
International Journal of Engineering Trends and Technology Volume 71 Issue 9, 170-177, September 2023

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V71I9P216 © 2023 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Defect Prediction Model for Software Projects using

Naïve Bayesian Classifier

K. Suresh1, K. Jayasakthi Velmurugan2, S. Hemavathi3, V. Kavitha4

1Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur,

India.
2Department of Computer Science and Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and

Technical Sciences, Chennai, India.
3Department of Computer Science and Engineering, Sri Sai Ram Engineering College, Tambaram, India.

4Department of Computational Intelligence, School of Computing, SRM Institute of Science and Technology, Kattankulathur,

India.

1Corresponding Author : mailsureshkrish@gmail.com

Received: 03 May 2023 Revised: 29 July 2023 Accepted: 15 August 2023 Published: 03 September 2023

Abstract - The objective of this paper is to examine how effective supervised learning mechanisms are in classifying the

defective and non-defected software modules during the software development process by means of applying a Naïve Bayesian

(NB) classifier. Defect in software modules is the main cause of crucial software project risks. In other words, high-quality

software products can be achieved by applying the most significant risk management process. However, an organization's

environment or the development of projects is severely affected by the presence of risk events. Some of the critical constraints

such as resources, time or budget are damaged due to risk factors or risk. Major steps included in risk assessment techniques

are i) identifying, ii) analyzing, iii) planning, and iv) controlling events that are affecting the project environment. In this work,

a model can be developed using Machine Learning (ML) methods and its metric data for predicting the defective modules in

the software project. The NB classifier used in this work classifies the predicted and non-predicted data based on the

parameters to best suit complex real-time situations.

Keywords - Classification, Fuzzy decision-making trial and evaluation laboratory, Machine Learning, Naïve bayesian

classifier, Support Vector Machine.

1. Introduction
Requiring the commitment of various skills and

resources in one shot is the crucial goal of software

management experts. Involving multiple parties, a plan, a

budget, defined responsibilities and goals in a temporal

activity having a starting and ending date is defined as a

project. Software product delivery and development goals are

achieved with different project categories in software

development projects. Software products are developed

through maintenance, re-engineering, re-using, and

modifying modules in the software engineering project.

A project completed on a given time schedule, meeting

the desired requirements and consuming only minimum

expense cost is called a successful project. Most of the

previous studies have reported the mismanagement of

software development projects. According to the study, it

was observed that the outcomes of information system

development efforts were not delivered properly, not widely

utilized and so on. Prior to the completion of projects, about

32% of defective modules affecting the project were

removed, as suggested by the Standish group research. The

normal estimation of the project cost was determined as

190%, but the outcomes obtained after removing defective

modules showed that the project cost exceeded 52.4%.

Also, this research group has evidently proved that,

considering the scheduled cost and time, there appears only a

few successful projects (i.e. about 16.3% of software

projects). Nonetheless, according to the Standish survey, it

appears none of the software projects exhibit even a shadow

for the incomplete project. The failure of software projects

with competitors drastically affects the company's marketing

position. The software development process is done based on

the resources and time invested by the software companies.

When the needs for software projects change, risk

factors related to those projects may also change. It has been

determined that the machine learning methodology is the

most effective method for accommodating changes in risk

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mailsureshkrish@gmail.com

K. Suresh et al. / IJETT, 71(9), 170-177, 2023

171

factors in software projects. Machine learning approaches

offer accurate outcomes by managing the programs based on

the gained experience. The major objective of this study is to

create an effective framework for risk management that will

enable software project risk to be more effectively identified

and prioritized. This framework can help software

professionals manage software projects for bettering software

performance without any problems.

1.1. Literature Survey

Some of the effective strategies created by the

researchers have been used to perform robust and effective

risk management activities in software projects. This module

thoroughly reviews novel strategies to assess their

shortcomings and potency. However, the theory of soft

computing approaches is motivated by the drawbacks of

current methodologies created for enhancing risk

management activities in software project life cycles.

A project performed following the agile and waterfall

model demands the time schedule and cost of expense

required for a business in its initial lifecycle stage. Therefore,

expert knowledge-based software estimation techniques are

developed. However, some commonly used simple and

effortless methods in software project development are

planning poker, wideband Delphi, decomposition and so on

[1].

However, the main limitation found of these methods is

that they do not have much error tolerance; hence, function

points-FP and Lines of Code (SLOC) are developed

alternatives to these approaches. New technical changes in

software development methodologies, software architecture,

and programs are adapted by frequently updating the FP

models and SLOC. [2] have stated that those techniques

may struggle a lot with software project development during

the deployment of configurable software, code reusability

and so on.

Over the past two decades, researchers have tried to

tackle the aforementioned issues by using data mining

techniques and Machine Learning (ML) methods can be used

for software estimation [3, 4]; uncertainty in software

projects is better handled in the initial stage of project

lifecycle itself using these machine learning algorithms. This

is done by predicting the efforts and estimating duration at an

appropriate time [5, 6, 7].

Furthermore, historical information is used by these ML-

based techniques to perform the automated predictive

process; thereby, it acquires the ability to minimize the

political or psychological influences as well as the human

biases and so on. However, only a smaller number of

implementations is seen with ML algorithms on up-to-date

research works. The reason for this fact is that finding an

accurate data mining algorithm remained an open,

challenging research issue.

However, projects performed using traditional ML

algorithms have used difficult ensemble approaches and

outdated data sets; hence, data is overfitted in the software

programs [8, 9]. Software development project risk is defined

as uncertainty in software products developed due to

potential magnitude loss causing the project failure. [10]

stated that factors threatening the project's success cause

uncertainty in the software development project

environment.

In other words, incompleteness in software development

projects is generated by the factors named risk factors. In

order to maintain risk management in software development

projects, the researchers [11, 12] have approached risk

assessment and risk control techniques (i.e. two-step

forwarding approaches). The success of the project

compromised through identifying, analyzing and prioritizing

the risk factors is referred to as risk assessment; eliminating

or controlling each risk factor by means of acting on it is

called risk control [12].

Before the risk assessment is completed, it is impossible

to perform the risk control activity. The development

projects pursued by the managers create project failure

because the risk involved is not sufficiently handled using

these IS projects. When the managers wrongly recognize the

associated risks, then risky decisions are made unknowingly

[13]. Using a risk factor checklist for risk identification is the

most commonly used method in developing software projects

[14, 12].

A project manager can obtain a list of all potential risks

using these checklists. Then, the type of risk factors that suit

the project are verified and decided. Most of the past

research works have analyzed and found that risk factors are

combined to obtain the list of software project risks.

To deal with the complexity of SE activities, numerous

objective functions have not been required to be formulated

in any of the prior literal efforts. In other words, these

difficulties make it a perennial research issue to employ soft

computing-based methods during various life cycle stages of

software project development. However, due to the existence

of improbable elements, imprecision, and complexity

introduced during carrying out the intermediate phases,

wrong answers will be generated when employing basic

algorithms to handle these problems. Soft computing-based

techniques best handle the aforementioned issues and several

real-time applications. Due to an unlikely component, the

majority of current approaches have not been able to resolve

all the issues generated at the intermediate stage fully.

1.2. Benefits of Risk Management

Identifying, analyzing and creating mechanisms to

control and mitigate software project risks thoroughly from a

system or process by complete study is called the risk

K. Suresh et al. / IJETT, 71(9), 170-177, 2023

172

management process. Complete removal or elimination of

software project risks does not imply the successful

completion of the risk mitigation process; rather, it implies

that the risk has been reduced to an acceptable level. It is

important to gain knowledge about the severity of risk

factors, all the possible risks and their potential consequences

before determining risks in a software system. The mitigation

or control steps have been developed to remove crucial risks

based on the knowledge obtained on all risks.

Software developers can complete their projects within

the scheduled time and cost of expense (budget) by applying

the preventive approach to risk management. Better quality

outputs are produced by the risks-managed software projects

with minimum time and costs. Risk management techniques

assess risks in all the stages of software project development

by combining the software development process and risk

management practices.

The importance of risk management has been realized

by the organization with increased software development

complexity. The reason for this fact is that risk management

techniques have decreased the probability of project failures

and uncertainties included in software development.

Notably, it is important that software developers should

have knowledge about the causes of risks. Instead of solving

risks in a single part of a software system, the risks should be

managed throughout the whole system process. Software

developers should follow the below-given criteria provided

during the training program conducted for risk management

as follows:

• Risk identification (integrity, process and business).

• Quantitative assessments are made through computing

the risk probabilities.

• Qualitative risk impacts are determined with the

computation of quantitative.

• Determining accurately the time for qualitative and

quantitative risk assessment.

• Analyzed the hazard and safety measures of a software

product.

• Applying management strategies to monitor and mitigate

the risks.

• In all processes of the software project, the risks are

identified. Risks can be identified and classified using

various risk models. Business risks are managed using

these models better than product risks.

In the software development process, software defect

prediction methods have played a major role [15-19].

Software testing resources are allocated perfectly by

accurately predicting the defective software modules. In the

current trend, software metrics from the software modules

were extracted by various researchers to form many of the

training samples.

Then, software defect distribution prediction models are

constructed by applying machine learning methods.

Successful software defect prediction can be made using

machine learning-based technology [20]. Most commonly

used machine learning-based algorithms such as Linear

Classifier (LC), Naïve Bayes (NB), Decision Tree (DT), and

Particle Swarm Optimization (PSO) have been analyzed in

the work of [21-25]. Nevertheless, defect classification is

predicted by applying popular learning algorithms, namely,

imbalanced learning, semi-supervised learning, unsupervised

learning, and migration learning. Software quality attributes

are predominantly ascertained with the support of search-

based techniques having better predictive abilities [26].

Furthermore, error-prone modules were found to be

difficult to predict due to complexities and difficulties in

measuring software modules. The machine learning method

[27] was applied in the software defect prediction model to

satisfy the requirement of a large number of actual

complexity measurement attributes. Curse of dimensionality

issues are faced by many of the complex metric attributes

[28].

Furthermore, data redundancy is produced by the

software defect prediction method while introducing a

greater number of software metric attributes. To withstand

these issues, a model for ML-Based Software Risk

Assessment Using Naive Bayes has been recommended to

eliminate software defect modules.

The following software project hazards are identified,

predicted, and classified using a novel supervised learning

and classification technique described in this dissertation:

• To better accurately describe software risk by

implementing Naive Bayesian Classification.

• Machine learning techniques are used to build a model

that predicts possibly defective modules to the metrics of

a given set of software modules.

• By using machine learning techniques and considering

their individual metrics, potentially infected modules in

the software project are predicted.

• The classification of complicated and non-complex

software risks is done using a Naive Bayesian technique.

2. Classification Model
The working procedure of this system is shown in Figure

1. A process of handling, monitoring, analyzing and

identifying risk in a specific project is called risk

management. For the project's entire lifecycle, the risks are

analyzed, handled, and assessed (prioritizing the risks), and

front planning is made continuously using the risk

management process. Prior to the damage to the whole

project, the risk management process largely focused on

identifying, communicating, analyzing and controlling the

risks causing software failures. A core functionality of the

K. Suresh et al. / IJETT, 71(9), 170-177, 2023

173

risk management process is to maintain the applicable

principles by means of analyzing the independencies

between the success of the project and risk occurrence.

Step 1: Input Selection

The first stage involves choosing the right input.

The dataset's data are examined during this input

selection procedure. The dataset used in this study is

defined by a single statistical data matrix. Rows and

tables in the matrix indicate the variable and data

members. Each member's height and weight are

elucidated in the data set lists.

Step 2: Data Processing

The duplication and missing attributes are

rearranged and normalized in the data processing

step to improve the software risk prediction process

further.

Step 3: Attribute classification based on Naive Bayes

classifier

Based on the Naive Bayes classifier, a supervised

ML approach is created to categorize the predictable

software risks. Initially, precise monitoring of risk

factors is accomplished by combining data from

various sources. Risk factors have a significant

impact on some important factors, including time,

resources, and expense budgets. Risk management

primarily addresses risks that arise from project-

related activities like event control, planning,

analysis, and identification. Monitoring risk factors

like geographic distribution, temporal trends, and

intensity is crucial.

Step 4: Probability Estimation

In Naive Bayes classification, the risk can be

defined by probability functions, which are used to

describe the fundamental relationships between

variables that can accept input in the form of a set of

parent node values and compute the given node

probability and can be placed in node probability

tables.

Step 5: Risk Classification

Based on the probability score and machine learning

method, the software risks will be classified.

Step 6: Risk Evaluation

Once the risk is classified, the risk evaluation is

done by F-measure (i.e. precision and recall's

harmonic mean values), recall, precision and

accuracy.

Step 7: Predict Risk Factors

Based on the risk evaluation process, the risk factor

will be predicted.

 Fig. 1 Defect prediction model

Data Pre-processing

Attribute Classification

Naïve Bayes Classification

Probability Estimation

Predict Risk Factors

Risk Evaluation Risk Classification

Input Selection

K. Suresh et al. / IJETT, 71(9), 170-177, 2023

174

3. Results and Analysis
3.1. Dataset Selection

Experiments were performed on the NASA metric data

program (MDP) repository [30], which was applied

successfully to predict the software defects included in 13

data sets. Table 1 indicates the datasets used in this study.

Different samples included in each dataset are associated

with each software module. In each software module, a

number of attributes associated are identified by considering

the number of static code attributes comprised in each

software module. [31] Halstead attribute [15] and Line of

Code (LoC) are the static code attributes determined in each

code. Experiments are verified using MW1, MC2, PC4, PC1,

KC3, and CM1 of NASA.

3.2. Evaluation Metrics

The predictive ability of the system model is evaluated

using certain well-known system metrics, namely, F-measure

(i.e. precision and recall's harmonic mean values), recall,

precision and accuracy . The recall measure is the number of

detected defective modules in relation to the total number of

defective modules in a software system. Conversely, the

number of defects predicted to a system's total number of

defective modules is called precision rate.

A better trade-off maintained between precision and

recall rate is called F-measure. Parameter optimization can

be described clearly using a sample CMI data set focused on

the appropriate order of importance for software risk

prioritization in developing software fields. Providing a good

solution is the primary challenge. The fuzzy DEMATEL

approach has considerably increased the prioritization's

effectiveness.

3.2.1. Accuracy (ACC)

The "correct classification rate" is another name for

accuracy, which is calculated by dividing the number of

predictions produced properly by the software defect

prediction model by the number of predictions made overall.

 𝐴𝐶𝐶 =
𝑇𝑝𝑜𝑠𝑖 +𝑇𝑛𝑒𝑔𝑎

𝑇𝑝𝑜𝑠𝑖 +𝑇𝑛𝑒𝑔𝑎 +𝐹𝑝𝑜𝑠𝑖 +𝐹𝑛𝑒𝑔𝑎
 (1)

3.2.2. Sensitivity (SEN)

Sensitivity, also called true positive rate, is calculated by

determining the proportion of correctly detected not-

defective software modules and is expressed as:

 𝑆𝐸𝑁 =
𝑇𝑝𝑜𝑠𝑖

𝑇𝑝𝑜𝑠𝑖 +𝐹𝑛𝑒𝑔𝑎
 (2)

3.2.3. Specificity (SPE)

Specificity, also known as true negative rate, is

expressed as the percentage of correctly identified defective

modules and is calculated as follows:

 𝑆𝑃𝐸 =
𝑇𝑛𝑒𝑔𝑎

𝑇𝑛𝑒𝑔𝑎+𝐹𝑝𝑜𝑠𝑖
 (3)

3.2.4. Precision (PRE)

It can be determined by adding the total predicted not-

defective software modules and the amount of correctly

detected defect-free software modules, resulting in the

formula shown below:

 𝑃𝑅𝐸 =
𝑇𝑝𝑜𝑠𝑖

𝑇𝑝𝑜𝑠𝑖+𝐹𝑝𝑜𝑠𝑖
 (4)

3.2.5. F-Measure (F)

It is determined by computing the harmonic mean of

sensitivity and precision.

 𝐹 =
2∗𝑆𝐸𝑁∗𝑃𝑅𝐸

𝑆𝐸𝑁+𝑃𝑅𝐸
 (5)

3.2.6. Recall (REC)

An accurate model can be used to define the majority of

true positives.

 𝑅𝐸𝐶 =
𝑇𝑝𝑜𝑠𝑖

𝑇𝑝𝑜𝑠𝑖+𝐹𝑛𝑒𝑔𝑎
 (6)

Table 1. NASA dataset

Dataset Attributes Modules Defective Non-Defective Defective (%)
CM1 38 327 42 285 12.8

JM1 22 7,720 1,612 6,108 20.8

KC1 22 1,162 294 868 25.3

KC3 40 194 36 158 18.5

MC1 39 1952 36 1916 1.8

MC2 40 124 44 80 35.4

MW1 38 250 25 225 10

PC1 38 679 55 624 8.1

PC2 37 722 16 706 2.2

PC3 38 1,053 130 923 12.3

PC4 38 1,270 176 1094 13.8

PC5 39 1694 458 1236 27.0

K. Suresh et al. / IJETT, 71(9), 170-177, 2023

175

3.3. Analysis of Parameter Optimization

The experiment is performed by adopting the ten-fold

cross-validation technique for verifying the predictive

capability of the naive bayes model. About ten subsets are

formed by dividing the training data sets. All 9 subsets are

considered the training sets, and the residual one is the

testing subset. Using one test set, a total of ten experiments

are performed. An average of ten experiments is conducted

to evaluate the performance of the naive bayes system. Four

evaluation indicators are applied to select synthetically the

parameter d. The system's accuracy is influenced greatly by

the parameter k, which means different accuracies are

produced by using the same dataset for selecting different

sample sizes. For CM1 (software defect dataset), the intrinsic

dimension is computed by means of considering the

maximum probability occurrence of the algorithm (i.e. d=4).

Figure 1 indicates the software defect prediction estimated

using the naive bayes model on applying different

dimensions d, and the size of the samples varied from 0 to

100. From the figure, it is observed that the naive bayes

machine learning-based Naive Bayes classification algorithm

has achieved better classification accuracy on varying the

dimensional to 10 (i.e. d=10).

3.4. Comparative Analysis of Different Prediction

Algorithms

Four evaluation indexes with the same feature are

considered to compare the efficiency of the naive bayes

classification algorithm with conventional classifiers,

namely, KNN, SVM, and Neural Networks. Tables 2 to 7

indicate the obtained prediction results under different

datasets. The SVM classifier is chosen because it adheres to

the Structural Risk Minimization (SRM) principle, which

lowers the likelihood of risk during the training phase and

improves its capacity to generalize. With the aid of already

identified data samples, also known as nearest neighbors,

KNN discovers new or unidentified data samples and assigns

the class to data samples using a voting mechanism. The

classification of data samples includes participation from

more than one nearest neighbor. Sensitive analysis was used

by the NN model, which was trained using previous data, to

identify significant metrics.Separate Neural Network models

were created using the identified metrics to predict the

problematic modules. However, the Naïve Bayesian

classifier considers data samples' discrete, posterior, and

prior probability distributions and is a probabilistic classifier.

NB is efficiently used in software defect prediction because

of its excellent performance and simpler computation

technique. Additionally, this probabilistic Naive Bayes

classifier does a good job of handling nonlinear issues. From

the results, it is evident that the machine learning-based

Naïve Bayes algorithm has outperformed all three

conventional classifiers in terms of accuracy, F-measure,

precision and recall. The reason for this fact is that nonlinear

problems in the dataset cannot be solved using conventional

algorithms.

Tables 2 to 7 indicate the obtained prediction results

under different datasets. As can be seen from the results, the

proposed machine learning-based Naive Bayes algorithm

outperformed all three conventional classifiers in terms of

accuracy, F-measure, precision, and recall (For MW1, the

average of predicting defective software modules is 98% and

non-defective is 96%; For MC2; For PC4, the average of

predicting defective software modules is 95% and non-

defective is 94%; For PC1, the average of predicting

defective software modules is 88%). KC3's average for

predicting defective software modules is 92%, while CM1's

average for predicting defective software modules is 99%,

and KC3's average for predicting non-defective software

modules is 95%. Because the dataset contains nonlinear

problems, traditional algorithms cannot be used to tackle

them.
Table 2. Prediction results obtained on the MW1 dataset

Classifier F-measure Recall Precision Accuracy

SVM 87.65% 91.0% 84.43% 83.3%

KNN 89.05% 94.13% 86.25% 85.6%

Neural Networks 91.45% 95.3% 86.37% 87.85%

Naive Bayes 95.3% 98.7% 88.98% 96.5%

Table 3. Prediction results obtained on the MC2 dataset

Classifier F-measure Recall Precision Accuracy

SVM 80.66% 91.05% 72.43% 72.67%

KNN 86.05% 94.82% 82.26% 85.66%

Neural Networks 89.45% 92.3% 87.37% 87.52%

Naive Bayes 94.3% 93.7% 89.95% 97.53%

Table 4. Prediction results obtained on the PC4 dataset

Classifier F-measure Recall Precision Accuracy

SVM 73.66% 89.05% 72.43% 73.67%

KNN 80.06% 93.82% 72.35% 86.66%

Neural Networks 95.45% 90.3% 77.47% 88.52%

Naive Bayes 96.3% 92.7% 90.95% 98.53%

Table 5. Prediction results obtained on the PC1 dataset

Classifier F-measure Recall Precision Accuracy

SVM 80.65% 88.05% 77.43% 76.67%

KNN 85.07% 92.82% 75.35% 87.66%

Neural Networks 92.45% 89.3% 79.47% 89.57%

Naive Bayes 97.3% 92.75% 95.95% 95.53%

Table 6. Prediction results obtained on the KC3 dataset

Classifier F-measure Recall Precision Accuracy

SVM 87.65% 87.05% 78.43% 77.77%

KNN 89.07% 93.82% 76.35% 88.68%

Neural Networks 94.45% 90.3% 80.47% 94.57%

Naive Bayes 97.45% 93.75% 96.95% 98.53%

Table 7. Prediction results obtained on the CM1 dataset

Classifier F-measure Recall Precision Accuracy

SVM 90.65% 88.05% 82.43% 92.56%

KNN 92.76% 93.82% 75.35% 97.83%

Neural Networks 95.45% 92.3% 83.47% 95.58%

Naive Bayes 98.45% 95.65% 96.99% 99.43%

K. Suresh et al. / IJETT, 71(9), 170-177, 2023

176

4. Conclusion
This paper examined software projects to increase the

system's prediction rate by efficiently detecting and

removing defective modules in software projects using the

machine learning-based naïve bayes classification algorithm.

This model selects inputs from the dataset by navigating

through it. The dataset used in this study is defined by a

single statistical data matrix. Rows and tables in the matrix

indicate the variable and data members. Each member's

height and weight are elucidated in the data set lists.

Potentially Defective modules in the software project are

predicted by applying the machine learning methods by

means of considering their respective metric. Also, the Naïve

Bayesian classification approach is applied to classify the

complex and non-complex software risks. However, the

software prediction problem is solved alone using two

classification cases.

Also, this work does not elucidate defect severity using a

software complexity metric dataset. In the future, cost

computation should be reduced while training many different

samples to optimize the parameters.

Abbreviations
SVM - Support Vector Machine

KNN - K-nearest neighbor

DT - Decision Tree

PSO - Particle Swarm Optimization

TPOSI - True Positive

TNEGA - True Negative

FPOSI - False Positive

FNEGA - False Negative

NN - Neural Network

NB - Naïve Bayes

References
[1] Robert K. Wysocki, Effective Project Management: Traditional, Agile, Extreme, John Wiley & Sons, 2013. [Google Scholar] [Publisher

Link]

[2] Daniel D. Galorath, and Michael W. Evans, Software Sizing, Estimation, and Risk Management: When Performance is Measured

Performance Improves, 1st Edition, Auerbach Publications, 2006. [Google Scholar] [Publisher Link]

[3] Sumeet Kaur Sehra et al., "Research Patterns and Trends in Software Effort Estimation," Information and Software Technology, vol. 91,

pp. 1–21, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[4] Jianfeng Wen et al., "Systematic Literature Review of Machine Learning Based Software Development Effort Estimation Models,"

Information and Software Technology, vol. 54, no. 1, pp. 41–59, 2012. [CrossRef] [Google Scholar] [Publisher Link]

[5] Cuauhtemoc Lopez-Martin, Claudia Isaza, and Arturo Chavoya, "Software Development Effort Prediction of Industrial Projects

Applying A General Regression Neural Network," Empirical Software Engineering, vol. 17, pp.738–756, 2012. [CrossRef] [Google

Scholar] [Publisher Link]

[6] Iris Fabiana de BarcelosTronto, José DemísioSimões da Silva, and NilsonSant'Anna, "An Investigation of Artificial Neural Networks

Based Prediction Systems in Software Project Management," Journal of Systems and Software, vol. 81, pp. 356–367, 2008. [CrossRef]

[Google Scholar] [Publisher Link]

[7] Stanislav Berlin et al., "Comparison of Estimation Methods of Cost and Duration in IT Projects," Information and Software Technology,

vol. 51, no. 4, pp. 738–748, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[8] Jacky Keung, Ekrem Kocaguneli, and Tim Menzies, "Finding Conclusion Stability for Selecting the Best Effort Predictor in Software

Effort Estimation," Automated Software Engineering, vol. 20, pp. 543–567, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[9] Dinesh R. Pai, Kevin S. McFall, and Girish H. Subramanian, "Software Effort Estimation using a Neural Network Ensemble," Journal

of Computer Information System, vol. 53, no. 4, pp. 49–58, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[10] Devon K. Barrow, and Sven F. Crone, "Cross-Validation Aggregation for Combining Autoregressive Neural Network Forecasts,"

International Journal of Forecasting, vol. 32, no. 4, pp. 1120–1137, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[11] Shai Ben-David, and Shai Shalev-Shwartz, Understanding Machine Learning: From Theory to Algorithms, Cambridge University Press,

2014. [Google Scholar] [Publisher Link]

[12] Barry W. Boehm et al., Software Cost Estimation with Cocomo II, Prentice Hall PTR, 2000. [Publisher Link]

[13] Jianglin Huang, Yan-Fu Li, and Min Xie, "An Empirical Analysis of Data Pre-Processing for Machine Learning-Based Software Cost

Estimation," Information and Software Technology, vol. 67, pp. 108–127, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[14] Ali Idri, Mohamed Hosni, and Alain Abran, "Improved Estimation of Software Development Effort using Classical and Fuzzy Analogy

Ensembles," Applied Soft Computing, vol. 49, pp. 990–1019, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[15] Venkata Udaya B. Challagulla et al., "Empirical Assessment of Machine Learning Based Software Defect Prediction Techniques,"

International Journal on Artificial Intelligence Tools, vol. 17, no. 2, pp. 389-400, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[16] Khaled El Emam et al., "Comparing Case-Based Reasoning Classifiers for Predicting High-Risk Software Components," Journal of

System Software, vol. 55, no. 3, pp. 301–320, 2001. [CrossRef] [Google Scholar] [Publisher Link]

[17] K. Ganesan, Taghi M. Khoshgoftaar, and Edward B. Allen, "Case-Based Software Quality Prediction," International Journal of

Software Engineering and Knowledge Engineering, vol. 10, no. 2, pp. 139–152, 2000. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B1%5D%09Wysocki%2C+R.K.%2C+2014.+Effective+Project+Management%3A+Traditional%2C+Agile%2C+Extreme%2C+Industry+Week.+John+Wiley+%26+Sons.&btnG=
https://www.wiley.com/en-ae/Effective+Project+Management:+Traditional,+Agile,+Extreme,+7th+Edition-p-9781118729168
https://www.wiley.com/en-ae/Effective+Project+Management:+Traditional,+Agile,+Extreme,+7th+Edition-p-9781118729168
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=+%5B2%5D+Galorath%2C+D.%2C+Evans%2C+M.%2C+2006.+Software+Sizing%2C+Estimation%2C+and+Risk+Management.+Auerbach+Publications.&btnG=
https://www.amazon.in/Software-Sizing-Estimation-Risk-Management/dp/0849335930
https://doi.org/10.1016/j.infsof.2017.06.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+patterns+and+trends+in+software+effort+estimation&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584917304317
https://doi.org/10.1016/j.infsof.2011.09.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B4%5D%09Wen%2C+J.%2C+Li%2C+S.%2C+Lin%2C+Z.%2C+Hu%2C+Y.%2C+Huang%2C+C.%2C+2012.+Systematic+literature+review+of+machine+learning+based+software+development+effort+estimation+models.+Inf.+Softw.+Technol.+54%2C+41%E2%80%9359.&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584911001832
https://doi.org/10.1007/s10664-011-9192-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+development+effort+prediction+of+industrial+projects+applying+a+general+regression+neural+network&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+development+effort+prediction+of+industrial+projects+applying+a+general+regression+neural+network&btnG=
https://link.springer.com/article/10.1007/s10664-011-9192-6
https://doi.org/10.1016/j.jss.2007.05.011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+investigation+of+artificial+neural+networks+based+prediction+systems+in+software+project+management&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S016412120700132X
https://doi.org/10.1016/j.infsof.2008.09.007
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparison+of+estimation+methods+of+cost+and+duration+in+IT+projects&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584908001328
https://doi.org/10.1007/s10515-012-0108-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Finding+conclusion+stability+for+selecting+the+best+effort+predictor+in+software+effort+estimation&btnG=
https://link.springer.com/article/10.1007/s10515-012-0108-5
https://doi.org/10.1080/08874417.2013.11645650
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Effort+Estimation+Using+a+Neural+Network+Ensemble&btnG=
https://www.tandfonline.com/doi/abs/10.1080/08874417.2013.11645650
https://doi.org/10.1016/j.ijforecast.2015.12.011
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cross-validation+aggregation+for+combining+autoregressive+neural+network+forecasts&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0169207016300188
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Understanding+Machine+Learning%3A+From+Theory+to+Algorithms&btnG=
https://www.amazon.in/Understanding-Machine-Learning-Theory-Algorithms-ebook/dp/B00J8LQU8I
https://www.amazon.in/Software-Cost-Estimation-Cocomo-II/dp/0130266922
https://doi.org/10.1016/j.infsof.2015.07.004
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+empirical+analysis+of+data+preprocessing+for+machine+learning-based+software+cost+estimation&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584915001275
https://doi.org/10.1016/j.asoc.2016.08.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+estimation+of+software+development+effort+using+Classical+and+Fuzzy+Analogy+ensembles&btnG=
https://dl.acm.org/doi/10.1016/j.asoc.2016.08.012
https://doi.org/10.1142/S0218213008003947
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+assessment+of+machine+learning+based+software+defect+prediction+techniques&btnG=
https://www.worldscientific.com/doi/abs/10.1142/S0218213008003947
https://doi.org/10.1016/S0164-1212(00)00079-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparing+case-based+reasoning+classifiers+for+predicting+high+risk+software+components&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121200000790
https://doi.org/10.1142/S0218194000000092
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CASE-BASED+SOFTWARE+QUALITY+PREDICTION&btnG=
https://www.worldscientific.com/doi/abs/10.1142/S0218194000000092

K. Suresh et al. / IJETT, 71(9), 170-177, 2023

177

[18] P. Sivasankaran, "Quality Concepts in Industrial Systems using QFD (Quality Function Deployment) – Survey," SSRG International

Journal of Industrial Engineering, vol. 8, no. 1, pp. 7-13, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[19] Jonathan D. Strate, and Phillip A. Laplante, "A Literature Review of Research in Software Defect Reporting," IEEE Transaction on

Reliability, vol. 62, no. 2, pp. 444–454, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[20] E. Kokiopoulou, and Y. Saad, "Orthogonal Neighborhood Preserving Projections," Fifth IEEE International Conference on Data

Mining, pp. 234–241, 2005. [CrossRef] [Google Scholar] [Publisher Link]

[21] Wang Xu-hui et al., "A ROC Curve Method for Performance Evaluation of Support Vector Machine with Optimization Strategy,"

International Forum on Computer Science-Technology and Applications, Chongqing, China, pp. 117–120, 2009. [CrossRef] [Google

Scholar] [Publisher Link]

[22] Liu Yang, Yong Xiang, and DezhongPeng, "Precoding-Based Blind Separation of MIMO FIR Mixtures," IEEE Access, vol. 5, pp.

12417–12427,2017.[CrossRef] [Google Scholar][Publisher Link]

[23] Changshui Zhang et al., "Reconstruction and Analysis of Multi-Pose Face Images Based on Nonlinear Dimensionality Reduction,"

Pattern Recognition, vol. 37, no. 2, pp. 325–336, 2004. [CrossRef] [Google Scholar] [Publisher Link]

[24] Praman Deep Singh, and Anuradha Chug, "Software Defect Prediction Analysis Using Machine Learning Algorithms," 7th

International Conference on Cloud Computing, Data Science Engineering - Confluence, Vancouver, Canada, pp. 775–781, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[25] Manvi Chahar, and Savita, "Implementation and Classification of Anomalous Detection with Varying Parameters," SSRG International

Journal of Computer Science and Engineering, vol. 6, no. 4, pp. 16-18, 2019. [CrossRef] [Publisher Link]

[26] Mohammad A. Alsmirat et al., "Accelerating Compute Intensive Medical Imaging Segmentation Algorithms Using Hybrid CPU-GPU

Implementations," Multimedia Tools and Application, vol. 76, no. 3, pp. 3537–3555, 2017. [CrossRef] [Google Scholar] [Publisher

Link]

[27] Nagappan Nachiappan, and Ball Thomas, "Static Analysis Tools as Early Indicators of Pre-Release Defect Density," Proceedings of the

27th International Conference on Software Engineering, pp. 580–586, 2005. [CrossRef] [Google Scholar] [Publisher Link]

[28] Zhitao Guan et al., "Privacy-Preserving and Efficient Aggregation based on Blockchain for Power Grid Communications in Smart

Communities," IEEE Communications Magazine, vol. 56, no. 7, pp. 82-88, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[29] Nitu Bhardwaj, and A.S Bhattacharya, "Survey on General Classification Techniques for Effective Bug Triage," SSRG International

Journal of Computer Science and Engineering, vol. 2, no. 11, pp. 6-10, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[30] S. SathiyaKeerthi, and Chih-Jen Lin, "Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel," Neural Computing,

vol. 15, no. 7, pp. 1667-1689, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[31] T.J. McCabe, "A Complexity Measure," IEEE Transactions on Software Engineering, vol. SE-2, no. 4, pp. 308-320, 1976. [CrossRef]

[Google Scholar] [Publisher Link]

https://doi.org/10.14445/23499362/IJIE-V8I1P102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Quality+concepts+in+Industrial+systems+using+QFD+%28Quality+Function+Deployment%29+%E2%80%93+Survey%2C%22+&btnG=
http://www.internationaljournalssrg.org/IJIE/paper-details?Id=76
https://doi.org/10.1109/TR.2013.2259204
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=https%3A%2F%2Fpure.psu.edu%2Fen%2Fpublications%2Fa-literature-review-of-research-in-software-defect-reporting&btnG=
https://ieeexplore.ieee.org/abstract/document/6509998
https://doi.org/10.1109/ICDM.2005.113
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B19%5D+E.+Kokiopoulou%2C+Y.+Saad%2C+Orthogonal+neighborhood+preserving+projections%2C+in%3A+Proceedings+of+the+Fifth+IEEE+International+Conference+on+Data+Mining%2C+in%3A+ICDM+%E2%80%9905%2C+IEEE+Computer+Society%2C+Washington%2C+DC%2C+USA%2C+2005%2C+pp.+234%E2%80%93241.&btnG=
https://ieeexplore.ieee.org/abstract/document/1565684
https://doi.org/10.1109/IFCSTA.2009.356
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+ROC+Curve+Method+for+Performance+Evaluation+of+Support+Vector+Machine+with+Optimization+Strategy+Publisher%3A+IEEE+Cite+This+PDF&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+ROC+Curve+Method+for+Performance+Evaluation+of+Support+Vector+Machine+with+Optimization+Strategy+Publisher%3A+IEEE+Cite+This+PDF&btnG=
https://ieeexplore.ieee.org/abstract/document/5384627
https://doi.org/10.1109/ACCESS.2017.2720578
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Precoding-Based+Blind+Separation+of+MIMO+FIR+Mixtures&btnG=
https://ieeexplore.ieee.org/document/7967797
https://doi.org/10.1016/j.patcog.2003.07.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Reconstruction+and+analysis+of+multi-pose+face+images+based+on+nonlinear+dimensionality+reduction&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0031320303002504
https://doi.org/10.1109/CONFLUENCE.2017.7943255
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+defect+prediction+analysis+using+machine+learning+algorithms&btnG=
https://ieeexplore.ieee.org/document/7943255
https://doi.org/10.14445/23488387/IJCSE-V6I4P104
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=316
https://doi.org/10.1007/s11042-016-3884-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Accelerating+compute+intensive+medical+imaging+segmentation+algorithms+using+hybrid+cpu-gpu+implementations%E2%80%9D&btnG=
https://link.springer.com/article/10.1007/s11042-016-3884-2
https://link.springer.com/article/10.1007/s11042-016-3884-2
https://doi.org/10.1109/ICSE.2005.1553604
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Static+analysis+tools+as+early+indicators+of+pre-release+defect+density&btnG=
https://ieeexplore.ieee.org/document/1553604
https://doi.org/10.1109/MCOM.2018.1700401
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Privacy-preserving+and+Efficient+Aggregation+based+on+Blockchain+for+Power+Grid+Communications+in+Smart+Communities&btnG=
https://ieeexplore.ieee.org/abstract/document/8419184
https://doi.org/10.14445/23488387/IJCSE-V2I11P102
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Survey+on+General+Classification+Techniques+for+Effective+Bug+Triage%2C%22+&btnG=
http://www.internationaljournalssrg.org/IJCSE/paper-details?Id=95
https://doi.org/10.1162/089976603321891855
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Asymptotic+behaviors+of+support+vector+machines+with+Gaussian+kernel&btnG=
https://ieeexplore.ieee.org/abstract/document/6790031
https://doi.org/10.1109/TSE.1976.233837
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=%5B28%5D%09T.J.+McCabe%2C+A+complexity+measure%2C+in%3A+Proceedings+of+the+2Nd+International+Conference+on+Software+Engineering%2C+No+4+in+ICSE+%E2%80%9976%2C+IEEE+Computer+Society+Press%2C+Los+Alamitos%2C+CA%2C+USA%2C+1976%2C+pp.+308%E2%80%93320.+1667%E2%80%931689&btnG=
https://ieeexplore.ieee.org/abstract/document/1702388

