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Abstract - The innovative areas of software-defined networks and the Internet of Things are currently receiving significant 

attention in the IT industry and academic circles. As a result of their popularity, they have become a target for numerous 

attacks in the realm of SD-IoT (Software Defined Internet of Things). The attackers may aim to either pilfer or obstruct users’ 

data, in addition to depleting network resources through futility, thereby frustrating legitimate user demands. The category of 

attacks includes a form known as Distributed Denial of Service (DDoS). In this work, a centralized attack detection and 

mitigation approach has been proposed. For getting the most efficient attack detection and prevention method, a number of 

classifiers, namely Random Forest (RF), XGB, Light Gradient Boosting Machine (LGBM), ET, GB, Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN), NB, SVM(Linear), LR, and SVM(Poly) have been trained and tested on two controller-

based datasets. Their performance has been evaluated under precision, F1, Cohen’s Kappa Coefficient (CKC), recall, 

accuracy, False Alarm Rate (FAR), Testing Time, and AUC value. In both datasets, it is discovered that LGBM outperforms 

all other classifiers, but here, the performance of LGBM on the second dataset is better than that of the first dataset, so finally, 

LGBM trained with the second dataset is deployed in the controller of SDN where it detects and mitigates the attack from the 

live traffic in SD-IoT. 

Keywords - Distributed Denial of Service Attack, Ryu, Mininet, Software-defined Internet of Things, hping3, D-ITG. 

1. Introduction  
The use of IoT is becoming more widespread day by day 

due to its usefulness in different areas of IT. Some major 

fields where it is being used are healthcare, agriculture, 

disaster, economics, meteorology, etc. [1, 2]. 

 

SDN has several advantages over conventional network 

architecture due to separating the control plane and data 

plane. Virtualization, big data, scalability, WAN, 

programmability, security, cloud and monitoring are some 

fields where SDN is gaining popularity [3, 4]. SD-IoT is the 

field where IoT has incorporated the advantages of SDN and 

is hence being used in many areas as it has the advantages of 

both fields. Picture 1 depicts the SD-IoT’s working diagram, 

which divides the network into three layers: the 

infrastructure, control, and application layers [5]. In this case, 

the SDN's essential component is the controller, which 

regulates all network activity. The data plane devices get all 

the forwarding rules, and these devices operate according to 

the supplied rules. These sent rules are stored in the form of 

flow entries in flow tables. There might be more than one 

flow table in a switch, which might contain many flow 

entries. By using this approach, a centralized working 

environment is created in SDN, which lets the controller 

manage all the activities happening in the network [4, 6–8]. 

Due to this feature, the controller of SDN is called the brain 

of the network [9, 10]. 

 

To depict the SD-IoT architecture, two groups of devices 

in the data plane are presented in fig. 1. In the first group, a 

gateway has been used to connect the IoT devices to the data 

plane devices. The user devices in the second group are 

directly linked to the data plane devices [11]. The device to 

whom the IoT gateway is connected determines how to deal 

with the packets coming from the IoT devices. Whenever a 

new request from the gateway comes to the data plane device, 

it sends the packet_in request to the controller. The controller 

replies with a packet_out that represents the response. This 

response is stored in the form of a flow entry in the flow table 

of the device. For this, the OpenFlow protocol is stored to 

communicate between the data plane and the control plane. 

 

For creating hindrances in the smooth functioning of SD-

IoT, some attacks are generated from the data plane devices 

of SD-IoT, where IoT devices are also part of this. By sending 

floods of requests, attackers overwhelm the controller to 

respond back, and sometimes, they fill the spaces available in 

the data plane devices of the SD-IoT. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 SDN Based IoT 

It creates the need to develop an IDS for SD-IoT, which 

can efficiently detect and mitigate the attack. In the SD-IoT 

context, there are two ways to find and stop attacks: first, in 

the control plane, and second, in the data plane. Additionally, 

two different approaches, known as Signature-based 

Intrusion Detection Systems (SIDS) and Anomaly-based 

Intrusion Detection Systems (AIDS), can be used to find and 

stop attacks [12]. In the case of AIDS, the model is trained 

using typical traffic behaviour. Any divergence from this 

flow is seen as an attack. In the event of a SIDS, the database 

contains the attack's signature. Whenever a request comes to 

it, it matches the database, and if any match is found, the 

traffic is treated as attack traffic. 

 

In this work, a centralized controller-based AIDS has 

been proposed, which can centrally detect and mitigate the 

attack from IoT devices connected to the data plane device. 

For this purpose, two controller-based datasets have been 

used to find the best-performing model. The first dataset, 

which is being named dataset(A), was created by the author 

of this work, and the second dataset, named dataset(B), was 

created by [13]. The details about these datasets are given in 

section 6.1. A few classifiers, namely RF, XGB, LGBM, ET, 

GB, SVM, KNN, NB, SVM(Linear), LR, and SVM(Poly), 

have been trained and tested on these datasets and the best-

performing classifier is selected for the deployment in the 

SD-IoT controller. The names of the metrics under which 

performance is evaluated are precision, F1, CKC, recall, 

accuracy, FAR, Prediction Time, and AUC value. Since 

LGBM with the dataset (B) is found to perform best among 

all classifiers, it is installed in the SD-IoT controller, where it 

can identify attacks. Further, it is deployed in such a way that 

it can also mitigate the attack by stopping the attacking 

source.  

 

The work is structured as follows: Related work is shown 

in Section 2, motivation is discussed in Section 3, 

methodology is discussed in Section 4, implementation 

environment is discussed in Section 5, experiments and 

discussion are presented in Section 6, the work's contribution 

is presented in Section 7, and conclusions and future work are 

discussed in Section 8. 

  

2. Related Work  
To detect and prevent DDoS attacks on IoT using SDN, 

[14-16] designed a semi-supervised deep Extreme Learning 

Machine-based approach. Details and the names of the 

features they are using in their work have not been mentioned 

by them. However, they are claiming to detect the attack in a 
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distributed manner. They used their own internal dataset in 

addition to publicly accessible UNB-ISCX datasets to assess 

performance. As our study focuses on feature extraction, 

dataset generation, and classifier training, a close look at the 

work of the authors of [14] has been taken. The researchers 

stated that they extracted 155 features using the SPAN 

component of the Cisco Nexus Switch, although they did not 

describe how they did it. The data plane is the sole place 

where the aforementioned features can be extracted because 

they are primarily targeted at data packets. Furthermore, they 

have exclusively used UDP packets to demonstrate their 

research. They were able to achieve a precision of 97.2 

percent, an accuracy of 97.9 percent, an F1 of 97.2 percent, 

and a recall of 97.6 percent.  

  

Despite making the claim that the controller should 

record all traffic, [17] constructed an SDN using Mininet and 

Floodlight and applied a dataset made for the data plane for 

the purpose of spotting attacks. The datasets used included 

CTU-10, CTU-11, ISCX-IDS- 2012, and ISCX-SlowDDoS-

2016. They claim to detect the attack in the controller but use 

the dataset made for data plane devices. This is the main issue 

with their approach. They are limiting their productivity since 

they are not putting in the necessary work in the controller to 

detect the threats. A trigger-based approach has been given 

by [18], where on detecting the attack in the data plane, one 

alert is sent to the controller to check whether this alert is right 

or wrong. For this, they are using K-Means and KNN. On 

receiving the alert, the controller extracts five vector tuples 

from the traffic and predicts. The right countermeasures can 

be implemented as soon as malicious traffic is found. They 

are utilising Mininet and ONOS, respectively, for their work. 

The XGBoost classifier was suggested by [19-22] to 

recognise the attack. With the help of the Mininet and POX, 

they developed the network. The traffic was gathered using 

TCPdump, and the Hyenae tool created the attack. [23] used 

a deep learning-based sparse autoencoder for their attack 

prevention system. For traffic collecting and extraction, the 

TCFI module of the controller was used. A dual-tiered 

security architecture was suggested by [24] in their study. In 

their work, they found that DNN is performing better than 

SVM. All the aforementioned tasks were performed using the 

Mininet emulator and the Ryu controller. 

  

The TCP SYN attack, a type of DDoS attack, was 

suggested to be early detected and countered by [25] in their 

article. The entropy method was used to determine the flow 

data's unpredictable nature. They have integrated their logic 

into a floodlight controller and a network emulator called 

Mininet for various situations. 

 

A lot of effort has been put on the SDN controller's attack 

defence. The approach proposed by [3] focuses on detecting 

DDoS attacks in SDN using the pox controller. They 

produced a dataset from which they extracted 12 UDP, TCP, 

and ICMP traffic characteristics under normal and attack 

conditions. They compared the performance measuring 

metrics of the NB, SVM, KNN, and ANN classifiers after 

training them on both all features and the six chosen features. 

They discovered that the KNN classifier outperformed the 

others with an accuracy of 98.3 percent, recall of 97.72 

percent, precision of 97.70 percent, and F1-Value of 97.70 

percent with the six chosen features. Finally, they asserted 

that the outcomes after feature selection are superior to the 

ones before. 

  

 Were able to determine the type of attack and its scope 

using entropy (Giotis 2014) [26]. They utilised the NOX 

controller for traffic sampling through SDN and sFlow. The 

NOX controller's three components are data collecting, 

periodic entropy-based calculations, and flow table 

modification, which is used to manage the various tasks of 

attack detection and mitigation. 

 

A method based on using several controllers was 

suggested by [27] to detect an attack in the SDN control 

plane. A data module and a control module are both present. 

Detecting unusual network traffic is the data plane module's 

job. This module enhances the performance of the Back 

Propagation Neural Network by employing four vector tuples 

taken from incoming input. The forward controller must be 

remapped, and this module must provide access control. 

Usually, only the master controller is in operation, while the 

slave controller is inactive. While the slave controller is 

activated when an attack is detected, the master controller 

communicates the ACL to the data plane routers. They used 

a Mininet emulator and a Ryu controller to demonstrate their 

abilities. 

 

The control plane and data plane engaged in interaction 

in [28]. This method aims to reduce the burden on the 

controller and southbound traffic by leveraging the data plane 

switches' idle processing capacity. Entropy is used by the 

edge switch to do preliminary calculations while also keeping 

track of the network's health and alerting the controller to any 

issues. In order to identify attacks at the micro-level, a set of 

classifiers called random forest was used in the admin panel. 

In order to determine if the sent traffic represents an attack, 

the classifier analyses the five vector tuples. If it does, it 

issues a discard instruction to the switch. They used Ryu as 

an SDN controller, Mininet as an emulator, and scapy to 

produce ICMP and SYN floods to test their strategy. 

 

In order to generate UDP, TCP, and ICMP attacks and 

regular traffic, [13] used Mininet and Ryu controllers. From 

this traffic, they were able to extract 23 features. From a total 

of 23, they extracted 8 features. For accuracy, recall, FAR, 

precision, and F1 respectively, they scored 98.8 percent, 97.9 

percent, 0.02 percent, 98.27 percent, and 97.65 percent. 

 

Mininet and Floodlight controllers were used by  [29] to 

create the SDN. They simultaneously generated constant-
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packet-size normal and attack traffic. They created a dataset 

using the flow entries from the switch in order to extract the 

features. They created a dataset to train the model using 6 

characteristics as input. The average accuracy and FAR for 

the SVM classifier were 95.24 percent and 1.26, respectively. 

 

An approach for detecting and preventing DDoS attacks 

at the edge of a network is given by [30]. In the detection 

stage, it is expected that (i) successful connections are more 

likely than unsuccessful ones, and (ii) requests for 

connections from compromised hosts are significantly more 

frequent than those from healthy hosts. A host's ability to 

establish connections successfully or unsuccessfully over a 

period of time can be utilised to identify whether or not the 

host is infected. New flow rules are then sent from the SDN 

controller to the switch, blocking traffic from the malicious 

host. 

 

 Built a Support Vector Machine (SVM) using a Genetic 

Algorithm (GA) and Kernel Principal Component Analysis 

(KPCA) [31]. They were able to adjust the SVM's settings 

using GA and KPCA, respectively, to reduce the feature 

vector's dimension. An enhanced kernel function was applied 

to reduce the background noise caused by the feature 

variations significantly. 

 

The SDN was developed by [32] using Miniedit and the 

OpenDayLight controller. They produced their dataset by 

generating DDoS attacks, SYN flooding DDoS attacks, 

ordinary traffic, UDP flooding, and five attribute-rich DDoS 

attack traffic. They examined one linear kernel with multiple 

decision functions using Advanced SVM to evaluate 

performance. It was possible to achieve a 97 percent 

accuracy, a 96 percent detection rate (recall), and a FAR of 

0.02 percent.  

 

To protect SDN controllers from DDoS attacks in the 

IoT paradigm, [33] presents a solution based on user trust 

levels. Based on their history, the controller assigns a trust 

value to each user in the network; a higher trust value means 

the controller would prioritize the request, whilst a lower trust 

level can cause the user's packets to be rejected. In addition, 

the controller has a queue for enquiries that, if it fills up, 

deletes the least trustworthy request to create room for a more 

reliable one. The authors of the study [34] strengthened the 

SDN architecture. They increased their resistance to DDoS 

attacks by enhancing the security of the SDN by applying a 

joint entropy-based security strategy (JESS). 

 

3. Motivation  
The primary driving force behind this effort is to create 

a controller-based attack detection method that effectively 

identifies attacks in an SD-IoT environment. The rationale 

behind doing this is that it preserves the core characteristic of 

SD-IoT: centralized management. Another method can still 

be applied to SD-IoT threat detection and mitigation. This 

strategy is based on the SD-IoT data plane. [18], [27] are just 

two examples of the numerous studies that have already been 

done to identify attacks in the SD-IoT data plane, but they do 

not support the fundamental aspect of SDN; therefore, an 

effective centralised controller-based attack detection 

approach has been devised in this method.  

 

4. Methodology 
In this work, two datasets have been used with several 

well-known and used classifiers to find the best-performing 

classifier. Both datasets are controller-based datasets, i.e., 

they have been generated from the logs created by 

southbound traffic, i.e., by OpenFlow protocol. The complete 

methodology is given in Fig. 2. In the first phase, 

preprocessing of the dataset is performed. It is then broken 

into two parts: train and test. In the second phase, the train 

part is used to train all the classifiers, and then the test part is 

used to check the performance of all the classifiers under 

some metrics. Following a performance review, the top-

performing classifier is then chosen for implementation in the 

SD-IoT controller. In phase 3, this classifier is installed in the 

SD-IoT controller, determining whether the incoming 

communication is legitimate or malicious. By restricting the 

port from which the attack traffic originates, it lessens the 

impact of attacks. 

 
4.1. Dataset Preprocessing 

All the datasets' features already have numerical values, 

so there was no need to perform any preprocessing operations 

other than scaling, as there was a difference between the 

values of the features. For this, MinMax scaling was 

performed because it is easier and quicker to implement [35, 

36]. The formula for performing MinMax scaling, equation 

1, has been used. 

𝑥𝑖 =
(𝑋−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
                  (1) 

Here, X is the single feature vector, Xmin and Xmax are its 

Minimum and Maximum values, and Xi is its scaled value. 

4.2. Classifiers Used 

In order to obtain the most effective classifier from the 6 

and 8 features that have been extracted and selected, a 

literature survey was conducted on various machine learning 

algorithms known for their application in attack detection and 

mitigation. The surveyed algorithms included RF, XGB, 

LGBM, ET, GB, KNN, NB, SVM Linear, LR, and SVM 

Poly. Following dataset preparation, a thorough evaluation of 

various classifiers is performed. This assessment involves 

measuring the classifiers’ performance utilizing several 

metrics, including precision, F1, CKC, recall, accuracy, FAR, 

Prediction Time, and AUC value. The most effective 

classifier is chosen for implementation within the controller 

of the SD-IoT infrastructure. A succinct exposition of 

classifiers is presented herewith:
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4.2.1. Random Forest (RF) 

The DT method and the Random Forest (RF) algorithm 

are similar. RF is made up of many different DTs. The 

bootstrap aggregation approach of” bagging” may be 

employed for unbalanced datasets. Bagging and RF, as the 

names suggest, use a random approach to generate output. In 

RF, a tree with all features is not necessarily constructed, but 

decision trees provide a fixed-size subset of all 

characteristics. As a result, the computational cost was 

considerably reduced. Each tree determines the contingent 

aspects of an RF on its own. When a sample reaches the root, 

it is disseminated to all child nodes in the tree structure. Each 

subtree’s node displays the expected categorization for a 

particular sample as a label. That sample is then assigned to 

the highest category possible. 

 

4.2.2. Extreme Gradient Boosting (XGB) 

A research initiative at the University of Washington 

created the scalable ensemble-based ML technique known as 

Extreme Gradient Boosting (XGBoost). It quickly and 

accurately solves various ML issues with structured or 

tabular data [37]. The decision trees were constructed by 

XGBoost sequentially and with substantial weights. Weights 

are assigned to each independent variable and subsequently 

used to feed the DT that will predict the results. Variables that 

the tree incorrectly categorised are fed into the second DT if 

their weight increases. The individual classifiers are then 

combined to produce a more potent model. Some well-known 

applications of XGBoost include classification, regression, 

ranking, and custom prediction. 

 

4.2.3. Light Gradient Boosting Machine (LGBM) 
Light Gradient Boosting Machine (LGBM) is the second 

technique applied in this paper. This tree-based learning 

algorithm-based gradient boosting framework. Due to the 

homogeneous ensemble, [38] uses the same type of numerous 

weak classifiers for prediction. According to  [39], the 

foundation of LGBM is Gradient-based One-Side Sampling 

(GOSS) and Exclusive Feature Bundling (EFB).

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 2 Methodology of the proposed work 
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The GOSS recommends including cases with higher 

gradients and excluding instances with lower gradients since 

the information gained from instances with higher gradients 

is more than that gained from instances with lower gradients. 

Instances from the dataset are fewer as a result, and prediction 

time is faster without sacrificing efficiency. EFB makes an 

effort to group features that infrequently store nonzero 

values, such as the numerous features that are produced 

during a single hot encoding. Both GOSS and EFB work to 

reduce dataset size and increase efficiency; they both offer 

quicker training speeds and consume little memory. It 

supports parallel learning and has greater accuracy than any 

other boosting technique. According to[38, 39], the training 

pace of Light GBM is 20 times faster than that of traditional 

Gradient Boosting Decision Trees (GBDT) without 

sacrificing prediction accuracy. Because it is a boosting 

strategy, it lessens DT bias.  

 

4.2.4. Support Vector Machine (SVM) 

According to studies [3], [26], a support vector machine 

can be used as a classifier or a regressor. The foundation for 

its operation is the hyperplane and the vectors. The points that 

are closest to the hyperplane are referred to as vectors, and 

the plane that lies between those points is called the 

hyperplane. SVM may utilise a variety of kernels, including 

linear, polynomial, Gaussian, etc., depending on the 

dynamics of the goal value. 

 

4.2.5. KNN 

KNN is a supervised technique that can be used to solve 

classification and regression issues. It needs to calculate the 

distance between the object in question and the k nearest 

points, making it a slow learner, but it can be used to resolve 

the categorization issue. In contrast, the KNN Classifier, 

which is noise resistant and produces the maximum 

precision, efficiently identifies DDoS attacks. The distance 

between two points can be calculated using the Manhattan, 

Minkowski, and Euclidean distance functions. 

 

Some of the attack detection works [3, 40–42] are using 

it, so it has also been used for the same objective in the SD-

IoT context. 

 

4.2.6. NB(NB) 

According to the independent variable comparison 

concept, NB determines the link between these independent 

variables [43]. The Bayes theorem, which stipulates that 

attributes must be true, is the foundation of this machine-

learning approach. Due to the algorithm’s lack of parameter 

evaluation, it is easy to design. It can now handle very huge 

datasets thanks to this. The class variable y and input vector 

values are related in the way that the Bayes theorem specifies 

as x1 through xn: 

 

P (y | x1, . . . , xn) =
𝑃(𝑦)P (x1, . . . , xn | y)

P (x1, . . . , xn)
  (2) 

4.2.7. LR(LR)) 

Logistic regression is a common Machine Learning 

method that belongs to the Supervised Learning approach. It 

is used to forecast the categorical dependent variable from a 

group of independent factors. 

 

4.3. Classifier Training and Deployment 

After performing preprocessing, the next phase is to train 

all the classifiers and test their performance. For this, k-fold 

cross-validation has been performed. The value of K has been 

set to 10 based on the works done in  [43-45]. 

 

5. Implementation Environment  
For implementing the complete things, Python 

programming has been used. In many places, built-in libraries 

developed in Python have been used, like Scikitlearn, 

Numpy, Pandas, etc. For creating the SDN environment, 

Mininet and Ryu have been used as remote controllers. Ryu 

has been stated to perform better than other controllers [46], 

so it has been used in this work. Ubuntu 18 has been used as 

an Operating System. The system has 8GB RAM and an 

AMD PRO R7 processor. 

 

6. Experiments and Discussion 
In this section, details about performing different 

operations are given. 

 
6.1. Traffic Generation, Feature Extraction and Dataset 

Creation 

All the Mininet emulators have been used to create the 

SDN topologies, and the Ryu controller has been used in 

remote mode as a controller. For creating dataset (A), mgen 

and hping3 tools have generated normal and attack traffic, 

respectively. Similarly, for creating dataset (B),  D-ITG  [47]   

and hping3 tools have been used to generate normal and 

attack traffic, respectively. The complete details about the 

creation of dataset (A) and dataset (B) is given in [13], 

respectively. The names of the features of these datasets are 

given in Table 1 and Table 3. 

 

6.2. Analysis of the Features  

To show the relationship among the features, both 

datasets' heat matrices are given in Fig. 3 and Fig. 4, 

respectively. From the heat matrix, it can be clearly observed 

how informative these features are. 

 
Table 1. Name of the features of dataset(A)  

S.No  Name of Feature  

1 Count of Source IP (SIP Count)  

2 Port Count (Port Count) 

3 Flow Pair to Flow Count Ratio (FPFCR) 

4 Packet In count Difference (PIN Diff) 

5 Lookup Count Difference (Look Up Count) 

6 Packet Type (UDP/TCP/ICMP) (Packet Type) 
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Table 2. Details about the samples collected for different traffic in 

dataset(A) 

Traffic Type Number of Samples 

ICMP 
Attack 235 

Normal 245 

TCP 
Attack 220 

Normal 255 

UDP 
Attack 230 

Normal 240 

 

6.3. Dataset Preprocessing 

No action other than feature scaling has been done 

because all the features in both datasets already have 

numerical values. 

 
Table 3. Name of the features of dataset(B)  

S.No  Features Used  

1 Average Packet count per flow (APPF) 

2 Average Byte count per flow (ABPF) 

3 
Total number of flows in a switch (Total 

Flow) 

4 Protocol 

5 Duration 

6 Number of Packet in messages (PIN Count) 

7 Packet rate (Packet Rate) 

8 Port Bandwidth (Port Bandwidth) 

 
Table 4. Traffic category of each traffic instance 

Traffic class Benign Malicious 

ICMP 24957 16364 

TCP 18897 10539 

UDP 22772 10816 

 

 
Fig. 3 Heat matrix of the features of dataset A 

6.4. Evaluation of the Models 

The performance of all the classifiers has been evaluated 

under Dataset (A) and Dataset (B). All the classifiers have 

been trained and verified using 10-fold cross-validation to get 

accurate results. The names of the metrics under which 

performance has been evaluated are precision, F1, CKC, 

recall, accuracy, FAR, Prediction Time, and AUC value. 

  

 
Fig. 4 Heat matrix of the features of dataset B 

Equations 3 to 8 show the formulas used for calculating 

these metrics. They have also been described in detail in [48]. 

 

6.4.1. Accuracy 

The percentage of correctly predicted test outcomes is 

referred to as accuracy.  

      Accuracy =
T P + T N

TP + T N + F P + F N
 X 100        (3) 

 
6.4.2. Precision 

Precision is defined as the percentage of relevant 

examples (true positives) among all examples predicted to 

belong in a given class. Details are given in [50]. 

Precision =
TP

T P + F P
 X 100             (4) 

 

6.4.3. Recall 
The proportion of examples expected to belong to a class 

compared to all examples that actually belong in the class is 

known as recall. 

Recall =
TP

T P + F N
 X 100          (5) 

 

6.4.4. F1-Value 

Instead of focusing on overall performance like accuracy 

does, the F1 score is an alternative machine learning 

evaluation statistic that assesses a model’s prediction skills 

by focusing on its class-wise performance. The F1 score 

combines two conflicting metrics of a model’s precision and 

recall scores, which has led to its extensive adoption in recent 

literature. 
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F1-Score =
2 * Recall * Precision

Recall + Precision
     X   100     (6) 

6.4.5. False Alarm Rate (FAR) 

The FAR measures the percentage of negative data cases 

that are incorrectly labelled as positive cases. 

False Alarm Rate =
F P

  F P + T N
 X 100                (7) 

 

6.4.6. Cohen’s Kappa Coefficient 

For both multiclass and imbalanced class issues, 

Cohen’s Kappa statistic is a great tool. Other measures are 

unable to express the full picture in situations involving 

several classes and unbalanced classes, but Kappa can. 

𝑘 =
po - pe

  1 - pe
 = 1 −

1- po

  1 - pe
X 100         (8) 

 

The value of this coefficient might be less than or equal 

to 1. Values near 0 or less than 0 indicate that the classifier is 

not useful, while a value close to 1 shows better performance. 

 

Testing Time 

The classifier’s testing period is the time needed to 

forecast test data. Testing time is more significant than 

training time since it demonstrates how long it takes to 

observe an attack in a practical setting. 

 

AUC-ROC Curve 

This curve is used to measure problems with binary 

classification. The true positive and false positive rates are on 

this probability curve. The AUC gauges how well a classifier 

can distinguish between classes. 

 

6.5. Performance Evaluation of the Classifiers and 

Discussions 

The performance of all the classifiers has been evaluated 

under Dataset (A) and Dataset (B). All the classifiers have 

been trained. 

 

6.5.1. Under the Dataset(A) 

The performance of all the classifiers has been evaluated 

under the above metrics to find the best-performing classifier 

in dataset A. The performance under these metrics has been 

shown in Fig. 5 and Table 5. 

 

Performance evaluation in terms of accuracy of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, and SVM(Poly), has been shown in 

Fig. 5a. The values of the accuracy of all the classifiers are 

98.47%, 98.09%, 98.09%, 98.41%, 98.79%, 96.76%, 

98.22%, 94.41%, 94.41%, 93.52%, 95.10%, respectively. It 

is found that GB is performing better than other classifiers in 

terms of accuracy. 

 

Performance evaluation in terms of Precision of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, and SVM(Poly), have been shown in 

Fig.  5b. The values of accuracy of all the classifiers are 

98.54%, 98.19%, 98.18%, 98.48%, 98.83%, 96.97%, 

98.31%, 94.45%, 94.56%, 93.73%, 95.61%, respectively. It 

is found that GB performs better than other classifiers in 

terms of precision.  

 

Performance evaluation regarding the recall of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, and SVM(Poly), have been shown in 

Fig.  5c. The values of the accuracy of all the classifiers are 

98.47%, 98.09%, 98.09%, 98.41%, 98.79%, 96.76%, 

98.22%, 94.41%,94.41%, 93.52% and 95.10% respectively. 

It is found that GB is performing better than other classifiers 

regarding recall.  

 

Performance evaluation in terms of the f1 score of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, SVM(Poly), have been shown in Fig. 

5b.The values of f1 score of all the classifiers are 98.47%, 

98.09%, 98.09%, 98.40%, 98.79%, 96.75%, 98.22%, 

94.40%, 94.40%, 93.50% and 95.08%. It is found that GB is 

performing better than other classifiers regarding the f1 score.  

Performance evaluation in terms of prediction time of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, and SVM(Poly), has been shown in 

Fig. 5f. The values of prediction time of all the classifiers are 

1.04%,0.49%, 0.42%, 0.76%, 0.80%, 0.27%, 0.09%, 0.06%, 

0.21%, 0.11%, 0.28%, It is found that GB is performing 

better than other classifiers in terms of prediction time.  

 

Performance evaluation in terms of FAR of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, and SVM(Poly), has been shown in 

Fig. 5e. The values of prediction time of all the classifiers are 

0.00%, 0.00%, 0.00%, 0.00%, 0.00%, 0.00%, 0.00%, 4.45%, 

3.14%, 3.07%, 0.00%. It is found that GB performs better 

than other classifiers in terms of FAR. 

 

Performance evaluation in terms of CKC of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, SVM(Poly), have been shown in Fig. 

5g. The values of prediction time of all the classifiers are 

96.93%, 96.15%, 96.15%, 96.77%, 97.56%, 93.45%, 

96.42%, 88.72%, 88.78%, 86.82%, 90.14%. It is found that 

GB performs better than other classifiers in CKC. 

 

6.5.2. Under the Dataset(B) 

The performance of all the classifiers has been evaluated 

under the above metrics to find the best-performing classifier 

in dataset B. The performance under these metrics is shown 

in Fig. 7 and Table 6. 

 

Performance evaluation in terms of accuracy of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, and SVM(Poly), have been shown in 

Fig. 7a. The values of prediction time of all the classifiers are 
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99.558%, 99.604%, 99.704%, 99.567% 98.274% 92.902% 

98.463% 61.628% 61.624% 68.003% 86.566%. It is found 

that LGBM is performing better than other classifiers in terms 

of accuracy. 

 

Performance evaluation in terms of precision of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, and SVM (Poly), have been shown in 

Fig. 7b. The values of precision of all the classifiers are 

99.558%, 99.605%, 99.705%, 99.567%, 98.282%, 92.894%, 

98.463%, 61.293%, 59.707%, 67.532%, 86.754%. It is found 

that LGBM is performing better than other classifiers in terms 

of precision. 

 

Performance evaluation in terms of recall of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, and SVM(Poly), have been shown in 

Fig. 7c. The values of recall of all the classifiers are 99.558%, 

99.604%, 99.704%, 99.567%, 98.274%, 92.902%, 98.463%, 

61.628%, 61.624%, 68.003%, 86.566%. It is found that 

LGBM is performing better than other classifiers in terms of 

recall. 

 

Performance evaluation in terms of F1 of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, SVM(Poly), have been shown in Fig. 

7d. The values of F1 of all the classifiers are 99.558%, 

99.604%, 99.704%, 99.567%, 98.276%, 92.895%, 98.463%, 

61.430%, 50.962%, 65.372%, 86.326%. It was found that 

LGBM performs better than other classifiers in terms of F1. 

Performance evaluation in terms of FAR of all the classifiers, 

namely RF, XGB, LGBM, ET, GB, SVM, KNN, NB, 

SVM(Linear), LR, and SVM(Poly), have been shown in Fig. 

7e. The values of FAR of all the classifiers are 0.425%, 

0.389%, 0.380%, 0.382%, 1.759%, 5.487%, 1.280%, 

29.829%, 3.576%, 11.938%, 6.162%. It was found that 

LGBM is performing better than other classifiers regarding 

FAR. 
 

Performance evaluation in terms of prediction time of all 

the classifiers, namely RF, XGB, LGBM, ET, GB, SVM, 

KNN, NB, SVM(Linear), LR, SVM(Poly), have been shown 

in Fig. 7f. The values of prediction time of all the classifiers 

are 32.467%, 7.710%, 2.900%, 20.401%, 67.854%, 

4633.667%, 8.437%, 0.661%, 8336.396%, 2.250%, 

4489.978%. It is found that LGBM is performing better than 

other classifiers regarding prediction time. 

 

Performance evaluation in terms of CKC of all the 

classifiers, namely RF, XGB, LGBM, ET, GB, SVM, KNN, 

NB, SVM(Linear), LR, SVM(Poly), have been shown in Fig. 

7g. The values of CKC of all the classifiers are 99.069%, 

99.169%, 99.378%, 99.089%, 96.378%, 85.026%, 96.774%, 

18.651%, 4.257%, 26.597%, 70.989%. It was found that 

LGBM is performing better than other classifiers regarding 

CKC. 

 

The reason for the better performance of LGBM is that 

the foundation of LGBM uses Gradient-based OneSide 

Sampling (GOSS) and Exclusive Feature Bundling (EFB). 

The GOSS recommends including cases with higher 

gradients and excluding instances with lower gradients since 

the information gained from instances with higher gradients 

is more than that gained from instances with lower gradients. 

Instances from the dataset are fewer as a result, and prediction 

time is faster without sacrificing efficiency. EFB tries to 

group features that infrequently store nonzero values, such as 

the numerous features produced during a single hot encoding. 

Both GOSS and EFB work to reduce dataset size and increase 

efficiency; they both offer quicker training speeds and 

consume little memory. It supports parallel learning and has 

greater accuracy than any other boosting technique. 

According to [33], [34], the training pace of LightGBM is 20 

times faster than that of traditional Gradient Boosting 

Decision Trees (GBDT) without sacrificing prediction 

accuracy. Because it is a boosting strategy, it lessens DT bias. 
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(e) 

 

 

(f) 

 

(g) 

Fig. 5 Performance comparison of all the classifiers in the dataset(A) under metrics (a). Accuracy (b). Precision (c). Recall (d). F1 (e). FAR (f). 

Prediction Time (g). CKC
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Fig. 6 10-Fold mean AUC-ROC curve of all the classifiers under dataset(A) 

6.6. Model Deployment in the Controllers 

From the above results and discussion, it is found that 

LGBM is the best-performing classifier among others that 

can be deployed in the controller of SD-IoT. Once deployed, 

it can detect and mitigate the attack from the live traffic. The 

algorithm to detect the attack is given in algorithm 1, and the 

algorithm to mitigate the attack is given in algorithm 2. 
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(f) 

 

 

(g) 

Fig. 7 Performance comparison of all the classifiers in the dataset(B) under metrics (a). Accuracy (b). Precision (c). Recall (d). F1 (e). FAR (f). 

Prediction Time (g). CKC

  
Table 5. Performance of different classifiers under dataset(A) 

Classifiers RF XGB LGBM ET GB 
SVM 

(RBF) 
KNN NB 

SVM 

(Linear) 
LR 

SVM 

(Poly) 

Accuracy 
98.47 

% 
98.09% 98.09% 98.41% 98.79% 96.76% 98.22% 94.41% 94.41% 93.52% 95.10% 

Precision 98.54 98.19 98.18 98.48 98.83 96.97 98.31 94.45 94.56 93.73 95.61 

Recall 98.47 98.09 98.09 98.41 98.79 96.76 98.22 94.41 94.41 93.52 95.10 

F1 98.47 98.09 98.09 98.40 98.79 96.75 98.22 94.40 94.40 93.50 95.08 

Prediction 

Time 
1.04 0.49 0.42 0.76 0.80 0.27 0.09 0.06 0.21 0.11 0.28 

FAR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.45 3.14 3.07 0.00 

CKC 96.93 96.15 96.15 96.77 97.56 93.45 96.42 88.72 88.78 86.82 90.14 
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Table 6. Performance of different classifiers under dataset(B)  

Classifiers RF XGB LGBM ET GB SVM KNN NB 
SVM 

(Linear) 
LR 

SVM 

(Poly) 

Accuracy 99.558 99.604 99.704 99.567 98.274 92.902 98.463 61.628 61.624 68.003 86.566 

Precision 99.558 99.605 99.705 99.567 98.282 92.894 98.463 61.293 59.707 67.532 86.754 

Recall 99.558 99.604 99.704 99.567 98.274 92.902 98.463 61.628 61.624 68.003 86.566 

F1 99.558 99.604 99.704 99.567 98.276 92.895 98.463 61.430 50.962 65.372 86.326 

Prediction 

Time 
32.467 7.710 2.900 20.401 67.854 4633.667 8.437 0.661 8336.396 2.250 4489.978 

FAR 0.425 0.389 0.380 0.382 1.759 5.487 1.280 29.829 3.576 11.938 6.162 

CKC 99.069 99.169 99.378 99.089 96.378 85.026 96.774 18.651 4.257 26.597 70.989 

 

Table 7. Comparison with other similar works  

Ref.& Year Accuracy Recall Precision F1 Score FAR Prediction Time CKC 

[3], 2020 92.11% 88.71% 91.42% 89.91% NA NA NA 

[29], 2018 95.24% NA NA NA 1.26% NA NA 

[14], 2020 97.9% 97.6 % 97.2 % 97.2% NA NA NA 

[13], 2021 98.8% 97.91% 98.27% 97.65% 0.02% NA NA 

[32], 2019 97% 96% NA NA 0.02% NA NA 

[50], 2020 99.9% NA NA NA NA NA NA 

[Proposed work ] 99.704% 99.705% 99.704% 99.704% 2.900% 0.380% 97.29% 

 

 
Fig. 8 10-Fold mean AUC-ROC curve of all the classifiers under 

dataset(B) 

For the deployment, the pickle file of the trained LGBM 

is selected and installed as a module in the controller of SDN. 

The current work targets the Ryu controller; that is why the 

pickle file is being taken, which is basically a Python file. 

Apart from the LGBM's pickle file, the scaler function's 

pickle file is also required for scaling the features extracted 

from the live traffic.  

 

The working of the SD-Controller after deploying the 

attack detection and mitigation module is shown in Fig. 9. In 

this fig., the feature extractor module installed in the 

controller will extract all the required features and send them 

to the attack detection module. This attack detection module 

will check whether it is normal traffic or attack traffic. Once 

attack traffic is detected, the mitigation module will send the 

necessary steps to the data plane device to immediately stop 

the attack for a fixed interval.  

 

After this mentioned interval, the blocked source is 

unblocked, and again, the feature extractor module will 

extract the feature and the above process is repeated. 

 

 
Fig. 9 Deployment of the trained classifier in SDN controller 
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Algorithm 1: Algorithm for Attack Detection in the SD-

IoT Controller 

Input: trained model: Model which has been trained for 

attack detection, 

 trained MinMaxScaler: Scaler which has been 

trained for scaling the features. 

Output: The traffic status is either Attack or Normal. 

/* To read the statistics send an OFPFlowStats request to 

the switch; 

Load model and scaler and Goto the 

EventOFPFlowStatsReply handler          */ 

 

1. model ← load(trained model) 

2. scaler ← load(trained M inMaxScaler) 

/* By extracting features from real-time traffic, a tuple 

    of new observations can be created                    */ 

3. if dataset = A then 

/* Extract the required features from dataset(A) */ 

4.      new observation= 

         ΠSIP_Count,Port_Count,FPFCR,PIN_Diff,Look_Up_Count,PacketType                         

        (Traffic) 

5. Else 

6.      /* Extract the required feature from dataset(B) */ 

    new observation =ΠAPPF,ABPF,Total_Flow,P rotocol,Duration,PIN 

_            Count(Traffic) 

7. scaled_observation=scaler.transform(new_observatio

n) 

8. result = model.predict(scaled_observation) 

9. Return result 

 

Algorithm 2: Algorithm to prevent the attacks in SD-IoT. 
 

Input: T: Pause Time, 

 Idle Timeout Value: Flow entry lifetime 

 Trained Model: Trained Model, 

 Scaler: Scaler function. 

Output: Block the attacking port 

 

/* Set the pause time          */ 

1. INTERVAL=T 

2. sleep(INTERVAL) 

/* Get the datapath of all the switches and then send the 

OFPFlowStateRequest to all the switches for reading 

the data                           */ 

3. foreach dp in {datapath.values} do 

OFPFlowStateRequest(dp) 

       /* Get the responses from all the switches and read 

statistics.                                                                 */ 

4. foreach Stat in {en.msg.body} do 

      /* Check attack using algorithm 1.                       */ 

5.       attack = Detect_Attack(Trained_Model, Scaler) 

6.      if attack = 1 then 

7.            mac adr ← stat.src ether 

      /*Get the physical address                              */ 

8.             to do action ← [] 

      /* Set No action to drop the traffic                  */ 

9.           get_priority ← highets_priority_flow() 

              match←flow_entry.match[eth_src=mac _adr] 

 /* Find the flow entries having this physical

  address                                                    */ 

10.         add_flow(datapath, get_priority, to_do_action,

        match, idle_timeout = N) 

    /* Add the flow entry to the block source for N

  seconds.                                                  */ 

11.      else 

12.             Let the normal operations go on. 

 
 

6.7. Comparison and Discussion with Other Similar 

Works 

The works similar to this study, i.e., those that detect 

and/or mitigate the attacks centrally in an SDN environment, 

have been selected, compared and shown in Table 7. 

7. Contribution 
 In this work, a centralized controller-based attack 

detection and mitigation approach has been proposed. With 

the objective of finding the best attack detection model, a 

number of classifiers have been trained and tested with two 

datasets created in the controller of the SDN. It is found that 

LGBM outperforms other classifiers, so it has been deployed 

as a module in the controller so that it can detect the attack. 

Further, an attack mitigation approach for the Ryu controller 

has been given to extend the work, which can centrally block 

the attacking source immediately after it detects it. 

8. Conclusion and Future Work 
 This work proposes a controller-based DDoS attack 

detection and mitigation approach in the SD-IoT architecture.  

 Two datasets created in the controller of SDN have been 

used with the objective of finding the best-performing 

classifier with them.  

 The names of the classifiers used for performance 

evaluation are RF, XGB, LGBM, ET, GB, SVM, KNN, NB, 

SVM(Linear), LR, and SVM(Poly).  

 It is found that LGBM outperforms other classifiers 

under dataset(A) in terms of precision, F1, Cohen’s Kappa 

Coefficient (CKC), recall, accuracy, False Alarm Rate 

(FAR), Testing Time, and AUC value, and giving 

performance of 98.47%, 98.09%, 98.09%, 98.41%, 98.79%, 

96.76%, 98.22%, 94.41%, 94.41%, 93.52% and 95.10%, 

respectively.  

 Under dataset(B), LGBM again outperforms other 

classifiers and gives the performance of 99.558%, 99.604%, 

99.704%, 99.567%, 98.274%,92.902%, 98.463%, 61.628%, 

61.624%, 68.003% and 86.566%, respectively under the 

above-mentioned metrics.  
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 The top performing classifier, i.e., LGBM, is deployed 

in the Ryu controller, where it can detect and mitigate the 

attacks in the live traffic. In future, the same thing can be done 

in the multicontroller environment. The second work might 

be to do the same thing with the cooperative approach, where 

the preliminary attacks are detected in the data plane, and the 

controller decides on the final attack detection.
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