 

1
st

 year assessment 

point- Label MCI 

Activity data (sensor) 

2
nd

 year assessment 

point- Label MCI 

3
rd

 year assessment 

point- Label SI 

Activity data (sensor) Activity data (sensor) 

Label for activity data 

segments 

“MCI” “SI” 



Rajaram Narasimhan et al. / IJETT, 71(8), 356-366, 2023 

 

360 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 3 Events and censorship in survival data 
 
Table 2. Input data construct for survival modeling 

X
1
 X

2
 … X

n
 Event 

indicator 

Event 

Duration 

(months) 

34 80 … 0 1 800 

… … … … … … 

67 120 … 1 0 1400 

 

4.3. Methodology to Determine Event Occurrence, Event 

Duration and Model Input Dataset 

For this survival analysis, the focus would be on the event 

of some subject getting into the ‘TR’ stage (the pre-cursor to 

MCI). Two variables, ‘Event Indicator’ (Boolean) and ‘Event 

Duration’, were introduced to facilitate the survival analysis. 

Event indicator = 1 if the subject transitioned; otherwise, event 

indicator = 0. Event duration is calculated as the elapsed 

duration between the start date of the activity monitoring and 

the date when the subject transitioned (CH to TR). For right-

censored subjects (remained at CH; event indicator =0), event 

duration is the elapsed duration between the start of the 

monitoring and the last day of monitoring, as found in the 

dataset supplied. Figure 3 illustrates the events and censorship 

in survival data. 

 

Day-level activity measures or observations (Xi) data for 

the identified subjects were aggregated to arrive at one record 

per subject, and this would serve as the input for modeling. 

Table 2 depicts the input data construct (derived based on the 

approach described above) used for survival analysis and 

modeling in this study. 

 

4.4. Model Training and Evaluation Approach 

As mentioned previously, this study adopted two deep 

learning-based models, N-MTLR and NL Cox and compared 

them against the standard Cox PH model. NL Cox method, 

popularized by Katzman et al. [14], is an extension of the Std 

Cox PH technique, whereas N-MTLR, developed by Fotso 

[5], uses a deep learning framework via a multi-layer 

perceptron (MLP) and does not rely on any Cox PH 

assumptions. 

4.4.1. Features used in Modeling 

In addition to the subjects’ gender and years of education, 

several activity measures (derived from raw data streams 

obtained from continuous in-home monitoring) were used as 

features for training the survival analysis models (Table 3).  
 

Table 3. List of features used in this study, along with the 

cognitive/behavioral domain 

Cognitive/ 

Behavioral 

Domain 

Features used in modeling 

Demographics 

• Age (at baseline/start of the 

monitoring) 

• Gender 

• Years of education 

Physical 

Mobility 

• Dwell time in bathroom area in 

seconds 

• Dwell time in bedroom area in 

seconds 

• Dwell time in living room area in 

seconds 

Social 

Engagement / 

Time Out of 

Home 

• Out of home number of instances 

• Out of home total time seconds 

Sleep Night 

Time Behavior 

• Sleep in living room in seconds 

• Number of trips out of the 

bedroom (sleep time) 

• Sleep time total in seconds 

• Wake after sleep onset (WASO) 

in seconds 

Physical 

Mobility 

• Walking speed variability 

• Walking speed (cm/second) 

• Number of captured walks 

Event Variables 
• Event Indicator 

• Event Duration 

 

Observation/monitoring window Outside of monitoring window 

Subject 1 

Subject 2 

Subject 3 

Subject 4 

Event 

Event 

Right censored 

Right censored 

t0 t1 t2 t3 t4 t5 
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Table 4. Hyperparameters configuration for deep learning neural 

networks 

Parameter N-MTLR NL Cox PH 

Hidden layers 4 4 

Neurons (units) in each layer 100 100 

Activation function ReLU ReLU 

Optimizer function adam adam 

Learning Rate 0.002 0.002 

Epoch count 1000 1000 

Dropout rate in each layer 0.2 0.2 

 

4.4.2. Modeling Scenarios and Machine Learning Set Up 

Several models were built based on various feature 

combinations and hyperparameters, evaluated, and compared 

against each other’s performance. Table 4 provides the 

hyperparameter details of neural networks (N-MTLR & NL 

Cox) adopted in the experiments. 

 

For the standard Cox PH model, the setting up of the 

parameters included the learning rate of 0.002, maximum 

iterations of 1000, 0.95 as the confidence level (alpha) and 

0.001 as tolerance for stopping criteria. 

 

This study selected three feature combination scenarios 

and built models for each of these scenarios leveraging the 

three survival techniques described above.  

• All features scenario (all the features listed in Table 3).  

• Walk features only (Walking related + age, gender, and 

years of education).  

• Sleep features only (Sleep-related + age, gender, and 

years of education) 

 

To implement the models for all three techniques, this 

study utilized the open-source Python package “PySurvival.” 

[15] 

 

4.4.3. Model Training & Testing Approach 

A random split of 0.8:0.2 ratio was applied to create 

training and test data. In the experiments, while training and 

testing each model, the study performed 10 different random 

splits of data and repeated the runs for 5 times.  The average 

over these repeated runs was computed, and results were 

reported. To account for uncertainties, 95% confidence 

intervals for each model performance metric were computed 

with a few hundred bootstrapped samples. 

 

4.4.4. Model Performance Metrics 

This study leveraged two standard metrics to assess the 

performance of the ‘Cognitively healthy’ stage to ‘MCI’ stage 

transition prediction:  

• Concordance Index (CI) [16] is the commonly used 

discriminative index to assess the survival models' 

predictive power, assuming that a subject who did not 

experience the event should have received a lower risk 

score than subjects who experienced the event. The value 

of CI lies between 0 and 1; A larger CI value indicates a 

better performance of the survival prediction model.  

• Integrated Brier Score (IBS) [17] is an extension of the 

Brier score. Brier score provides the accuracy of predicted 

survival probability with respect to actual survival status 

at a given time point. IBS is the calculation of 

accuracy/performance at all available times. A smaller 

value of IBS indicates a better performance.  

To determine the differences in predictions obtained from 

various models are statistically significant, Wilcoxon Signed-

Rank Test was adopted. (Statistical significance was set at p < 

0.05). 

 

5. Results and Discussion 
This study developed deep learning-based non-linear 

survival models, and the survival probability predictions 

obtained from these models provide insights into the 

individual’s rate of degeneration, in other words, transition to 

the MCI stage. 

 
Fig. 4 CI results distribution for various modeling scenarios  

 

Table 5. C-index as the performance evaluation metric. Within 

parenthesis are the 95% bootstrapped confidence intervals. 

Model Scenario N-MTLR NL-Cox 

PH 
Std. 

Cox PH 

All Features 
(Sleep, Walk, Out of 

Home, Dwell) 

0.693
a

 (0.5-

0.85) 

0.662 

(0.5-0.88) 

0.640 

(0.51 -

0.88) 

Sleep alone 
 

0.714
a

 (0.5-

0.82) 

0.667 

(0.5-0.80) 

0.625 

(0.5-

0.86) 

Walk alone 
 

0.701
a

 (0.5-

0.92) 
0.692

a

 

(0.51-0.76) 

0.661 

(0.5-

0.83) 
Average value from 5 repeated runs of 10 different random splits; bold values 
indicate the best performance. 
a Statistically significant performance improvement as compared to baseline 

technique - Std. Cox (Wilcoxon test, p < 0.05) 

 

Prediction performances in terms of CI of various models 

are presented in Table 5. The distribution of CI metrics from 

various runs is shown in Figure 4. The models built using deep 

learning techniques performed better than the baseline Cox PH 

method and showed a good improvement in predicting the 

probability of transition to MCI within a given period. 

Specifically, the N-MTLR model, when it included sleep 



Rajaram Narasimhan et al. / IJETT, 71(8), 356-366, 2023 

 

362 

features alone, outperformed and resulted in a CI value of 

0.714 (the best average value). Overall, all the model scenarios 

built on the N-MTLR technique demonstrated the best 

prediction performance compared to other techniques in terms 

of CI. 

Fig 5 IBS results distribution for various modeling  

Table 6. IBS as the performance evaluation metric. within parenthesis 

are the 95% bootstrapped confidence intervals 

Model Scenario N-MTLR 
NL-Cox 

PH 
Std. 

Cox PH 

All Features (Sleep, 

Walk, Out of Home, 

Dwell) 

0.119
a

 

(0.08-0.23) 

0.122
a

 

(0.06-

0.26) 

0.203 

(0.1-

0.42) 

Sleep alone  
0.138

a

 

(0.08-0.28) 

0.126
a

 

(0.05-

0.24) 

0.088 

(0.04-

0.28) 

Walk alone  
0.150

a

 

(0.1-0.3) 

0.116
a

 

(0.04-

0.23) 

0.075 

(0.05-

0.24) 

Average value from 5 repeated runs of 10 different random splits; bold values 

indicate the best performance. 
a Statistically significant performance improvement as compared to baseline 

technique - Std. Cox (Wilcoxon test, p < 0.05) 

The relatively poor performance of the standard Cox PH 

method can be attributed to its drawback of the proportional 

hazard assumption, which specifies that the rate at which an 

event of interest occurs for any subject must be constant over 

time. In reality, it is known that not only the rate of decline 

varies from one individual to another (inter-individual) but 

also the rate of decline for an individual (intra-individual) can 

also vary over time. The CI results from this study suggest that 

the deep learning models had learnt these nuances from the 

activity pattern data while estimating the risk scores and were 

able to overcome the above-said drawback of the standard Cox 

PH method.  In general, it is known that the complex nature of 

older adults’ activity/ daily routines does not appear to exhibit 

a straightforward/linear relation to their cognitive changes 

over time but rather a non-linear association. Therefore, these 

results suggest that the proposed deep learning models are able 

to capture the nonlinear elements in the activity patterns, learn 

their nuances and provide a better prediction for time-to-

transition.  

 

As discussed previously, CI measures the quality of the 

risk prediction model, and these CI results suggest that the 

proposed N-MTLR approach can produce a high number of 

concordant pairs indicating that the predicted higher risks 

correspond to an effectively shorter transition time compared 

to lower risks. 

  

From the results of IBS (Table 6 and Figure 5), the 

baseline method might appear to perform slightly better than 

the deep learning-based models (because of lower values). 

The underlying calculation of the Brier score is associated 

with the probability estimation of the event occurrence. The 

disease prevalence among the population under study (the a 

priori probability) has, in fact, an influence on the Brier score 

calculation. [18] 

 

In the study dataset, since most subjects did not 

experience the event (i.e., the lower prevalence of the MCI 

transition cases), the brier scores from the baseline technique 

could appear more specific than sensitive, resulting in 

comparatively lower values. Typically, as the harms of 

missing to detect the MCI transition far outweigh the harms of 

unnecessary interventions, one would favour the test with a 

higher sensitivity. Nevertheless, it is quite important to 

validate and understand the performance of the proposed deep 

learning-based survival techniques in a cohort with a higher 

prevalence of MCI transitions. 

 

To facilitate the interpretation of prediction results 

obtained from the proposed deep learning models, the study 

did the ranking of features used by the model. The learned 

weight matrix by deep learning techniques was leveraged, and 

the L2 norms of this matrix were computed. Based on L2 

norms, this study scored the important features and 

determined the top 5 features in each scenario, as shown in 

Table 7. 

 

Results from the feature ranking aid in making the 

following observations and interpretations: 

• Overall, across most scenarios, “Age” (age of the subjects 

at the baseline) is the top most ranked feature. Age is a 

well-known key risk factor for cognitive decline, and this 

ranking result is consistent with several findings reported 

in the literature. [19, 20] 

• Another most frequently occurred demographic feature is 

“Years of education”. In the understanding of cognitive 

health, “cognitive reserve” (CR) is a crucial aspect, and 

this refers to the brain or mind’s resiliency to continue to 

function as usual, even in the presence of any brain 

damage. Several studies suggest that CR play a big role 

in protecting against age-related cognitive decline and 

identify the individual’s education as one of the key 

determinants for imparting this reserve. [21, 22]  
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• Surprisingly, the feature ‘gender’ did not appear as a top 

predictor common across all scenarios. Since most 

subjects were female in the study dataset, the models 

could not find this feature helpful in predicting the risk of 

event occurrence. 

• As seen in Table 5, the performance of the N-MTLR 

technique is statistically superior to the baseline model for 

all modeling scenarios, especially the scenario with sleep 

features alone. Associating this finding with the results in 

Table 7, one could observe that the sleep features, 

specifically total sleep time, are the most occurred 

predictor. This is in alignment with findings from several 

studies that the quality of sleep has a profound association 

with the development of cognitive decline. [24, 30]  

• Nonetheless, several studies have found that activity 

measures based on the three domains- sleep, mobility and 

social engagement- strongly associate with subsequent 

cognitive decline.  

• Blackwell et al. [25] reported that reduced sleep 

efficiency, greater nighttime wakefulness, and a 

greater number of long wake episodes (LWEPs) were 

associated with subsequent cognitive decline. 

• From the physical mobility perspective, Kaye et al. 

[26] and Dodge et al. [27] found walking speed and 

associated measures to be strong factors for 

predicting cognitive/functional well-being in older 

adults.  

• Total time/count of instances – out of home indicates 

the individual’s willingness to leave home and have 

social engagement. These features have been linked 

with numerous health outcomes, including cognitive 

decline, low emotional state etc. Petersen et al. [28] 

and Suzuki et al. [29] found an association between 

the amount of time spent outside the home and 

cognitive function. 

One of the key goals of this study is to understand the rate 

of progression towards MCI at an individual level rather than 

a population level. Towards this goal, the survival probability 

curves estimated by the proposed deep learning-based 

approaches were plotted and visually verified. These survival 

probability curves indicate the probability of an individual 

staying at the ‘cognitively healthy’ stage (i.e., rate of 

progression towards MCI). Figure 6 depicts the estimated 

survival probability curves in various modeling scenarios and 

the actual time of the event per chosen subject.  As seen in this 

figure, both techniques produced good predictions in the ‘All 

Features’ scenario. NL Cox technique appears relatively 

consistent (perhaps, robust) in probability predictions across 

all scenarios. 

In summing up all the above observations, this study finds 

the proposed deep learning-based survival analysis approach 

is very promising in leveraging older adults’ activity 

patterns/trends and predicting the probabilistic time-to-MCI 

transition personalized at the individual level. Feature ranking 

of these proposed approaches could help explain the 

prediction results very well. Age being the top most 

predictor/feature is inconsistent with findings by several 

studies. Besides age, Other top-ranked features from this study 

have been proven to be clinically and functionally meaningful 

in understanding older adults’ cognitive health, specifically 

cognitive decline. 

 
Table 7.  Feature ranking: Based on the learned weight matrix by N-

MTLR and Non-Linear Cox techniques, the Top 5 ranking of features 

was done based on L2 norms calculated for the first layer weight 

matrix, and this ranking would help interpret the prediction results 

Model 

Scenario 
N-MTLR NL Cox PH 

All 

Features 

(Sleep, 

Walk, Out 

of Home, 

Dwell) 

• Sleep time 

total 
• Walking 

speed 

variability 
• Out of home 

number of 

instances 
• Years of 

education 
• Age 

• Out of home total 

time 
• Sleep-wake after 

sleep onset 
• Number of trips 

out of the 

bedroom (sleep 

time) 
• Dwell time 

bathroom area 
• Dwell time 

bedroom area 

Sleep 

alone 

• Sleep time 

total 
• Sleep time in 

the living 

room  
• Number of 

trips out of the 

bedroom 

(sleep time) 
• Years of 

education 
• Age 

• Sleep time in the 

living room 
• Number of trips 

out of the 

bedroom (sleep 

time) 
• Sleep-wake after 

sleep onset 
• Sleep time total 
• Age 

Walk 

alone 

• Walking 

speed Number 

of captured 

walks 
• Walking 

speed 

variability 
• Gender 
• Age 

• Walking speed 

variability 
• Walking speed 
• Number of 

captured walks 
• Years of 

education 
• Age 

5.1. Limitations 

There are certain known limitations associated with the 

dataset utilized for this study and described below: 

• There has been a bit of imbalance in the dataset in terms 

of the number of study participants who experienced the 

event/transition, and the ratio is approximately 0.82:0.18 

(non-event vs event cases).  
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Fig. 6 Visualization of Survival Plots for 4 randomly chosen subjects in various modeling scenarios. X-axis indicates the time in days (baseline 

time is the origin). Y-axis indicates the probability of remaining intact in the Cognitively Healthy stage. The actual time of the transition 

event is shown as vertical dotted lines. 

 

• In the cohort considered for this study, the majority of the 

participants were female, and this dataset could exhibit an 

imbalanced gender mix.  

• Approximately 80% of the study cohort had years of 

education of 14 and above. This could indicate a highly 

educated cohort and might have had an implication on an 

individual’s cognitive abilities. 

 

To some extent, these limitations reduce the 

generalizability of the study findings to a more diverse 
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population. Hence, future studies need to focus on a larger 

dataset representing heterogeneity among the subjects in terms 

of demographic, socioeconomic, and MCI incidence 

parameters. 

6. Conclusion  
 This study leveraged the activity data captured through 

in-home, continuous monitoring of older adults’ daily 

activities via non-wearable sensors. As opposed to 

conventional point-in-time assessments, activity measures 

derived from this continuously obtained data stream help 

identify subtle intra-individual functional changes over time 

and improve the prediction for cognitive stage shift. This study 

demonstrates that state-of-the-art deep learning techniques 

combined with a survival analysis approach can predict 

individualized trajectories associated with this cognitive shift. 

This is crucial for healthcare professionals in determining 

personalized interventions well in advance, delaying the 

progression and thus ensuring older adults’ independence and 

quality of life. 
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