
International Journal of Engineering Trends and Technology Volume 71 Issue 9, 36-45, September 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I9P204 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Adaptive Load Balancing using Particle Swarm

Optimization for Cloud Task Scheduling

Chaitanya Udatha1, Gondi Lakshmeeswari2

1,2Department of Computer Science and Engineering, GITAM (Deemed to be University), Andhra Pradesh, India.

1Corresponding Author : chaitanyasreeram15@gmail.com

Received: 20 May 2023 Revised: 29 July 2023 Accepted: 15 August 2023 Published: 03 September 2023

Abstract - With cutting-edge services available via subscription, the usage of cloud technology is rapidly increasing in daily

life using advanced services. Efficient management of services and delivering them on demand require proper scheduling of

resources and requests. Load balancing aware scheduling techniques are employed to accomplish this, which distribute

requests uniformly among resources and optimize resource utilization. In cloud computing, load balancers are essential for

balancing workloads on resources. They ensure even workload distribution across all resources by transferring workloads

from overloaded to underloaded resources. The proposed Load Balancing Improved Multi-Objective Particle Swarm

Optimization (LBIMOPSO) technique aims to manage load uniformly and allocate tasks to the best-suited virtual machines.

It is a robust optimization technique that considers multiple objective functions simultaneously and effectively balances

workloads in a cloud computing environment. However, according to an existing survey, there is an improvement in

makespan performance compared to proper load balancing across virtual machines. Therefore, the proposed LBIMOPSO

algorithm improves resource utilization, makespan, and load balance deviation compared to traditional swarm-intelligence-

based ant colony and particle swarm optimization algorithms.

Keywords - Cloud computing, Improved particle swarm optimization, Load balance deviation, Makespan, Resource

utilization.

1. Introduction
In the present era, the cloud plays a pivotal role in

academics, businesses, and industries—the cloud pools

resources from data centers in various regions worldwide [1].

The resources, including high-performance computing

elements with storage, networking devices, databases,

development environments, and applications, are provided as

three essential cloud services: infrastructure, platform, and

software. Through the cloud environment, users can leverage

computing resources, comprising software applications, data

storage, and processing power, provided as a service through

the internet. A third-party provider typically maintains and

manages the cloud infrastructure, enabling customers to

increase or decrease their resources per their requirements.

The essential characteristic of the cloud environment is its

virtual nature. The Cloud Service Provider (CSP) delivers

services on a subscription basis to the cloud users. Properly

managing cloud services is a crucial task for CSPs, leading to

increased attention towards proper scheduling and managing

load to harness the beneficial features of cloud computing

fully. The scheduling of tasks involves selecting the

appropriate Virtual Machine (VM) for execution while

meeting quality of service constraints, such as energy

consumption, response time, resource utilization, and

makespan, while adhering to service level agreements [2,3].

The performance of the cloud is enhanced via load balancing,

leading to satisfaction for the cloud end user and provider, as

it generates economic benefits for both parties. The research

gap in cloud computing lies in effectively integrating and

synchronizing task scheduling and load balancing, two vital

aspects of cloud resource management. Although closely

related, they represent distinct dimensions for optimizing

cloud performance and resource utilization. A crucial area of

research is the seamless fusion of load balancing and task

scheduling algorithms. Load balancing ensures an even

workload distribution among available resources to avoid

bottlenecks and overloading. At the same time, task

scheduling focuses on efficiently assigning tasks to resources

for optimal completion time and resource usage. Integrating

these aspects can lead to a more comprehensive approach,

considering both workload distribution and task assignment,

ultimately enhancing overall performance.

Servers, applications, and networks can perform load

balancing at different levels based on the types and locations

of resources being managed [4]. When a user submits a task,

the task requires computational resources to execute the

request. However, before mapping the task to a VM, the load
is divided uniformly across the VMs. The classification of

task allocation to VMs into two levels.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:chaitanyasreeram15@gmail.com

Chaitanya Udatha & Gondi Lakshmeeswari / IJETT, 71(9), 36-45, 2023

37

Fig. 1 Load balancing based task scheduling model

The primary level involves assigning tasks to VMs on

different host machines based on their load. The HDDB

technique distributes VMs to the most appropriate hosts

based on membership and CPU usage value [5]. In this

approach, VMs migrated from one host to another. The next

level of load balancing occurs within a host among VMs, i.e.,

tasks are scheduled to suitable virtual machines depending on

the VM load, and tasks move from heavily loaded VMs to

underloaded ones. The proposed algorithm falls under the

second level but without migrating tasks from overloaded to

underloaded resources while balancing the tasks on each VM

during the scheduling process. Task-level load balancing

typically has a lower overhead than VM-level load balancing

because it does not require creating and managing additional

VMs. Task-level load balancing can optimize the utilization

of resources by allocating only the necessary resources to

each task. In contrast, VM-level load balancing may result in

overprovisioning or under-provisioning of requests for each

VM.

The significant contribution of the proposed research

work is as follows:

• Tasks are heterogeneous, independent, and non-

preemptive. The sequential scheduling technique

executes tasks on the same VM when multiple tasks are

assigned.

• The proposed load balancing aware scheduling using the

improved PSO algorithm for heterogeneous cloud

environments to address multi-objective optimization,

i.e., maximum resource utilization and minimization of

makespan and load balance deviation.

• The probability-based fitness function was incorporated

into the individual influence component to attain the

optimal global solution.

• The LBIMOPSO algorithm's effectiveness is evaluated

compared to conventional ACO and PSO algorithms.

The remaining part of this paper is organized into four

sections as follows:

Section II represents a survey on scheduling and load-

balancing strategies and discusses a load-balancing-based

scheduling environment. Section III explains the problem

formulation and parameter estimation of the proposed

LBIMOPSO approach. Section IV presents the simulation

results of the proposed LBIMOPSO algorithm to the

traditional swarm intelligence-based ant colony and particle

swarm optimization algorithms using the cloudSim

framework. Finally, Section V concludes the proposed work

and future direction improvements.

2. Related Work and Background
In cloud environments, a wide range of static and

dynamic algorithms have been proposed by researchers;

these algorithms utilize various techniques such as heuristics,

meta-heuristics, and combined approaches to ensure the

provision of high-quality service. Meta-heuristic algorithms

Chaitanya Udatha & Gondi Lakshmeeswari / IJETT, 71(9), 36-45, 2023

38

have gained popularity due to their ability to provide

solutions in large search spaces and solve complex problems

[6]. The following survey focuses on examining popular

evolutionary and swarm-intelligence algorithms.

Using the BGA algorithm, Gulbaz, Rohail, et al.

proposed to search for the best global solution in a solution

space based on genetic principles [7,8,9]. The algorithm

considers the quality-of-service parameters to achieve

Service Level Agreements (SLAs) but needs improvement

regarding task priority and dependency.

Nabi, Said, et al. used various inertia weight strategies

for PSO to improve the load balancing of tasks [10,11].

However, all task instances should have an improved

resource utilization ratio.

RATSA algorithm is a task scheduling approach using

reliability to reduce network failure rates [12]. It is a two-

level process, identifying the most utilized host and

scheduling tasks to VM on that host based on the probability

of fitness function.

Elmagzoub, M. A. et al. provide surveys on various

swarm intelligence algorithms [13]. Researchers can extend

their work on load balancing using these algorithms by

considering the pros and cons of each algorithm. The whale

optimization method uses Multiple objective fitness values to

balance the load, but only two objectives are satisfied, and

the operation cost objective needs to perform better [14,15].

An ACO (Ant Colony Optimization) with a SWIM

approach was proposed for scheduling and load balancing

[16]. This approach combines three parameters: CPU,

memory, and bandwidth utilization rate, which is considered

a load-balancing factor among virtual machines. A higher

value of load deviation indicates more imbalance in the load,

but it does not consider the makespan parameter for

comparison.

Numerous studies on scheduling strategies in cloud

computing using different meta-heuristics optimization

strategies, along with their benefits and drawbacks, are

discussed [17,18,19]. Researchers can enhance their

exploration of future research directions by carefully

considering the challenges identified in existing surveys.

Hosseinzadeh, Mehdi, et al. proposed a levy flight principle-

based BOA algorithm to improve algorithm efficiency and

avoid local optima and fast convergence problems [20].

However, it is a single-objective algorithm used for placing

data in edge computing, and it can be improved to handle

workflow scheduling with multiple objectives.

The primary mechanism of load balancing with task

scheduling is depicted in Figure. 1. The users can submit

their requests to the cloud through any heterogeneous smart

device connected to the internet. These requests are called

tasks or cloudlets in the cloud environment. The cloud broker

processes the tasks through the cloud information system to

the requested resources in the data center. The cloud broker

implements an effective scheduling algorithm to map the

requests to the resources. Load balancing with scheduling

employs a robust algorithm to uniformly allocate requests to

available resources by managing enterprise demand. It is

essential for accommodating resources on demand and

maximizing the utilization of available resources.

Load balancing is crucial for applications that need to

scale and be flexible as they grow. It prioritizes tasks that

require immediate execution and those that need more time

compared to other jobs. With balanced workloads, CSPs can

optimize cloud services for economic benefits and user

satisfaction. Load balancing aims to distribute tasks evenly

among available resources to optimize resource utilization

and reduce system response time. The task can get the

necessary resources using the proposed LBIMOPSO

algorithm; otherwise, beyond their needs results in resource

waste. Load balancing is one of the primary objectives of

task scheduling by considering a load parameter.

3. Proposed Methodology
3.1. Improved PSO Model and Description

PSO is a nature-inspired self-adaptive algorithm based

on the social behaviours of animal groups or bird flocks to

carry out a global search for food sources [21]. The bird

searching for food with the flock randomly can improve its

search, while sharing information within the group improves

its chances of survival. The benefit of sharing the best

information can aid a flock in locating the finest hunting

grounds. The PSO algorithm comprises the number of

particles and generations, where generations represent the

iterations needed to explore search space to achieve an

optimal solution. Every generation in the swarm comprises a

group of particles, each representing a specific solution. Each

generation particle possesses its unique position, traveling

velocity, personal best, global best, and inertia value. The

inertia value is used to govern particle movement. At the

same time, personal and global best represent the best

solutions locally and globally across the swarm of particles.

During each iteration, particle velocity and position are

updated based on factors such as inertia weight and the

values of pBest and gBest, which are adjusted based on the

optimal fitness value. Ҳ𝑖
(t)

denotes the position vector of

particles within a multidimensional search space while

Ʋ𝑖
(t)

representing their velocity vector.

The traditional formulas for the PSO algorithm are as

follows [22]:

Chaitanya Udatha & Gondi Lakshmeeswari / IJETT, 71(9), 36-45, 2023

39

 Ʋ𝑖
(t+1)

= 𝜔𝑖 ∗ Ʋ𝑖
(t) + 𝑐1 ∗ 𝑟1 ∗ (Ҳ𝑝𝑏𝑒𝑠𝑡𝑖

(t) − Ҳ𝑖
(t))

 +𝑐2 ∗ 𝑟2 (Ҳ𝑔𝑏𝑒𝑠𝑡𝑖
(t) − Ҳ𝑖

(t)) (1)

 Ҳ𝑖
(t+1)

= Ҳ𝑖
(t) + Ʋ𝑖

(t+1)
 (2)

PSO is popular due to algorithm simplicity and ease of

understanding, fast convergence, quick implementation, and

very few parameters, but it is easily trapped into local

optima. So, improved PSO is an ideal solution for efficiently

scheduling tasks while considering the uniform load on each

resource [23].

Fig. 2 Improved PSO algorithm

Start

Initialize PSO Parameters w, c1 and c2

Initialize Swarm Velocities and Positions

Evaluate Fitness Function for Initial Population

Update Velocity and Positions Using Eq. (3) and (4) (Move the Particles

with the New PSO Velocities)

Evaluate Fitness Function for each Particle

Update Pbest then Gbest

Is the Termination

Condition Satisfied?

Calculate new Searching Direction

Get Global Best Solution

Iter=Iter+1

Stop

No

Yes

Chaitanya Udatha & Gondi Lakshmeeswari / IJETT, 71(9), 36-45, 2023

40

The formulas for the improved PSO algorithm are as follows:

 Ʋ𝑖𝑛𝑒𝑤

(t+1)
= 𝜔𝑖 ∗ Ʋ𝑖

(t) + (1 − 𝑃𝑖) ∗ 𝑐1 ∗ 𝑟1 ∗ (Ҳ𝑝𝑏𝑒𝑠𝑡𝑖
(t) −

 Ҳ𝑖
(t)) + ∗ 𝑐2 ∗ 𝑟2 (Ҳ𝑔𝑏𝑒𝑠𝑡𝑖

(t) − Ҳ𝑖
(t)) (3)

 Ҳ𝑖𝑛𝑒𝑤

(t+1)
= Ҳ𝑖

(t) + Ʋ𝑖𝑛𝑒𝑤

(t+1) (4)

 𝜔𝑖 =
𝐼𝑡𝑒𝑟𝑚𝑎𝑥 – 𝐼𝑡𝑒𝑟𝑖

𝐼𝑡𝑒𝑟𝑚𝑎𝑥
 (5)

𝜔𝑖 indicates inertia weight decreases with the iteration

number to explore search space more efficiently.

 𝑃𝑖 =
𝐹𝑖𝑡𝑔𝑏𝑒𝑠𝑡,𝑖

∑(𝐹𝑖𝑡𝑙𝑏𝑒𝑠𝑡,𝑖)
 (6)

𝑃𝑖
 indicates the probability of global fitness to local fitness to

avoid the problem of local trap [24]. The improved PSO

algorithm is represented in the Figure. 2.

3.2. Task Scheduling Problem Description and Definitions

The term cloud represents a repository of virtual

resources; it consists of data centers located in different

regions; each data center consists of numerous hosts and, in

turn, consists of various flavors of Virtual Machines (VMs)

based on the choice of customers. These resources are

provided to the users on a subscription basis. When multiple

requests arrive at a data center, the number of resources is

always less than the user requests. The cloud broker

efficiently maps the task to a suitable resource machine to

optimize resource utilization using a scheduling algorithm.

The optimized way of distributing N requests to M resources

is an NP-hard problem.

The scheduling environment is depicted in Figure 1, and

user requests are generated from heterogeneous client devices

called tasks in the cloud environment. The cloud broker

mediates between the tasks and resources through an

information system. Cloud resources are represented as

virtual machines, and their unit is generally represented in a

Million Instructions Per Second (MIPS). Each task is

represented by a task ID and its corresponding length. All

tasks are considered independent, and every task will be

executed on only one VM.

The processing time of each task on every resource must

be determined, represented in the ET matrix, to establish the

optimal scheduling strategy for N tasks ({T1, T2, …Tn}) on

M VMs ({VM1, VM2, … VMm}).

𝐸𝑇 =

[

𝑇1

𝑉𝑀1

⋯
𝑇1

 𝑉𝑀𝑚

⋮ ⋱ ⋮
𝑇𝑛

𝑉𝑀1

⋯
𝑇𝑛

 𝑉𝑀𝑚]

The overall task execution time is calculated using

equation (7), in which 𝑇𝐿𝑒𝑛𝑖
 denotes the ith task length in MI

(million instructions) and is divided by the computing power

of jth VM.

 𝑓1 = 𝑇𝐸𝑇𝑖𝑗 = ∑
𝑇𝐿𝑒𝑛𝑖

𝑉𝑀𝑀𝐼𝑃𝑆𝑗

𝑛𝑚
𝑖𝑗 (7)

The makespan denotes the latest task completion time on

𝑃𝑇𝑉𝑀𝑖
, which represents the processing time of the VM.

 𝑓2 = 𝑀𝑎𝑘𝑒 𝑠𝑝𝑎𝑛 = 𝑚𝑎𝑥{𝑃𝑇𝑉𝑀1 , 𝑃𝑇𝑉𝑀2 , . .,

 𝑃𝑇𝑉𝑀𝑚 } (8)

Table 1. Parameters of scheduling environment

LBIMOPSO Algorithm /

Cloud Parameters

Initial Values /

Values Range

Population 50

Iterations 1000

ω 0.9

α 0.05

β 0.7

γ 0.25

c1 2.0

c2 1.49

r1, r2 [0,1]

Tasks 100-500

Task Size 1100 MI -2000 MI

VMs 5

VM Processing rate 500 MIPS-900 MIPS

The DI is the degree of VM imbalance, is determined by

computing the disparity between the maximum and minimum

processing times of VMs and the average execution time as

indicated in equation (9)

 𝐴𝑇𝐸𝑇 =
𝑇𝐸𝑇𝑖𝑗

𝑚
 (9)

 𝑓3 = 𝐷𝐼 =
𝑓2−𝑚𝑖𝑛{𝑃𝑇𝑉𝑀1 ,𝑃𝑇𝑉𝑀2 ,… ,𝑃𝑇𝑉𝑀𝑚 }

𝐴𝑇𝐸𝑇
 (10)

The load balancing measure is determined by applying

equation (12), in which 𝑃𝑇𝑉𝑀𝑗
represents the sum of the

processing times of all virtual machines.

𝑃𝑇𝑉𝑀𝑗
= ∑ 𝑃𝑇𝑖𝑗

𝑛
𝑖=1 (11)

 𝑓4 = 𝐿𝐵 = √∑ (𝑃𝑇𝑉𝑀𝑗
−𝐴𝑇𝐸𝑇)

2
𝑚
𝑗=1

𝑚
 (12)

The load balancing value impacts the makespan and

tends to increase as the number of tasks increases [25].

Table. 1 list the parameters of the improved PSO algorithm

and cloud simulation environment. These parameters are

used in the LBIMOPSO algorithm to schedule the tasks of

VMs using

Chaitanya Udatha & Gondi Lakshmeeswari / IJETT, 71(9), 36-45, 2023

41

3.3. Proposed LBIMOPSO Algorithm

The Load Balancing based Improved Multi-Objective

Particle Swarm Optimization (LBIMOPSO) is suggested for

self-adaptive load balancing based on scheduling the user

tasks on a heterogeneous cloud environment to maximize

resource utilization and balance the load uniformly on each

resource to avoid overprovision and under-provision of

resources during the scheduling process. This section

introduces a multi-objective improved PSO algorithm for

load balancing and task scheduling.

The proposed LBIMOPSO algorithm is an extension of

MOHIPSO, and it is suggested for scheduling tasks with a

uniform load on heterogeneous VMs in a cloud environment.

To improve resource utilization and decrease the load

balancing deviation among VMs. The proposed algorithm is

shown below.

Algorithm 1: Pseudocode for LBIMOPSO

Input: Heterogeneous type of N Tasks and M

VMs

Output: Load on each VM is balanced equally

based on

 MIPS

Start:

Sorting Tasks in ascending order and Vms in

descending order

Calculating execution time matrix, i.e. Task vs VM

Initialize the particle's position and velocity

randomly

For i: 1 to max iterations

 For j: 1 to population size

 calculate the fitness function using (13)

Locate the local best and modify the particle's

velocity accordingly by (3)

 Update the particle’s position using (4)

 End

 Find the updated optimal personal best(pbesti)

End

Output the swarm global best with the positioning of

tasks on Vms with uniform load

End

In the proposed scheduling algorithm, the tasks are

arranged in ascending order, VMs in descending order and

calculate the execution time matrix. Cloud broker schedules

tasks on VMs using an improved PSO algorithm. In this

algorithm, each particle position is initialized randomly with

VM number, and velocity is randomly assigned between the

value [0,1] to start the search in the Solution space. In each

iteration, the velocity and position of the particle are updated

based on a multi-objective fitness function to explore the

search space.

The equations (7) to (12) are considered for constructing

the multi-objective fitness function, as represented in equation

(13).
Table 2. Task load on virtual machines

Task Load % on VM

No. of

Tasks

VM

No.

VM

MIPS

PSO ACO LBIMOPSO

(Proposed)

100 0 500 120.87 108 99.59

1 600 119.5 98 99.48

2 700 104.6 95.5 99.56

3 800 80.69 93.6 99.62

4 900 73.17 102 99.54

200 0 500 125.11 110 99.47

1 600 111.67 104 99.62

2 700 103.92 101 99.51

3 800 83.21 93.6 99.43

4 900 74.68 88.9 99.54

300 0 500 131.15 97 99.47

1 600 113.73 108 99.62

2 700 95.22 104 99.51

3 800 82.15 103 99.43

4 900 76.14 86.9 99.54

400 0 500 135.98 108 99.43

1 600 109.09 108 99.52

2 700 95.51 90.7 99.51

3 800 82.83 92 99.5

4 900 74.94 99.8 99.55

500 0 500 134.23 105 99.46

1 600 110.71 97.2 99.51

2 700 95.88 92.6 99.48

3 800 82.38 100 99.51

4 900 75 102 99.43

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑖𝑛{𝛼𝑓1 + 𝛽𝑓2 ∗ 𝑒𝑓4 + 𝛾𝑓3} (13)

The minimum fitness value is calculated based on four

objective functions, f1, f2, f3, and f4, and these functions are

represented in (7), (8), (10), and (12), respectively. Where

parameters α, β, and γ refer to the weight component of each

objective function represented in Table I. The sum of weight

components is always equal to value one, and these values

always lie in the range of [0,1]. The process iteratively

searches for the global best value and continues to the

maximum number of iterations. Once the tasks are allocated

to virtual machines using the algorithm's global best solution,

the resource utilization is evaluated as a performance metric.

The average resource utilization specifies the percentage of

VM utilization expressed in equation (14).

 𝐴𝑅𝑈𝑅 =
𝑇𝐸𝑇

𝑚×𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 × 100 (14)

Chaitanya Udatha & Gondi Lakshmeeswari / IJETT, 71(9), 36-45, 2023

42

4. Results and Comparison
The LBMOIPSO algorithm's performance is evaluated

against the conventional PSO and ACO algorithms. The

tasks are considered in the range of [100, 500] with the task

size range of [1100, 2000] measured in MI to be scheduled

on five heterogeneous resources with a computing power

range of [500, 900] measured in MIPS.

Table 2 represents the VM load of each computing

resource compared to the proposed and existing PSO and

ACO algorithms. The VM load is calculated using (15).

 𝑉𝑀𝑗𝐿𝑜𝑎𝑑 =
∑ 𝐸𝑇𝑖𝑗

𝑛
𝑖=1

𝐴𝑇𝐸𝑇×𝑉𝑀𝑗𝑀𝐼𝑃𝑆
× 100 (15)

 𝑉𝑀𝐿𝑜𝑎𝑑𝑗 is computed as the sum of scheduled tasks

executed on VMj to the average total execution time of all

tasks multiplied with VMj computing power and multiplied

by 100 to give VMjload. The proposed algorithm distributes

the load equally on each resource based on the computing

power of the VM. The load on each VM does not exceed the

value of 100, which indicates that no VM is overloaded, and

the value of the VM is not below the value of 90, indicating

that no VM is underloaded and all resources are utilized

effectively.

However, the state-of-the-art algorithms do not balance

the VM load equally if the value of the VM load is above

100, indicating that the VM is overloaded.

 The proposed algorithm's performance is evaluated

using three metrics: makespan, resource utilization, and load

balance deviation. Table 3 represents a comparison of

makespan, average resource utilization and load balance

deviation among ACO, PSO and LBIMOPSO.

Table 3. Comparison of makespan, average resource utilization and load balance deviation

Fig. 3 Comparison of the makespan value

56.03

115.76

182.93

253.03

312.06

48.59

99.8

145.03

194.4538

234.6

44.94

89.35

133.89

178.68

223.04

0

50

100

150

200

250

300

350

100 200 300 400 500

M
a

k
es

p
a

n

No. of Tasks

 PSO ACO LBIMOPSO (Proposed)

No. of

Tasks

Makespan Average Resource Utilization Load Balance Deviation

PSO ACO
LBIMOPSO

(Proposed)
PSO ACO

LBIMOPSO

(Proposed)
PSO ACO

LBIMOPSO

(Proposed)

100 56.03 48.59 44.94 82.37 92.05 98.88 9.12 2.24 0.23

200 115.76 99.8 89.35 82.37 92.05 98.88 9.12 2.24 0.23

300 182.93 145.03 133.89 79.67 90.55 99.56 17.02 6.58 0.23

400 253.03 194.45 178.68 75.93 92.54 99.7 28.31 9.68 0.22

500 312.06 234.6 223.04 73.35 92.3 99.61 39.88 13.11 0.35

Chaitanya Udatha & Gondi Lakshmeeswari / IJETT, 71(9), 36-45, 2023

43

Fig. 4 Comparison of average resource utilization

Fig. 5 Comparison of load balance deviation

9.12

17.02

28.31

39.88

48.82

2.24

6.58

9.68

13.11

9.28

0.23 0.23 0.22 0.35 0.340

10

20

30

40

50

60

100 200 300 400 500

L
o

a
d

 B
a

la
n

ce
 D

ev
ia

ti
o

n

No. of Tasks

 PSO ACO LBIMOPSO (Proposed)

82.37
79.67

75.93
73.35 74.33

92.05 90.55 92.54 92.3
95

98.88 99.56 99.7 99.61 99.79

100 200 300 400 500

0

20

40

60

80

100

120

No. of Tasks

A
v

er
a

g
e

R
es

o
u

rc
e
 U

ti
li

za
ti

o
n

 PSO ACO LBIMOPSO (Proposed)

Chaitanya Udatha & Gondi Lakshmeeswari / IJETT, 71(9), 36-45, 2023

44

The results are in Figure. 3 illustrates the comparison of

makespan for tasks ranging from 100 to 500. The findings

indicate that, in contrast to the standard PSO and ACO

algorithms, the proposed LBIMOPSO algorithm significantly

decreases makespan. Furthermore, the results reveal that

makespan values improve as the number of tasks increases.

Figure 4 plots the average resource utilization among

VMs against the number of tasks. The proposed algorithm

indicates that maximum utilization of resources is achieved;

that is, the rate of ARU is around 99% on all heterogeneous

resources. The proposed algorithm is an efficient scheduling

strategy and distributes tasks uniformly among all VMs

concerning the increasing number of tasks compared to the

ACO and PSO algorithms.

In Fig. 5, the load balance deviation of VMs to tasks

indicates that the load balance deviation increases with the

traffic for existing algorithms as the number of tasks

increases. The low value of load balance deviation indicates a

balanced load on all VMs, and a higher value indicates more

load imbalance on VMs.

The proposed algorithm also increases load deviation with

the increasing number of tasks, and this load balance

deviation value is low compared to the other algorithms. The

load deviation value of ACO and PSO is directly proportional

to the increasing number of tasks, indicating an exorbitant

load imbalance on VMs with increasing traffic.

5. Conclusion and Future Work
The LBIMOPSO method is a load balancing with task

scheduling technique that efficiently distributes tasks among

computing resources to ensure optimal resource utilization

and prevent overload in the cloud environment. It employs an

improved PSO algorithm to uniformly distribute tasks to

VMs and manage the load equally on heterogeneous

resources based on various task lengths. The conventional

PSO technique will likely suffer from local optimality,

leading to premature convergence. An improved PSO

algorithm alters the particle's position. It extends the scope of

searching area in the solution space to improve the local

optimality by considering load balancing deviation as one of

the multiple objectives. The proposed algorithm provides

better results than traditional PSO and ACO regarding

minimum makespan and load balance deviation and

maximum resource utilization among VMs.

The proposed algorithm has the potential for future

extensions to consider additional parameters of the cloudlet,

such as cost, heterogeneous input and output file sizes,

bandwidth, and task latency, which will help to achieve

energy-efficient task scheduling.

References
[1] Asan Baker Kanbar, and Kamaran Faraj, “Region Aware Dynamic Task Scheduling and Resource Virtualization for Load Balancing in

IoT-Fog Multi-Cloud Environment,” Future Generation Computer Systems, vol. 137, pp. 70-86, 2022. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Mohit Kumar et al., “A Comprehensive Survey for Scheduling Techniques in Cloud Computing,” Journal of Network and Computer

Applications, vol. 143, pp. 1-33, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[3] Aida A. Nasr et al., “A New Online Scheduling Approach for Enhancing QOS in Cloud,” Future Computing and Informatics Journal,

vol. 3, no. 2, pp. 424-435, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[4] Sambit Kumar Mishra, Bibhudatta Sahoo, and Priti Paramita Parida, “Load Balancing in Cloud Computing: A Big Picture,” Journal of

King Saud University-Computer and Information Sciences, vol. 32, no. 2, pp. 149-158, 2020. [CrossRef] [Google Scholar] [Publisher

Link]

[5] Aparna Joshi, and Shyamala Devi Munisamy, “Evaluating the Performance of Load Balancing Algorithm for Heterogeneous Cloudlets

Using HDDB Algorithm," International Journal of System Assurance Engineering and Management, vol. 13, no. 1, pp. 778-786, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[6] Essam H. Houssein et al., “Task Scheduling in Cloud Computing Based on Meta-Heuristics: Review, Taxonomy, Open Challenges, and

Future Trends,” Swarm and Evolutionary Computation, vol. 62, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] G Rohail Gulbaz et al., "Balancer Genetic Algorithm—A Novel Task Scheduling Optimization Approach in Cloud Computing," Applied

Sciences, vol. 11, no. 14, p. 6244, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[8] Zhi-Hui Zhan et al., "Load Balance Aware Genetic Algorithm for Task Scheduling in Cloud Computing," Simulated Evolution and

Learning, vol. 8886, pp. 644-655, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[9] Xueliang Fu et al., "Task Scheduling of Cloud Computing Based on Hybrid Particle Swarm Algorithm and Genetic Algorithm," Cluster

Computing, pp. 1-10, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Said Nabi et al., "AdPSO: Adaptive PSO-Based Task Scheduling Approach for Cloud Computing," Sensors, vol. 22, no. 3, p. 920, 2022.

[CrossRef] [Google Scholar] [Publisher Link]

[11] Said Nabi, and Masroor Ahmed, "PSO-RDAL: Particle Swarm Optimization-Based Resource-and Deadline-Aware Dynamic Load

Balancer for Deadline Constrained Cloud Tasks," The Journal of Supercomputing, vol. 78, pp. 4624-4654, 2022. [CrossRef] [Google

Scholar] [Publisher Link]

https://doi.org/10.1016/j.future.2022.06.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Region+aware+dynamic+task+scheduling+and+resource+virtualization+for+load+balancing+in+IoT-fog+multi-cloud+environment%2C%E2%80%9D+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X22002163
https://doi.org/10.1016/j.jnca.2019.06.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+comprehensive+survey+for+scheduling+techniques+in+cloud+computing%2C%E2%80%9D&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1084804519302036
https://doi.org/10.1016/j.fcij.2018.11.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+online+scheduling+approach+for+enhancing+QOS+in+cloud%2C&btnG=
https://www.sciencedirect.com/science/article/pii/S2314728818300138
https://doi.org/10.1016/j.jksuci.2018.01.003
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+in+cloud+computing%3A+a+big+picture&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157817303361
https://www.sciencedirect.com/science/article/pii/S1319157817303361
https://doi.org/10.1007/s13198-022-01641-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluating+the+performance+of+load+balancing+algorithm+for+heterogeneous+cloudlets+using+HDDB+algorithm%2C%22+&btnG=
https://link.springer.com/article/10.1007/s13198-022-01641-1
https://doi.org/10.1016/j.swevo.2021.100841
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+in+cloud+computing+based+on+meta-heuristics%3A+review%2C+taxonomy%2C+open+challenges%2C+and+future+trends%2C%22+&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S221065022100002X
https://doi.org/10.3390/app11146244
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Balancer+genetic+algorithm%E2%80%94a+novel+task+scheduling+optimization+approach+in+cloud+computing%2C%22&btnG=
https://www.mdpi.com/2076-3417/11/14/6244
https://doi.org/10.1007/978-3-319-13563-2_54
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balance+aware+genetic+algorithm+for+task+scheduling+in+cloud+computing%2C%22&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-13563-2_54
https://doi.org/10.1007/s10586-020-03221-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+of+cloud+computing+based+on+hybrid+particle+swarm+algorithm+and+genetic+algorithm%2C%22+&btnG=
https://link.springer.com/article/10.1007/s10586-020-03221-z
https://doi.org/10.3390/s22030920
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=AdPSO%3A+adaptive+PSO-based+task+scheduling+approach+for+cloud+computing%2C&btnG=
https://www.mdpi.com/1424-8220/22/3/920
https://doi.org/10.1007/s11227-021-04062-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PSO-RDAL%3A+Particle+swarm+optimization-based+resource-and+deadline-aware+dynamic+load+balancer+for+deadline+constrained+cloud+tasks%2C%22+&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PSO-RDAL%3A+Particle+swarm+optimization-based+resource-and+deadline-aware+dynamic+load+balancer+for+deadline+constrained+cloud+tasks%2C%22+&btnG=
https://link.springer.com/article/10.1007/s11227-021-04062-2

Chaitanya Udatha & Gondi Lakshmeeswari / IJETT, 71(9), 36-45, 2023

45

[12] Aida Amini Motlagh, Ali Movaghar, and Amir Masoud Rahmani, “A New Reliability-Based Task Scheduling Algorithm in Cloud

Computing," International Journal of Communication Systems, vol. 35, no. 3, pp. e5022, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[13] M. A. Elmagzoub et al., “A Survey of Swarm Intelligence Based Load Balancing Techniques in Cloud Computing Environment,”

Electronics, vol. 10, no. 21, p. 2718, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[14] Nupur Jangu, and Zahid Raza, "Improved Jellyfish Algorithm-Based Multi-Aspect Task Scheduling Model for IoT Tasks Over fog

Integrated Cloud Environment,” Journal of Cloud Computing, vol.11, no. 98, pp.1-21, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[15] Lina Ni et al., "GCWOAS2: Multiobjective Task Scheduling Strategy Based on Gaussian Cloud-Whale Optimization in Cloud

Computing," Computational Intelligence and Neuroscience, vol. 2021, pp. 1-17, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] Gang Li, and Zhijun Wu, “Ant Colony Optimization Task Scheduling Algorithm for SWIM Based on Load Balancing," Future Internet,

vol. 11, no. 4, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[17] R. Ghafari, F. Hassani Kabutarkhani, and N. Mansouri, “Task Scheduling Algorithms for Energy Optimization in Cloud Environment:

A Comprehensive Review,” Cluster Computing, vol. 25, no. 2, pp. 1035-1093, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[18] Seyed Salar Sefati, Maryamsadat Mousavinasab, and Roya Zareh Farkhady, “Load Balancing in Cloud Computing Environment using

the Grey Wolf Optimization Algorithm Based on the Reliability: Performance Evaluation,” The Journal of Supercomputing, vol. 78, no.

1, pp. 18-42, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[19] Abhikriti Narwal, and Sunita Dhingra, "Load Balancing using Enhanced Multi-Objective with Bee Colony Optimization in Cloud

Networks," Pertanika Journal of Social Science and Humanities, vol. 28, no. 3, pp. 1049-1061, 2020. [Google Scholar] [Publisher Link]

[20] Mehdi Hosseinzadeh et al., "Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge Computing

Environments," Journal of Grid Computing, vo1. 19, no. 14, pp. 1-27, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[21] Mohit Agarwal, and Gur Mauj Saran Srivastava, "A PSO Algorithm Based Task Scheduling in Cloud Computing," International

Journal of Applied Metaheuristic Computing, vol. 10, no. 4, pp. 1-17, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[22] Dineshan Subramoney, and Clement N. Nyirenda, "Multi-Swarm PSO Algorithm for Static Workflow Scheduling in Cloud-Fog

Environments," IEEE Access, vol. 10, pp. 117199-117214, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[23] Almothana Khodar et al., "Design Model to Improve Task Scheduling in Cloud Computing Based on Particle Swarm Optimization,"

IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, pp. 345-350, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[24] Aashish Kumar Bohre, Ganga Agnihotri, and Manisha Dubey, "Hybrid Butterfly Based Particle Swarm Optimization for Optimization

Problems,” First International Conference on Networks & Soft Computing, pp. 172-177, 2014. [CrossRef] [Google Scholar] [Publisher

Link]

[25] Sobhanayak Srichandan, Turuk Ashok Kumar, and Sahoo Bibhudatta, “Task Scheduling for Cloud Computing using Multi-Objective

Hybrid Bacteria Foraging Algorithm,” Future Computing and Informatics Journal, vol. 3, no. 2, pp. 210-230, 2018. [CrossRef] [Google

Scholar] [Publisher Link]

https://doi.org/10.1002/dac.5022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+reliability%E2%80%90based+task+scheduling+algorithm+in+cloud+computing%2C&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.5022
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.5022
https://doi.org/10.3390/electronics10212718
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Swarm+Intelligence+Based+Load+Balancing+Techniques+in+Cloud+Computing+Environment&btnG=
https://www.mdpi.com/2079-9292/10/21/2718
https://doi.org/10.1186/s13677-022-00376-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+Jellyfish+Algorithm-based+multi-aspect+task+scheduling+model+for+IoT+tasks+over+fog+integrated+cloud+environment%2C%22+&btnG=
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-022-00376-5
https://journalofcloudcomputing.springeropen.com/articles/10.1186/s13677-022-00376-5
https://doi.org/10.1155/2021/5546758
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=GCWOAS2%3A+multiobjective+task+scheduling+strategy+based+on+Gaussian+cloud-whale+optimization+in+cloud+computing%2C%22+&btnG=
https://www.hindawi.com/journals/cin/2021/5546758/
https://doi.org/10.3390/fi11040090
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ant+colony+optimization+task+scheduling+algorithm+for+SWIM+based+on+load+balancing%2C%22+&btnG=
https://www.mdpi.com/1999-5903/11/4/90
https://doi.org/10.1007/s10586-021-03512-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+algorithms+for+energy+optimization+in+cloud+environment%3A+a+comprehensive+review%2C%22&btnG=
https://link.springer.com/article/10.1007/s10586-021-03512-z
https://doi.org/10.1007/s11227-021-03810-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+balancing+in+cloud+computing+environment+using+the+Grey+wolf+optimization+algorithm+based+on+the+reliability%3A+performance+evaluation%2C%22+&btnG=
https://link.springer.com/article/10.1007/s11227-021-03810-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Load+Balancing+using+Enhanced+Multi-Objective+with+Bee+Colony+Optimization+in+Cloud+Networks%2C&btnG=
http://www.pertanika.upm.edu.my/pjssh/browse/regular-issue?article=JST-1832-2019
https://doi.org/10.1007/s10723-021-09556-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+butterfly+optimization+algorithm+for+data+placement+and+scheduling+in+edge+computing+environments%2C%22+&btnG=
https://link.springer.com/article/10.1007/s10723-021-09556-0
https://doi.org/10.4018/IJAMC.2019100101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+PSO+algorithm+based+task+scheduling+in+cloud+computing%2C%22+&btnG=
https://www.igi-global.com/article/a-pso-algorithm-based-task-scheduling-in-cloud-computing/234684
https://doi.org/10.1109/ACCESS.2022.3220239
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multi-Swarm+PSO+Algorithm+for+Static+Workflow+Scheduling+in+Cloud-Fog+Environments%2C&btnG=
https://ieeexplore.ieee.org/abstract/document/9940620
https://doi.org/10.1109/EIConRus49466.2020.9039501
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+model+to+improve+task+scheduling+in+cloud+computing+based+on+particle+swarm+optimization%2C%22&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+model+to+improve+task+scheduling+in+cloud+computing+based+on+particle+swarm+optimization%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/9039501
https://doi.org/10.1109/CNSC.2014.6906650
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+butterfly+based+particle+swarm+optimization+for+optimization+problems%2C%22&btnG=
https://ieeexplore.ieee.org/abstract/document/6906650
https://ieeexplore.ieee.org/abstract/document/6906650
https://doi.org/10.1016/j.fcij.2018.03.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+for+cloud+computing+using+multi-objective+hybrid+bacteria+foraging+algorithm%2C&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+scheduling+for+cloud+computing+using+multi-objective+hybrid+bacteria+foraging+algorithm%2C&btnG=
https://www.sciencedirect.com/science/article/pii/S2314728817300570

