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Abstract - Fused Deposition Modelling (FDM) is an additive manufacturing-based rapid prototyping technology that has 

gained widespread attention due to its ability to produce complex geometries with relatively low cost and fast production time. 

However, the surface finish of the FDM printed parts can be adversely affected by the selection of input parameters, such as 

layer height, infill density, print temperature, etc. This study aims to investigate the impact of these parameters on surface 

roughness and optimize the FDM process to improve surface finish. Two optimization approaches were employed in the study 

to address this problem, namely the Response Surface Methodology (RSM) and the particle swarm optimization (PSO) method. 

The impacts of four factors, layer height, printing speed, infill density, and print temperature, on the surface roughness of 

Polylactic Acid (PLA) printed parts were evaluated. A Face-centred Central Composite Design (FCCD) was used to reduce 

the number of experiments and to optimize the process. Both RSM and PSO methods were employed to find the best 

combination of process parameters for minimum surface roughness. The results of the experiment indicated that the optimal 

settings for minimum surface roughness were a layer height of 0.10 mm, printing speed of 30.36 m/s, infill density of 77.10 %, 

and print temperature of 195.12 °C, resulting in a surface roughness value of 1.31 µm. From these findings, the PSO 

optimization method was found to be more effective than the RSM method, showing a significant improvement in surface 

roughness with a reduction of 13.5 %. 

Keywords - Fused deposition modelling, Surface roughness, Particle swarm optimisation, Response surface methodology, 

Face-centred central composite designs. 

1. Introduction  
Additive manufacturing, specifically Fused Deposition 

Modeling (FDM), has significantly impacted manufacturing 

and prototyping due to its user-friendliness and lower cost 

compared to conventional techniques such as molding, 

computer numerical control machining, and forming. FDM is 

commonly used in rapid prototyping to create intricate 

geometric components for various industries, including 

medical device development, lab-on-a-chip technologies, 

ecological sciences, and natural sciences [1].  

 

Its flexibility allows for quick and efficient production of 

components with complex structures, unlike traditional 

processes that can be more challenging and time-consuming 

[2]. It is crucial to evaluate the FDM process, identify areas 

for improvement, and make necessary adjustments to 

enhance part quality to meet the quality standards for FDM 

printed parts [3-5]. 

Two key factors for improving the properties of printed 

parts, including surface finish, tensile strength, wear strength, 

and compressive strength, are the use of improved materials 

and the proper configuration of FDM process parameters [6-

8]. The development of new materials provides an 

opportunity to enhance the quality and mechanical 

characteristics of prototype models, but this depends on using 

the correct process parameters. Inadequate parameter settings 

can lead to negative consequences such as reduced 

mechanical properties, increased material consumption, 

deteriorated surface finish, prolonged manufacturing time, 

and higher manufacturing costs [9]. Adjusting the FDM 

process parameters effectively has been shown to improve 

the properties of printed models, as the FDM machine's 

settings influence the model's quality. Selecting the 

appropriate process parameters can enhance the quality of the 

printed model, and studying the influence of various 

parameters on output responses is necessary for determining 

the optimum settings. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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As 3D printing technology and materials continue to 

advance, it has transitioned from being limited to prototyping 

to becoming a viable option for final product production. 

Ensuring that printed models possess the necessary 

mechanical and quality characteristics is crucial for their 

performance in large-scale additive manufacturing 

production [10]. Researchers have employed various 

advanced optimization techniques to determine the ideal 

combinations of process parameters for enhancing the 

mechanical characteristics and surface quality of printed 

parts. Traditional optimization approaches like full factorial 

design, Taguchi design approach, and response surface 

methodology (RSM) have been widely used in optimizing 

FDM processes. Traditional approaches are often used to 

optimise FDM process parameters such as printing 

temperature, infill density, printing speed, layer thickness, 

component orientation, and infill pattern, which greatly 

influence surface quality and mechanical qualities.  

 

The Box-Behnken design was used by Vaibhav et al. 

(2022) to explore the effects of infill percentage, printing 

speed, and layer thickness on the surface quality, tensile 

strength, and printing time of PLA samples. The research 

found that decreasing layer thickness might enhance these 

properties since it significantly influenced the strength and 

surface quality of the printed parts [11]. Torres et al. (2016) 

used the Taguchi approach to investigate the impacts of layer 

thickness, printing speed, extrusion temperature, part 

orientation, infill density, and infill direction on the 

mechanical characteristics and surface quality of PLA printed 

parts. The results demonstrated that layer height and infill 

percentage substantially impacted surface finish and tensile 

strength. It should be noted, however, that decreasing layer 

thickness may have a detrimental influence on tensile 

strength [12]. Deswal et al. (2019) used a hybrid technique to 

increase dimensional accuracy and optimise FDM process 

parameters, using response surface methodology (RSM), 

artificial neural networks, and genetic algorithms. The 

research focused on internal density, layer thickness, line 

count, and manufacturing orientation to improve accuracy 

and reduce dimension deviation [13].  

 

Tontowi et al. (2017) studied the effects of printing 

temperature, part orientation, and layer thickness on printing 

quality, including tensile strength and dimensional accuracy. 

Printing samples were analysed using response surfaces and 

Taguchi methodologies. The goal of the study was to obtain 

maximum tensile strength while retaining dimensional 

accuracy. The findings showed that layer thickness most 

influenced tensile strength [14]. Devicharana and Garg 

(2019) investigated several 3D printer input factors, such as 

printing speed, nozzle position, and bed temperature, to 

address initial layer adhesion and upper layer gaps. Using 

Pareto analysis, the research intended to enhance the quality 

of printed parts while lowering material prices and printing 

time [15]. Khatwani and Srivastava (2019) evaluated the 

bending and tensile strength of PLA specimens as a function 

of nozzle diameter, layer thickness, and printing temperature. 

SEM was utilised to analyse the fracture of the PLA 

components in the research, and it was discovered that raising 

the printing plate temperature enhanced both tensile and 

bending strength. Furthermore, in relation to mechanical 

properties, it was observed that layer thickness had a dual 

effect: it increased bending strength while decreasing tensile 

strength. Additionally, the initial positive impact of nozzle 

diameter on tensile strength was counterbalanced by a 

subsequent reduction in bending strength. [16].  

 

Barua et al. (2019) investigated the link between FDM 

process parameters (layer thickness, raster width, raster 

angle, part orientation, and air gap) and the printed part's 

mechanical strength and surface roughness. The Taguchi 

method and the MOORA optimisation algorithm were used 

in the investigation. The findings emphasised the significance 

of part orientation in increasing mechanical strength and 

surface roughness [17, 18]. Srinivasan et al. (2022) 

investigated the effects of layer thickness, infill density, and 

infill pattern on ABS printed parts. The response surface 

technique with central composite design was used for 

statistical analysis and optimisation.  

 

The results emphasized that infill density and layer 

thickness played a crucial role as the primary influential 

factors impacting the outcomes. [19]. Altan et al. (2018) 

investigated the effect of several features of the FDM 

process, namely layer thickness, nozzle temperature, and 

printing speed, on tensile strength and surface roughness. The 

Taguchi L16 orthogonal array was used to print PLA parts 

using various FDM settings. The findings revealed that layer 

thickness and deposition head velocity substantially impacted 

the final output. Lower layer thickness values were found to 

improve both the tensile strength and surface quality of the 

printed parts [20]. 
 

Numerous research studies have been dedicated to 

optimizing FDM process parameters, including printing 

temperature, infill density, printing speed, layer thickness, 

part orientation, and infill pattern, with the aim of 

significantly improving surface quality and mechanical 

properties. These investigations have consistently 

demonstrated the impact of layer thickness and infill 

percentage on FDM-printed parts' strength and surface 

quality. However, it is crucial to consider the potential 

negative effect of reducing layer thickness on the durability 

of the printed components. To address complex optimization 

problems, advanced computational techniques such as 

Particle Swarm Optimization (PSO), Symbiotic Organisms 

Search (SOS), Genetic Algorithm (GA), Firefly Algorithm 

(FA), and Artificial Bee Colony (ABC) have been employed 

and integrated with response surface methodology, factorial 

design, and Taguchi method experimental designs. These 

computational optimization techniques have shown 
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promising outcomes when compared to traditional 

approaches. For instance, Rojek et al. (2018) utilized a 

Genetic Algorithm (GA) to optimize the 3D-printing process, 

specifically focusing on features and material selection, to 

achieve satisfactory tensile strength in a hand exoskeleton 

component [21]. Fountas et al. (2022) investigated the 

optimal parameter settings for the FDM process using the 

Grey Wolf Optimization (GWO) method, aiming to enhance 

the performance and longevity of printed parts [22]. By 

optimizing the FDM process, it is possible to enhance both 

the performance and durability of the printed parts, resulting 

in higher quality and more reliable components. 
 

The experimental design was performed based on the 

response surface method with 27 runs of standard samples 

from ASTM D790 using Polyethylene Terephthalate Glycol 

(PET-G) material with five input parameters: printing speed, 

angle, infill density, layer height, and printing temperature. 

Results demonstrated that the algorithm could recommend a 

strong combination of parameter settings to maintain good 

flexural strength with a 15 percent improvement over the 

highest value achieved from the experimental data [23]. Sai 

et al. (2020) focused on improving the compressive strength, 

surface quality, and printing time of biomedical implant 

components by utilizing an Adaptive Neuro-Fuzzy Inference 

System (ANFIS) and the Whale Optimization Algorithm 

(WOA).  

 

The study's results demonstrated that the ANFIS-WOA 

approach successfully identified optimal FDM parameters 

that produced parts of better quality [24]. Deshwal et al. 

(2020) evaluated the efficacy of three hybrid optimization 

techniques: GA-ANN, GA-RSM, and GA-ANFIS. They 

found that GA-ANFIS outperformed the other strategies in 

terms of prediction accuracy and tensile strength, making it 

the most effective approach for optimizing FDM parameters 

and improving tensile strength [25]. These studies 

collectively highlight the importance of utilizing advanced 

optimization techniques to enhance the quality and reliability 

of FDM-printed components, resulting in improved 

performance and durability. 
 

Although metaheuristic algorithms are widely used in 

FDM optimization research, Particle Swarm Optimisation 

(PSO) has received limited attention for optimising FDM 

process parameters to enhance printed component surface 

roughness. Nevertheless, a number of studies have 

demonstrated the efficiency of PSO in optimising printed 

components. In a study by Shirmohammadi et al. (2021), a 

hybrid technique incorporating artificial neural networks and 

a particle swarm algorithm was used to determine the optimal 

FDM process parameter for improving the surface quality of 

a rectangular sample. The outcomes demonstrated that the 

metaheuristic algorithm improved the surface imperfection of 

the printed parts [26]. Similarly, Raju et al. (2019) evaluated 

the efficacy of the FDM machine in producing specimens 

with enhanced surface quality and mechanical properties. 

The study examined the effects of a number of variables, 

including support material, layer height, part orientation, and 

internal pattern density. The results indicated that optimal 

results could be obtained with sparse support material, a layer 

height of 0.007 mm, a high-density internal pattern, and a part 

orientation of 60° [27].  

 

In this particular study, the novelty lies in its integrated 

approach to optimize the Fused Deposition Modeling (FDM) 

process parameters for reducing surface roughness in printed 

components. Unlike traditional approaches, this study 

combined statistical analysis, specifically Response Surface 

Methodology (RSM) [28], with the Particle Swarm 

Optimization (PSO) algorithm, a metaheuristic optimization 

technique. This integration allowed for a more 

comprehensive exploration of the relationship between input 

parameters (layer height, infill density, printing temperature, 

and printing speed) and their impact on surface roughness. 

 

The objective of this study was to determine the optimal 

combination of FDM process parameters to minimize surface 

roughness. This was achieved by employing a combination 

of Response Surface Methodology (RSM) and the Particle 

Swarm Optimization (PSO) algorithm. The experimental 

design utilized the Face-centered Central Composite Design 

(FCCD), which incorporated four key input parameters: layer 

height, infill density, printing temperature, and printing 

speed. Through Analysis of Variance (ANOVA), the effects 

of these input factors on surface roughness were investigated, 

providing insights into their individual significance and 

contribution.  

 

Furthermore, the study aimed to establish the 

relationship between the selected input components and the 

resulting output responses, thereby understanding the 

underlying interactions. Experimental validation was 

performed to assess the accuracy of the findings, comparing 

predicted outcomes with physical tests on printed samples 

using the optimal parameter combination. This integrated 

approach of statistical analysis, PSO optimization and 

experimental validation enhanced the credibility and 

practical applicability of the results, thereby offering valuable 

insights for practitioners and researchers seeking to improve 

the surface quality of FDM-printed components. 

 

2. Methodology 
2.1. Test Configuration 

This study utilized the FDM machine (Model: Ender-3 

V2 Pro 3) to print the samples of PLA-type filament material. 

Figure 1 shows the sample dimensions (ASTM D638).  The 

CAD drawing of the sample was converted into STL format 

and processed in CURA software to generate G-Code that is 

readable by the FDM 3D printer. Surface roughness testing 

was performed on all specimens using a surface roughness 

tester (Mitutoyo SV-C4500), as shown in Figure 2. The 
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sample data was then statistically analysed using Design 

Expert software. This software enhanced data exploration 

and interpretation, allowing for a complete statistical 

assessment and inference. The study used statistical analysis 

to obtain important insights into the surface roughness 

characteristics of the investigated materials and develop 

relevant inferences based on the findings. 

 

 
Fig. 1 Sample dimensions 

2.2. Experimental Design 

The use of experimental design, in general, aims to 

optimise the testing process while assuring high-quality 

outcomes by effectively gathering the data needed to build 

response models. Data was collected in the current 

investigation utilising the Face-centered Central Composite 

Design (FCCD) modified with extra centre and axial points, 

allowing for the estimate of a second-order model.  

 

The experiment focused on four major input parameters: 

layer height (A), printing speed (B), infill density (C), and 

printing temperature (D), as outlined in Table 1. A total of 46 

experimental runs were carried out to collect a thorough 

dataset, as shown in Table 2. Figure 3 shows the experimental 

samples produced from 46 different runs. 

 
Fig. 2 SV-C4500 Mitutoyo formtracer 

Table 1. FDM parameter levels 

Parameter Unit Level 1 Level 2 Level 3 

Layer height (A) mm 0.06 0.18 0.3 

Printing speed (B) mm/s 30 45 60 

Infill density (C) % 20 50 80 

Printing 

temperature (D) 
°C 190 195 200 

 

2.3. PSO Optimization for FDM 3D Printer 

Particle Swarm Optimization (PSO) is a computational 

optimization algorithm modeled after the collective behavior 

of flocking birds or schooling fish. The algorithm initializes 

the population of a random particle to search for the best 

solution in the search space. Unlike traditional optimization 

methods that rely on the gradient or differential form of the 

objective function, PSO only requires the specification of the 

objective function, which is a relatively straightforward 

optimization technique [29]. In this study, the fitness function 

for the PSO algorithm was employed by the surface 

roughness regression model. Figure 4 shows a flowchart 

demonstrating the FDM 3D printer optimization approach 

using PSO. The steps involved in optimizing surface 

roughness in FDM 3D printing using PSO are as follows: 

 

2.3.1. Configuring the Variables  

• Set the maximum iterations.  

• Set the population size.  

• Set the particle velocity and particle position size.  

• Determine the range for the input parameters.  

 

2.3.2. Initialization 

• Particle velocity and particle position: randomization of 

input parameters. 

• Fitness function: surface roughness regression model. 

• Evaluate the fitness function for each particle position. 
 

 

 
Fig. 3 ASTM D638 standard printed samples 
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Table 2. Experimental data for surface roughness 

Number of samples 
Parameter setting 

Surface roughness (µm) 
A (mm) B (mm/s) C (%) D (°C) 

1 0.30 30.00 20.00 195.00 2.406 

2 0.10 60.00 80.00 195.00 1.457 

3 0.20 45.00 50.00 205.00 1.743 

4 0.30 60.00 20.00 215.00 2.823 

5 0.30 60.00 80.00 215.00 2.449 

6 0.10 60.00 20.00 215.00 1.698 

7 0.30 30.00 80.00 215.00 2.341 

8 0.20 45.00 50.00 195.00 1.855 

9 0.10 30.00 20.00 195.00 1.107 

10 0.20 45.00 50.00 205.00 1.800 

11 0.30 45.00 50.00 205.00 2.570 

12 0.20 45.00 50.00 205.00 2.056 

13 0.30 30.00 20.00 215.00 2.977 

14 0.30 30.00 20.00 215.00 3.093 

15 0.10 30.00 80.00 195.00 0.942 

16 0.10 30.00 20.00 195.00 1.327 

17 0.10 30.00 80.00 195.00 1.118 

18 0.10 30.00 80.00 215.00 1.673 

19 0.10 30.00 80.00 215.00 1.788 

20 0.30 30.00 20.00 195.00 3.293 

21 0.30 60.00 80.00 215.00 2.614 

22 0.30 60.00 20.00 215.00 2.887 

23 0.10 30.00 20.00 215.00 1.457 

24 0.20 45.00 80.00 205.00 2.173 

25 0.20 30.00 50.00 205.00 1.698 

26 0.30 60.00 20.00 195.00 3.696 

27 0.20 45.00 50.00 205.00 3.232 

28 0.20 45.00 20.00 205.00 1.913 

29 0.20 45.00 50.00 205.00 2.124 

30 0.10 45.00 50.00 205.00 1.072 

31 0.20 45.00 50.00 205.00 2.058 

32 0.10 30.00 20.00 215.00 1.127 

33 0.10 60.00 20.00 215.00 1.994 

34 0.30 60.00 20.00 195.00 3.314 

35 0.10 60.00 80.00 195.00 1.469 

36 0.20 45.00 50.00 215.00 1.719 

37 0.20 60.00 50.00 205.00 2.476 

38 0.30 60.00 80.00 195.00 3.907 

39 0.30 30.00 80.00 195.00 2.793 

40 0.30 30.00 80.00 195.00 1.753 

41 0.10 60.00 80.00 215.00 1.712 

42 0.10 60.00 80.00 215.00 1.837 

43 0.30 60.00 80.00 195.00 3.569 

44 0.30 30.00 80.00 215.00 1.942 

45 0.10 60.00 20.00 195.00 1.188 

46 0.10 60.00 20.00 195.00 1.503 



Mohd Sazli Saad et al. / IJETT, 71(9), 92-103, 2023 

 

97 

                       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4 PSO algorithm process for surface roughness 

2.3.3. Main Program 

Updating particle velocity and particle position. 

 

Particle Velocity 

𝑣𝑖(𝑘 + 1) = 𝑤. 𝑣𝑖(𝑘) + 𝑐1. 𝑟𝑛𝑑1(𝑥𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖) +

𝑐2. 𝑟𝑛𝑑2(𝑥𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖) (1) 

Particle Position 
 

𝑥𝑖(𝑘 + 1) = 𝑥𝑖(𝑘) + 𝑣𝑖(𝑘 + 1)                        (2) 
 

Where i represents the particle number, k denotes the 

iteration count, vi denotes the velocity of the i-th particle, xi 

is the position of the i-th particle, rnd1 and rnd2 are random 

values, w denotes weight inertia, c1 represents the cognitive 

parameter, and c2 represents the social parameter. 

 

• Evaluation of particle position.  

• Updating local best (pbest) and global best (gbest): 

• Compare the new fitness value (surface roughness 

value) with the old local fitness value. If the new 

fitness value outperforms the old fitness value, the 

new fitness value will substitute the old fitness value, 

and its particle position becomes the local best (pbest).  

• Compare the new fitness value (surface roughness 

value) with the old global fitness value. If the new 

Configuration and Initialization 

Update Particle Velocity and Position 

Evaluation of Fitness Function 

f (xi) < f p best Compare 

Fitness Value 

 

Local Update 

Global Update 

f (xi) < f p best Compare 

Fitness Value 

 

Maximum Iteration 

Reached? 

Stop 

Maintain Old Fitness and Position 

Maintain Old Fitness and Position 

 

No 

No 

No 

Yes 

Y 

Yes 

Y 

Yes 

Y 
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fitness value outperforms the old fitness value, the 

new fitness value will substitute the old global fitness 

to be the global best (gbest). 

• Repeat steps a-c until the maximum iteration is reached. 
 

Identification of optimal input parameter setting: After 

completing all iterations, the input parameter setting that 

results in the lowest surface roughness will be identified. 

 

3. Results and Discussion  
3.1. Analysis of Variance (ANOVA)  

Analysis of variance (ANOVA), a statistical analysis 

method, was employed to investigate the impact of layer 

height, printing speed, infill density, and print temperature on 

the surface roughness of the printed parts. This study 

facilitated the identification of significant factors influencing 

surface roughness, enabling informed decision-making for 

process optimization and achieving improved results. The 

findings from the ANOVA study are summarized in Table 3. 

 

The ANOVA test revealed a p-value of less than 0.0001, 

indicating that layer height had the most pronounced effect 

on surface roughness. Following layer height, printing speed, 

infill density, and printing temperature also exerted 

significant influences.  
 

Furthermore, the interaction effects of specific parameter 

combinations, such as layer height and infill density (AC), 

layer height and printing temperature (AD), printing speed 

and printing temperature (BD), and the combination of 

printing speed, infill density, and printing temperature 

(BCD), were found to have substantial impacts on surface 

roughness. 

Using Design Expert tools, further investigation was 

conducted to determine the variable terms and coefficients of 

the quadratic model. The model's validity was assessed 

through ANOVA, considering factors such as model 

significance, lack of fit, and the R-squared value. The p-value 

of the model was found to be less than 0.0001, indicating its 

importance and excellent fit to the experimental data. Terms 

with p-values exceeding 0.05 were considered non-

significant. The significant model term confirmed the 

appropriateness of the chosen model for the experimental 

data. Additionally, the lack of fit, which measures the model's 

fitness to the data, was determined to be minimal (0.3433) 

compared to the pure error, indicating a good fit between the 

model and the actual data. 

 

The coefficient of determination, often known as R-

squared, was calculated to assess how well the model 

explains variance in the response variable. The model 

performed effectively, demonstrating an R-squared value of 

85.55 % for surface roughness and an adjusted R-squared 

value of 80.29 %. The adjusted R-squared factor considers 

the number of predictors in the model. It increases only when 

adding a new term significantly improves the model beyond 

chance.  

However, it was lower than the R-squared value, 

indicating that the model's accuracy was overestimated. In 

brief, the statistical analysis utilising ANOVA and the 

evaluation of model significance, lack of fit, and the R-

squared value provided a complete picture of the connection 

between input parameters and surface roughness. These 

discoveries significantly enhance the FDM process, resulting 

in a superior surface in the end. 

Table 3. ANOVA analysis for surface roughness 
Source Sum of squares df Mean square p-value 

 

Comment 

Model 118.00 15 7.87 < 0.0001 Significant 

Model 0.66 12 0.055 < 0.0001 Significant 

A 0.51 1 0.51 < 0.0001 - 

B 0.056 1 0.056 0.0003 - 

C 1.567x10-3 1 1.567 x10-3 0.5016 - 

D 4.059x10-4 1 4.059 x10-4 0.7316 - 

AC 9.993 x10-3 1 9.993 x10-3 0.0955 - 

AD 0.046 1 0.046 0.0008 - 

BC 2.860 x10-3 1 2.860 x10-3 0.3652 - 

BD 6.634 x10-3 1 6.634 x10-3 0.1713 - 

CD 5.099 x10-4 1 5.099 x10-4 0.7008 - 

A2 4.187 x10-3 1 4.187 x10-3 0.2747 - 

BCD 9.662 x10-3 1 9.662 x10-3 0.1009 - 

A2D 2.072 x10-3 1 2.072 x10-3 0.4401 - 

Residual 0.11 33 3.393 x10-3 - - 

Lack of Fit 0.046 12 3.799 x10-3 0.3433 Not Significant 

 R-squared 0.8555 Adequate 

 Adj R-Squared 0.8029 Adequate 
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Fig. 5 Comparison of experimental and predicted surface roughness 

values 

 
Fig. 6 Normal probability plot of residuals for surface roughness 

 
Fig. 7 Residuals vs Run Plot for surface roughness 

The comparison of the experimental and predicted 

values of the RSM model for surface roughness is depicted in 

Figure 5. An ideal fit should have points clustered around the 

fitted line. The points on either side of the plot, farthest from 

the mean, have a great influence and can significantly affect 

the position of the fitted line. The graph indicates that the 

majority of the plotted points are near the fitted line, 

suggesting that the quadratic model developed provided 

accurate predictions for estimating the predicted surface 

roughness values. 

 

It is imperative to perform a suitable statistical analysis 

to confirm the adequacy of any model before accepting it. A 

normal probability distribution was employed to verify 

whether the residuals are normally distributed, which should 

yield a straight line. Figure 6 displays that most of the data 

points fall close to the line, indicating that the model fits the 

data well and that there are no substantial problems with 

response normality or transformation. 
 

The run residual plot is a type of scatter plot in which 

each residual is plotted against an index that shows the data 

collection run number (in time). The goal of this plot is to see 

if there is any process drift. From the residual plot shown in 

Figure 7, there are no obvious patterns, negative or positive. 

The point of each run is between the minimum and maximum 

limits, indicating no drift in this experimental result. This 

outcome supports the accuracy of the regression model in 

predicting surface roughness based on the selected process 

parameters. Based on this experimental result, the surface 

roughness regression model is given by Equation 3. 

 

1/√𝑅𝑎 = 4.11565 − 37.40326𝐴 + 0.018253𝐵 +

0.038343𝐶 − 0.014428𝐷 + 5.89038 × 10−3𝐴𝐶 +
0.17078𝐴𝐷 − 8.12606 × 10−4𝐵𝐶 − 9.70798 ×
10−5𝐵𝐷 − 1.87071 × 10−4𝐶𝐷 + 70.18228𝐴2 +
3.86145 × 10−6𝐵𝐶𝐷 − 0.33175𝐴2𝐷  

(3) 

 
3.2.  Interaction Effect Analysis 

The presence of interaction effects is of utmost 

importance as it reveals how the combination of FDM 

process parameters influences the output response, 

specifically the surface roughness of the printed sample. In 

this study, the focus lies on three significant interactions, 

namely the interactions between layer height and infill 

density (AC), layer height and print temperature (AD), and 

print speed and print temperature (BD), as determined by the 

ANOVA data. 

 

Figure 8 illustrates the interaction effect of layer height 

and infill density on surface roughness. It demonstrates that 

while the surface roughness increases with higher layer 

heights, the variation in infill density has no discernible 

impact on surface roughness, even at lower layer heights. 

Consequently, infill density can be considered to have a 

negligible effect on surface roughness in this particular 

interaction.  

 

Notably, the maximum surface roughness occurs when 

the layer height is at its highest value of 0.30 mm, coupled 

with the lowest infill density of 20.00 %. According to the 

ANOVA analysis, the interaction effect between layer height 

and infill density is statistically significant, as indicated by a 

p-value of 0.0955. 
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Fig. 8 Surface roughness interaction plot of layer height and infill 

density 

 

 
Fig. 9 Surface roughness interaction plot of layer height and print 

temperature 

 

 
Fig. 10 Surface roughness interaction plot of print speed and print 

temperature 

 

Furthermore, Figure 9 illustrates the interaction effect 

between layer height and print temperature on surface 

roughness. Optimal surface roughness is achieved at the 

maximum layer height of 0.30 mm and the minimum print 

temperature of 195.00 °C. Notably, reducing the print 

temperature does not impact surface roughness at higher 

layer heights; the same applies to lower layer heights. Hence, 

in this particular scenario, it can be deduced that print 

temperature has a minor impact on surface roughness. 

Conversely, optimizing the layer height results in an 

enhanced surface roughness. The ANOVA analysis confirms 

the statistical significance of the interaction effect between 

layer height and print temperature, as denoted by a p-value of 

0.0008. 

 

Additionally, Figure 10 demonstrates the interaction 

effect of print speed and print temperature on surface 

roughness. Decreasing the print temperature significantly 

affects surface roughness at higher print speeds, and the same 

trend is observed at lower print speeds. Thus, in this 

interaction, lowering the print temperature and increasing the 

print speed have a notable impact on surface roughness. 

Furthermore, the maximum surface roughness in this 

interaction occurs at the highest print speed of 60 mm/s and 

the lowest print temperature of 195.00 °C. However, the 

ANOVA analysis indicates that the interaction effect 

between print speed and print temperature is not statistically 

significant, with a p-value of 0.1713. 

3.3. RSM Optimization Result  

Optimizing the FDM process to achieve the lowest 

surface roughness involved employing Response Surface 

Methodology (RSM) with the assistance of Design Expert 

software. Before conducting the optimization, it was 

necessary to define the range of input parameters and output 

response. The results, presented in Table 4, demonstrated that 

the lowest surface roughness of 1.077 µm could be attained 

by setting the layer height, printing speed, print temperature, 

and infill density to 0.10 mm, 30.00 mm/s, 196.73 °C, and 

79.4 %, respectively. These findings indicate that better 

surface roughness can be achieved by minimizing the layer 

height, printing speed, and print temperature while 

maximizing the infill density. According to the ANOVA 

analysis, the factors with the most significant impact on 

surface roughness were layer height and printing speed. Fine-

tuning these parameters has the potential to yield a substantial 

improvement in the surface roughness of printed parts. 
 

Table 4. RSM optimization result for surface roughness 

Process parameter Unit Values 

Layer height (A) mm 0.10 

Printing speed (B) mm/s 30.00 

Infill density (C) % 79.41 

Printing temperature (D) °C 196.73 

Optimum surface roughness (Ra) µm 1.077 

 

3.4. PSO Optimization Result 

The objective of employing the Particle Swarm 

Optimization (PSO) algorithm was to identify the optimal 

combinations of parameters that would yield the lowest 

surface roughness. The search for the optimal value of 

surface roughness was conducted within the specified 

parameter constraints outlined in Table 1. The PSO algorithm 

utilized Equation (3) as the objective function for evaluating 

surface roughness. In this algorithm, the fitness value 

represented the surface roughness, while the position and 
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velocity of particles in the population represented the input 

parameters. The initial configuration of the PSO constant 

parameters can be found in Table 5. 

 
Table 5. PSO algorithm initial setting 

Parameter Setting value 

No. of particles (No. of population) 300 

Particles steps (No. of iteration) 500 

No. of process parameter (Dimension) 4 

Cognitive acceleration constant, c1 1.5 

Social acceleration constant, c2 1.5 

Weight inertia, w 0.4 

 

The outcomes of applying the Particle Swarm 

Optimization (PSO) algorithm to identify the optimal FDM 

input parameters for achieving minimal surface roughness 

are illustrated in Figure 11. The convergence profile reveals 

that the optimal solution was attained after 200 iterations, 

with a rapid decrease in the fitness value. Table 6 displays the 

optimal parameters, which were determined to be a layer 

height of 0.1002 mm, a print speed of 30.36 mm/s, an infill 

density of 77.11 %, and a print temperature of 195.12 °C. The 

results indicate that reducing the layer height and increasing 

the printing speed can contribute to an enhancement in 

surface quality. 

 

 
Fig. 11 Convergence profile of surface roughness 

 

Table 6. Optimization result by using PSO. 

Process parameter Values 

Layer height (mm) 0.10 

Print speed (mm/s) 30.36 

Infill density (%) 77.11 

Print temperature (°C) 195.12 

Optimum surface roughness (Ra) 1.0531 

 

3.4. Experimental Confirmation Test 

In this study, the Particle Swarm Optimization (PSO) 

method was experimentally validated to determine the 

optimal process parameters for reducing surface roughness in 

fused deposition modeling. The results, as presented in Table 

7, clearly demonstrate the superior performance of the PSO 

method in identifying process parameters that lead to reduced 

surface roughness. The predicted improvement was 2.26 %, 

while the observed experimental improvement was 13.5 %. 

The experimental confirmation results from the Mitutoyo 

SV-C4500 Formtracer, shown in Figures 12 and 13, further 

validate the effectiveness of PSO and its ability to 

significantly reduce the surface roughness of printed parts by 

searching for the optimal parameter settings. 

 

 
Fig. 12 Graph for RSM validation 

 
Fig. 13 Graph for PSO validation 

The findings clearly demonstrate that the PSO algorithm 

outperforms the traditional method in terms of optimization. 

This can be attributed to the nature of how the PSO works, 

utilizing a population-based searching method with 

randomization. In contrast, RSM optimizes based on the 

gradient descent approach. The population-based searching 

method in PSO allows for a more comprehensive exploration 

of the parameter space, leading to better convergence and 

more accurate optimization results. On the other hand, the 

gradient descent approach of RSM may sometimes get stuck 

in local minima, limiting its ability to find the global 

optimum. Therefore, the PSO algorithm proves to be a more 

effective and robust optimization technique in this study. 

Moreover, the findings underscore the potential of 

metaheuristic optimization algorithms in advancing the field 

of 3D printing and optimizing various performance 

parameters in future research.
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Table 7. Experimental confirmation test for RSM and PSO.  

 
Input Parameter 

Predicted Experiment 
A (mm) B (mm/s) C (%) D (°C) 

RSM 0.10 30.00 79.41 196.73 1.08 1.48 

PSO 0.10 30.36 77.10 195.12 1.05 1.31 

Percent Improvement 2.26 % 13.5 % 

4. Conclusion 
In conclusion, the study demonstrated that utilizing the 

PSO method to optimize FDM process parameters effectively 

improves the surface quality of printed parts. The results of 

the ANOVA analysis showed that layer height and printing 

speed were the most significant factors affecting surface 

roughness.  

 

The experimental confirmation test using the optimized 

parameters confirmed that the PSO algorithm significantly 

improved surface roughness compared to traditional RSM 

optimization methods, with a reduction of about 2.26 % for 

predicted tests and 13.5 % for experimental tests.  

 

The findings clearly demonstrate that the PSO 

algorithm outperforms the traditional method in terms of 

optimization.  
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