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Abstract - With cutting-edge services available via subscription, the usage of cloud technology is rapidly increasing in daily 

life using advanced services. Efficient management of services and delivering them on demand require proper scheduling of 

resources and requests. Load balancing aware scheduling techniques are employed to accomplish this, which distribute 

requests uniformly among resources and optimize resource utilization. In cloud computing, load balancers are essential for 

balancing workloads on resources. They ensure even workload distribution across all resources by transferring workloads 

from overloaded to underloaded resources. The proposed Load Balancing Improved Multi-Objective Particle Swarm 

Optimization (LBIMOPSO) technique aims to manage load uniformly and allocate tasks to the best-suited virtual machines. 

It is a robust optimization technique that considers multiple objective functions simultaneously and effectively balances 

workloads in a cloud computing environment. However, according to an existing survey, there is an improvement in 

makespan performance compared to proper load balancing across virtual machines. Therefore, the proposed LBIMOPSO 

algorithm improves resource utilization, makespan, and load balance deviation compared to traditional swarm-intelligence-

based ant colony and particle swarm optimization algorithms. 

Keywords - Cloud computing, Improved particle swarm optimization, Load balance deviation, Makespan, Resource 

utilization. 

1. Introduction 
In the present era, the cloud plays a pivotal role in 

academics, businesses, and industries—the cloud pools 

resources from data centers in various regions worldwide [1]. 

The resources, including high-performance computing 

elements with storage, networking devices, databases, 

development environments, and applications, are provided as 

three essential cloud services: infrastructure, platform, and 

software. Through the cloud environment, users can leverage 

computing resources, comprising software applications, data 

storage, and processing power, provided as a service through 

the internet. A third-party provider typically maintains and 

manages the cloud infrastructure, enabling customers to 

increase or decrease their resources per their requirements. 

The essential characteristic of the cloud environment is its 

virtual nature. The Cloud Service Provider (CSP) delivers 

services on a subscription basis to the cloud users. Properly 

managing cloud services is a crucial task for CSPs, leading to 

increased attention towards proper scheduling and managing 

load to harness the beneficial features of cloud computing 

fully. The scheduling of tasks involves selecting the 

appropriate Virtual Machine (VM) for execution while 

meeting quality of service constraints, such as energy 

consumption, response time, resource utilization, and 

makespan, while adhering to service level agreements [2,3]. 

The performance of the cloud is enhanced via load balancing, 

leading to satisfaction for the cloud end user and provider, as 

it generates economic benefits for both parties. The research 

gap in cloud computing lies in effectively integrating and 

synchronizing task scheduling and load balancing, two vital 

aspects of cloud resource management. Although closely 

related, they represent distinct dimensions for optimizing 

cloud performance and resource utilization. A crucial area of 

research is the seamless fusion of load balancing and task 

scheduling algorithms. Load balancing ensures an even 

workload distribution among available resources to avoid 

bottlenecks and overloading. At the same time, task 

scheduling focuses on efficiently assigning tasks to resources 

for optimal completion time and resource usage. Integrating 

these aspects can lead to a more comprehensive approach, 

considering both workload distribution and task assignment, 

ultimately enhancing overall performance. 

Servers, applications, and networks can perform load 

balancing at different levels based on the types and locations 

of resources being managed [4]. When a user submits a task, 

the task requires computational resources to execute the 

request. However, before mapping the task to a VM, the load  
is divided uniformly across the VMs. The classification of 

task allocation to VMs into two levels. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Load balancing based task scheduling model 

 

The primary level involves assigning tasks to VMs on 

different host machines based on their load. The HDDB 

technique distributes VMs to the most appropriate hosts 

based on membership and CPU usage value [5]. In this 

approach, VMs migrated from one host to another. The next 

level of load balancing occurs within a host among VMs, i.e., 

tasks are scheduled to suitable virtual machines depending on 

the VM load, and tasks move from heavily loaded VMs to 

underloaded ones. The proposed algorithm falls under the 

second level but without migrating tasks from overloaded to 

underloaded resources while balancing the tasks on each VM 

during the scheduling process. Task-level load balancing 

typically has a lower overhead than VM-level load balancing 

because it does not require creating and managing additional 

VMs. Task-level load balancing can optimize the utilization 

of resources by allocating only the necessary resources to 

each task. In contrast, VM-level load balancing may result in 

overprovisioning or under-provisioning of requests for each 

VM.  

The significant contribution of the proposed research 

work is as follows: 

• Tasks are heterogeneous, independent, and non-

preemptive. The sequential scheduling technique 

executes tasks on the same VM when multiple tasks are 

assigned. 

• The proposed load balancing aware scheduling using the 

improved PSO algorithm for heterogeneous cloud 

environments to address multi-objective optimization, 

i.e., maximum resource utilization and minimization of 

makespan and load balance deviation. 

• The probability-based fitness function was incorporated 

into the individual influence component to attain the 

optimal global solution. 

• The LBIMOPSO algorithm's effectiveness is evaluated 

compared to conventional ACO and PSO algorithms. 

 

The remaining part of this paper is organized into four 

sections as follows: 

Section II represents a survey on scheduling and load-

balancing strategies and discusses a load-balancing-based 

scheduling environment. Section III explains the problem 

formulation and parameter estimation of the proposed 

LBIMOPSO approach. Section IV presents the simulation 

results of the proposed LBIMOPSO algorithm to the 

traditional swarm intelligence-based ant colony and particle 

swarm optimization algorithms using the cloudSim 

framework. Finally, Section V concludes the proposed work 

and future direction improvements. 

2. Related Work and Background 
In cloud environments, a wide range of static and 

dynamic algorithms have been proposed by researchers; 

these algorithms utilize various techniques such as heuristics, 

meta-heuristics, and combined approaches to ensure the 

provision of high-quality service. Meta-heuristic algorithms 
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have gained popularity due to their ability to provide 

solutions in large search spaces and solve complex problems 

[6]. The following survey focuses on examining popular 

evolutionary and swarm-intelligence algorithms. 

Using the BGA algorithm, Gulbaz, Rohail, et al. 

proposed to search for the best global solution in a solution 

space based on genetic principles [7,8,9]. The algorithm 

considers the quality-of-service parameters to achieve 

Service Level Agreements (SLAs) but needs improvement 

regarding task priority and dependency. 

Nabi, Said, et al. used various inertia weight strategies 

for PSO to improve the load balancing of tasks [10,11]. 

However, all task instances should have an improved 

resource utilization ratio. 

RATSA algorithm is a task scheduling approach using 

reliability to reduce network failure rates [12]. It is a two-

level process, identifying the most utilized host and 

scheduling tasks to VM on that host based on the probability 

of fitness function. 

Elmagzoub, M. A. et al. provide surveys on various 

swarm intelligence algorithms [13]. Researchers can extend 

their work on load balancing using these algorithms by 

considering the pros and cons of each algorithm. The whale 

optimization method uses Multiple objective fitness values to 

balance the load, but only two objectives are satisfied, and 

the operation cost objective needs to perform better [14,15]. 

An ACO (Ant Colony Optimization) with a SWIM 

approach was proposed for scheduling and load balancing 

[16]. This approach combines three parameters: CPU, 

memory, and bandwidth utilization rate, which is considered 

a load-balancing factor among virtual machines. A higher 

value of load deviation indicates more imbalance in the load, 

but it does not consider the makespan parameter for 

comparison. 

Numerous studies on scheduling strategies in cloud 

computing using different meta-heuristics optimization 

strategies, along with their benefits and drawbacks, are 

discussed [17,18,19]. Researchers can enhance their 

exploration of future research directions by carefully 

considering the challenges identified in existing surveys. 

Hosseinzadeh, Mehdi, et al. proposed a levy flight principle-

based BOA algorithm to improve algorithm efficiency and 

avoid local optima and fast convergence problems [20]. 

However, it is a single-objective algorithm used for placing 

data in edge computing, and it can be improved to handle 

workflow scheduling with multiple objectives. 

The primary mechanism of load balancing with task 

scheduling is depicted in Figure. 1. The users can submit 

their requests to the cloud through any heterogeneous smart 

device connected to the internet. These requests are called 

tasks or cloudlets in the cloud environment. The cloud broker 

processes the tasks through the cloud information system to 

the requested resources in the data center. The cloud broker 

implements an effective scheduling algorithm to map the 

requests to the resources. Load balancing with scheduling 

employs a robust algorithm to uniformly allocate requests to 

available resources by managing enterprise demand. It is 

essential for accommodating resources on demand and 

maximizing the utilization of available resources. 

Load balancing is crucial for applications that need to 

scale and be flexible as they grow. It prioritizes tasks that 

require immediate execution and those that need more time 

compared to other jobs. With balanced workloads, CSPs can 

optimize cloud services for economic benefits and user 

satisfaction. Load balancing aims to distribute tasks evenly 

among available resources to optimize resource utilization 

and reduce system response time. The task can get the 

necessary resources using the proposed LBIMOPSO 

algorithm; otherwise, beyond their needs results in resource 

waste. Load balancing is one of the primary objectives of 

task scheduling by considering a load parameter. 

3. Proposed Methodology 
3.1. Improved PSO Model and Description 

PSO is a nature-inspired self-adaptive algorithm based 

on the social behaviours of animal groups or bird flocks to 

carry out a global search for food sources [21]. The bird 

searching for food with the flock randomly can improve its 

search, while sharing information within the group improves 

its chances of survival. The benefit of sharing the best 

information can aid a flock in locating the finest hunting 

grounds. The PSO algorithm comprises the number of 

particles and generations, where generations represent the 

iterations needed to explore search space to achieve an 

optimal solution. Every generation in the swarm comprises a 

group of particles, each representing a specific solution. Each 

generation particle possesses its unique position, traveling 

velocity, personal best, global best, and inertia value. The 

inertia value is used to govern particle movement. At the 

same time, personal and global best represent the best 

solutions locally and globally across the swarm of particles.  

During each iteration, particle velocity and position are 

updated based on factors such as inertia weight and the 

values of pBest and gBest, which are adjusted based on the 

optimal fitness value. Ҳ𝑖
(t)

denotes the position vector of 

particles within a multidimensional search space while 

Ʋ𝑖
(t)  

representing their velocity vector. 

The traditional formulas for the PSO algorithm are as 

follows [22]: 
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 Ʋ𝑖
(t+1)

= 𝜔𝑖 ∗ Ʋ𝑖
(t) + 𝑐1 ∗ 𝑟1 ∗ ( Ҳ𝑝𝑏𝑒𝑠𝑡𝑖

(t) − Ҳ𝑖
(t)) 

 +𝑐2 ∗ 𝑟2 ( Ҳ𝑔𝑏𝑒𝑠𝑡𝑖 
(t) − Ҳ𝑖

(t))    (1) 

 

 

 Ҳ𝑖
(t+1)

= Ҳ𝑖
(t) + Ʋ𝑖

(t+1 )
 (2) 

 

PSO is popular due to algorithm simplicity and ease of 

understanding, fast convergence, quick implementation, and 

very few parameters, but it is easily trapped into local 

optima. So, improved PSO is an ideal solution for efficiently 

scheduling tasks while considering the uniform load on each 

resource [23]. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Improved PSO algorithm 
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The formulas for the improved PSO algorithm are as follows: 
 

 Ʋ𝑖𝑛𝑒𝑤

(t+1)
= 𝜔𝑖 ∗ Ʋ𝑖

(t) + (1 − 𝑃𝑖) ∗ 𝑐1 ∗ 𝑟1 ∗ ( Ҳ𝑝𝑏𝑒𝑠𝑡𝑖
(t) −

                           Ҳ𝑖
(t)) +  ∗ 𝑐2 ∗ 𝑟2 ( Ҳ𝑔𝑏𝑒𝑠𝑡𝑖 

(t) − Ҳ𝑖
(t))  (3) 

  

 Ҳ𝑖𝑛𝑒𝑤

(t+1)
= Ҳ𝑖

(t) + Ʋ𝑖𝑛𝑒𝑤

(t+1 )  (4) 

 

 

 𝜔𝑖 =
𝐼𝑡𝑒𝑟𝑚𝑎𝑥 – 𝐼𝑡𝑒𝑟𝑖 

𝐼𝑡𝑒𝑟𝑚𝑎𝑥 
 (5) 

 

𝜔𝑖 indicates inertia weight decreases with the iteration 

number to explore search space more efficiently. 
 

 𝑃𝑖 =
𝐹𝑖𝑡𝑔𝑏𝑒𝑠𝑡,𝑖 

∑(𝐹𝑖𝑡𝑙𝑏𝑒𝑠𝑡,𝑖 )
 (6) 

 

𝑃𝑖
 indicates the probability of global fitness to local fitness to 

avoid the problem of local trap [24]. The improved PSO 

algorithm is represented in the Figure. 2. 

3.2. Task Scheduling Problem Description and Definitions 

The term cloud represents a repository of virtual 

resources; it consists of data centers located in different 

regions; each data center consists of numerous hosts and, in 

turn, consists of various flavors of Virtual Machines (VMs) 

based on the choice of customers. These resources are 

provided to the users on a subscription basis. When multiple 

requests arrive at a data center, the number of resources is 

always less than the user requests. The cloud broker 

efficiently maps the task to a suitable resource machine to 

optimize resource utilization using a scheduling algorithm. 

The optimized way of distributing N requests to M resources 

is an NP-hard problem. 

The scheduling environment is depicted in Figure 1, and 

user requests are generated from heterogeneous client devices 

called tasks in the cloud environment. The cloud broker 

mediates between the tasks and resources through an 

information system. Cloud resources are represented as 

virtual machines, and their unit is generally represented in a 

Million Instructions Per Second (MIPS). Each task is 

represented by a task ID and its corresponding length. All 

tasks are considered independent, and every task will be 

executed on only one VM. 

The processing time of each task on every resource must 

be determined, represented in the ET matrix, to establish the 

optimal scheduling strategy for N tasks ({T1, T2, …Tn}) on 

M VMs ({VM1, VM2, … VMm}). 

 

𝐸𝑇 =

[
 
 
 
 

𝑇1

𝑉𝑀1

⋯
𝑇1

 𝑉𝑀𝑚

⋮ ⋱ ⋮
𝑇𝑛

𝑉𝑀1

⋯
𝑇𝑛

 𝑉𝑀𝑚]
 
 
 
 

 

The overall task execution time is calculated using 

equation (7), in which  𝑇𝐿𝑒𝑛𝑖
 denotes the ith task length in MI 

(million instructions) and is divided by the computing power 

of jth VM.   

 𝑓1 = 𝑇𝐸𝑇𝑖𝑗 = ∑
𝑇𝐿𝑒𝑛𝑖

𝑉𝑀𝑀𝐼𝑃𝑆𝑗

𝑛𝑚
𝑖𝑗  (7)   

 

The makespan denotes the latest task completion time on 

𝑃𝑇𝑉𝑀𝑖
, which represents the processing time of the VM. 

 

  𝑓2 = 𝑀𝑎𝑘𝑒 𝑠𝑝𝑎𝑛 =  𝑚𝑎𝑥{𝑃𝑇𝑉𝑀1 , 𝑃𝑇𝑉𝑀2 , . .,

                                                           𝑃𝑇𝑉𝑀𝑚 } (8) 
 

Table 1. Parameters of scheduling environment 

LBIMOPSO Algorithm / 

Cloud Parameters 

Initial Values / 

Values Range 

Population 50 

Iterations 1000 

ω 0.9 

α 0.05 

β 0.7 

γ 0.25 

c1 2.0 

c2 1.49 

r1, r2 [0,1] 

Tasks 100-500 

Task Size 1100 MI -2000 MI 

VMs 5 

VM Processing rate 500 MIPS-900 MIPS 

 

The DI is the degree of VM imbalance, is determined by 

computing the disparity between the maximum and minimum 

processing times of VMs and the average execution time as 

indicated in equation (9) 
 

 𝐴𝑇𝐸𝑇 =
𝑇𝐸𝑇𝑖𝑗

𝑚
               (9) 

 

 𝑓3 = 𝐷𝐼 =
𝑓2−𝑚𝑖𝑛{𝑃𝑇𝑉𝑀1 ,𝑃𝑇𝑉𝑀2 ,… ,𝑃𝑇𝑉𝑀𝑚 }

𝐴𝑇𝐸𝑇
          (10) 

 

The load balancing measure is determined by applying 

equation (12), in which 𝑃𝑇𝑉𝑀𝑗 
represents the sum of the 

processing times of all virtual machines.  
 

𝑃𝑇𝑉𝑀𝑗 
= ∑ 𝑃𝑇𝑖𝑗

𝑛
𝑖=1  (11) 

 

  𝑓4 = 𝐿𝐵 = √∑ (𝑃𝑇𝑉𝑀𝑗
−𝐴𝑇𝐸𝑇)

2
𝑚
𝑗=1

𝑚
 (12) 

 

The load balancing value impacts the makespan and 

tends to increase as the number of tasks increases [25]. 

Table. 1 list the parameters of the improved PSO algorithm 

and cloud simulation environment. These parameters are 

used in the LBIMOPSO algorithm to schedule the tasks of 

VMs using  
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3.3. Proposed LBIMOPSO Algorithm 

The Load Balancing based Improved Multi-Objective 

Particle Swarm Optimization (LBIMOPSO) is suggested for 

self-adaptive load balancing based on scheduling the user 

tasks on a heterogeneous cloud environment to maximize 

resource utilization and balance the load uniformly on each 

resource to avoid overprovision and under-provision of 

resources during the scheduling process. This section 

introduces a multi-objective improved PSO algorithm for 

load balancing and task scheduling. 

The proposed LBIMOPSO algorithm is an extension of 

MOHIPSO, and it is suggested for scheduling tasks with a 

uniform load on heterogeneous VMs in a cloud environment. 

To improve resource utilization and decrease the load 

balancing deviation among VMs. The proposed algorithm is 

shown below. 

 
 

Algorithm 1:  Pseudocode for LBIMOPSO 

Input: Heterogeneous type of N  Tasks and  M  

VMs 

Output:  Load on  each VM is balanced equally  

based on 

                MIPS 

Start: 

Sorting Tasks in ascending order and Vms in 

descending order 

Calculating execution time matrix, i.e. Task vs VM 

Initialize the particle's position and velocity  

randomly 

For   i: 1 to max iterations 

    For j: 1 to population size 

      calculate the fitness function  using  (13) 

Locate the local best and modify the particle's 

velocity accordingly by  (3) 

      Update  the particle’s  position   using  (4) 

    End 

  Find  the updated optimal personal best(pbesti) 

End 

Output  the swarm  global best with the positioning of 

tasks on Vms with uniform load 

End 
 

In the proposed scheduling algorithm, the tasks are 

arranged in ascending order, VMs in descending order and 

calculate the execution time matrix. Cloud broker schedules 

tasks on VMs using an improved PSO algorithm. In this 

algorithm, each particle position is initialized randomly with 

VM number, and velocity is randomly assigned between the 

value [0,1] to start the search in the Solution space. In each 

iteration, the velocity and position of the particle are updated 

based on a multi-objective fitness function to explore the 

search space. 
 

The equations (7) to (12) are considered for constructing 

the multi-objective fitness function, as represented in equation 

(13). 
Table 2. Task load on virtual machines 

Task Load % on VM 

No. of 

Tasks 

VM 

No. 

VM 

MIPS 

PSO ACO LBIMOPSO 

(Proposed) 

100 0 500 120.87 108 99.59 

1 600 119.5 98 99.48 

2 700 104.6 95.5 99.56 

3 800 80.69 93.6 99.62 

4 900 73.17 102 99.54 

200 0 500 125.11 110 99.47 

1 600 111.67 104 99.62 

2 700 103.92 101 99.51 

3 800 83.21 93.6 99.43 

4 900 74.68 88.9 99.54 

300 0 500 131.15 97 99.47 

1 600 113.73 108 99.62 

2 700 95.22 104 99.51 

3 800 82.15 103 99.43 

4 900 76.14 86.9 99.54 

400 0 500 135.98 108 99.43 

1 600 109.09 108 99.52 

2 700 95.51 90.7 99.51 

3 800 82.83 92 99.5 

4 900 74.94 99.8 99.55 

500 0 500 134.23 105 99.46 

1 600 110.71 97.2 99.51 

2 700 95.88 92.6 99.48 

3 800 82.38 100 99.51 

4 900 75 102 99.43 
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑚𝑖𝑛{𝛼𝑓1 + 𝛽𝑓2 ∗ 𝑒𝑓4 + 𝛾𝑓3} (13) 

 
The minimum fitness value is calculated based on four 

objective functions, f1, f2, f3, and f4, and these functions are 

represented in (7), (8), (10), and (12), respectively. Where 

parameters α, β, and γ refer to the weight component of each 

objective function represented in Table I. The sum of weight 

components is always equal to value one, and these values 

always lie in the range of [0,1]. The process iteratively 

searches for the global best value and continues to the 

maximum number of iterations. Once the tasks are allocated 

to virtual machines using the algorithm's global best solution, 

the resource utilization is evaluated as a performance metric. 

The average resource utilization specifies the percentage of 

VM utilization expressed in equation (14). 

 

 𝐴𝑅𝑈𝑅 =
𝑇𝐸𝑇

𝑚×𝑀𝑎𝑘𝑒𝑠𝑝𝑎𝑛
 × 100 (14) 
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4. Results and Comparison 
The LBMOIPSO algorithm's performance is evaluated 

against the conventional PSO and ACO algorithms. The 

tasks are considered in the range of [100, 500] with the task 

size range of [1100, 2000] measured in MI to be scheduled 

on five heterogeneous resources with a computing power 

range of [500, 900] measured in MIPS.  

Table 2 represents the VM load of each computing 

resource compared to the proposed and existing PSO and 

ACO algorithms. The VM load is calculated using (15). 

 

 𝑉𝑀𝑗𝐿𝑜𝑎𝑑 =
∑ 𝐸𝑇𝑖𝑗

𝑛
𝑖=1  

𝐴𝑇𝐸𝑇×𝑉𝑀𝑗𝑀𝐼𝑃𝑆
× 100 (15) 

 

 𝑉𝑀𝐿𝑜𝑎𝑑𝑗  is computed as the sum of scheduled tasks 

executed on VMj to the average total execution time of all 

tasks multiplied with VMj computing power and multiplied 

by 100 to give VMjload. The proposed algorithm distributes 

the load equally on each resource based on the computing 

power of the VM. The load on each VM does not exceed the 

value of 100, which indicates that no VM is overloaded, and 

the value of the VM is not below the value of 90, indicating 

that no VM is underloaded and all resources are utilized 

effectively.  

However, the state-of-the-art algorithms do not balance 

the VM load equally if the value of the VM load is above 

100, indicating that the VM is overloaded. 

 The proposed algorithm's performance is evaluated 

using three metrics: makespan, resource utilization, and load 

balance deviation. Table 3 represents a comparison of 

makespan, average resource utilization and load balance 

deviation among ACO, PSO and LBIMOPSO. 

 
Table 3. Comparison of makespan, average resource utilization and load balance deviation 

 
 

 

Fig. 3 Comparison of the makespan value 
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Fig. 4 Comparison of average resource utilization 

Fig. 5 Comparison of load balance deviation 
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The results are in Figure. 3 illustrates the comparison of 

makespan for tasks ranging from 100 to 500. The findings 

indicate that, in contrast to the standard PSO and ACO 

algorithms, the proposed LBIMOPSO algorithm significantly  

decreases makespan. Furthermore, the results reveal that 

makespan values improve as the number of tasks increases. 

 

Figure 4 plots the average resource utilization among 

VMs against the number of tasks. The proposed algorithm 

indicates that maximum utilization of resources is achieved; 

that is, the rate of ARU is around 99% on all heterogeneous 

resources. The proposed algorithm is an efficient scheduling 

strategy and distributes tasks uniformly among all VMs 

concerning the increasing number of tasks compared to the 

ACO and PSO algorithms. 

 

In Fig. 5, the load balance deviation of VMs to tasks 

indicates that the load balance deviation increases with the 

traffic for existing algorithms as the number of tasks 

increases. The low value of load balance deviation indicates a 

balanced load on all VMs, and a higher value indicates more 

load imbalance on VMs. 

 

The proposed algorithm also increases load deviation with 

the increasing number of tasks, and this load balance 

deviation value is low compared to the other algorithms. The 

load deviation value of ACO and PSO is directly proportional 

to the increasing number of tasks, indicating an exorbitant 

load imbalance on VMs with increasing traffic. 

 

5. Conclusion and Future Work 
The LBIMOPSO method is a load balancing with task 

scheduling technique that efficiently distributes tasks among 

computing resources to ensure optimal resource utilization 

and prevent overload in the cloud environment. It employs an 

improved PSO algorithm to uniformly distribute tasks to 

VMs and manage the load equally on heterogeneous 

resources based on various task lengths. The conventional 

PSO technique will likely suffer from local optimality, 

leading to premature convergence. An improved PSO 

algorithm alters the particle's position. It extends the scope of 

searching area in the solution space to improve the local 

optimality by considering load balancing deviation as one of 

the multiple objectives. The proposed algorithm provides 

better results than traditional PSO and ACO regarding 

minimum makespan and load balance deviation and 

maximum resource utilization among VMs. 

 

The proposed algorithm has the potential for future 

extensions to consider additional parameters of the cloudlet, 

such as cost, heterogeneous input and output file sizes, 

bandwidth, and task latency, which will help to achieve 

energy-efficient task scheduling. 
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