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Abstract - The objective of this paper is to examine how effective supervised learning mechanisms are in classifying the 

defective and non-defected software modules during the software development process by means of applying a Naïve Bayesian 

(NB) classifier. Defect in software modules is the main cause of crucial software project risks.   In other words, high-quality 

software products can be achieved by applying the most significant risk management process. However, an organization's 

environment or the development of projects is severely affected by the presence of risk events. Some of the critical constraints 

such as resources, time or budget are damaged due to risk factors or risk. Major steps included in risk assessment techniques 

are i) identifying, ii) analyzing, iii) planning, and iv) controlling events that are affecting the project environment. In this work, 

a model can be developed using Machine Learning (ML) methods and its metric data for predicting the defective modules in 

the software project. The NB classifier used in this work classifies the predicted and non-predicted data based on the 

parameters to best suit complex real-time situations. 

 

Keywords - Classification, Fuzzy decision-making trial and evaluation laboratory, Machine Learning, Naïve bayesian 

classifier, Support Vector Machine. 

1. Introduction 
Requiring the commitment of various skills and 

resources in one shot is the crucial goal of software 

management experts. Involving multiple parties, a plan, a 

budget, defined responsibilities and goals in a temporal 

activity having a starting and ending date is defined as a 

project. Software product delivery and development goals are 

achieved with different project categories in software 

development projects. Software products are developed 

through maintenance, re-engineering, re-using, and 

modifying modules in the software engineering project. 

A project completed on a given time schedule, meeting 

the desired requirements and consuming only minimum 

expense cost is called a successful project. Most of the 

previous studies have reported the mismanagement of 

software development projects. According to the study, it 

was observed that the outcomes of information system 

development efforts were not delivered properly, not widely 

utilized and so on. Prior to the completion of projects, about 

32% of defective modules affecting the project were 

removed, as suggested by the Standish group research. The 

normal estimation of the project cost was determined as 

190%, but the outcomes obtained after removing defective 

modules showed that the project cost exceeded 52.4%.  

Also, this research group has evidently proved that, 

considering the scheduled cost and time, there appears only a 

few successful projects (i.e. about 16.3% of software 

projects). Nonetheless, according to the Standish survey, it 

appears none of the software projects exhibit even a shadow 

for the incomplete project. The failure of software projects 

with competitors drastically affects the company's marketing 

position. The software development process is done based on 

the resources and time invested by the software companies.  

When the needs for software projects change, risk 

factors related to those projects may also change. It has been 

determined that the machine learning methodology is the 

most effective method for accommodating changes in risk 
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factors in software projects. Machine learning approaches 

offer accurate outcomes by managing the programs based on 

the gained experience. The major objective of this study is to 

create an effective framework for risk management that will 

enable software project risk to be more effectively identified 

and prioritized. This framework can help software 

professionals manage software projects for bettering software 

performance without any problems. 

 

1.1. Literature Survey 

Some of the effective strategies created by the 

researchers have been used to perform robust and effective 

risk management activities in software projects. This module 

thoroughly reviews novel strategies to assess their 

shortcomings and potency. However, the theory of soft 

computing approaches is motivated by the drawbacks of 

current methodologies created for enhancing risk 

management activities in software project life cycles.  

A project performed following the agile and waterfall 

model demands the time schedule and cost of expense 

required for a business in its initial lifecycle stage. Therefore, 

expert knowledge-based software estimation techniques are 

developed. However, some commonly used simple and 

effortless methods in software project development are 

planning poker, wideband Delphi, decomposition and so on 

[1]. 
 

However, the main limitation found of these methods is 

that they do not have much error tolerance; hence, function 

points-FP and Lines of Code (SLOC) are developed 

alternatives to these approaches. New technical changes in 

software development methodologies, software architecture, 

and programs are adapted by frequently updating the FP 

models and SLOC. [2]   have stated that those techniques 

may struggle a lot with software project development during 

the deployment of configurable software, code reusability 

and so on.  
 

Over the past two decades, researchers have tried to 

tackle the aforementioned issues by using data mining 

techniques and Machine Learning (ML) methods can be used 

for software estimation [3, 4]; uncertainty in software 

projects is better handled in the initial stage of project 

lifecycle itself using these machine learning algorithms. This 

is done by predicting the efforts and estimating duration at an 

appropriate time [5, 6, 7].  
 

Furthermore, historical information is used by these ML-

based techniques to perform the automated predictive 

process; thereby, it acquires the ability to minimize the 

political or psychological influences as well as the human 

biases and so on. However, only a smaller number of 

implementations is seen with ML algorithms on up-to-date 

research works. The reason for this fact is that finding an 

accurate data mining algorithm remained an open, 

challenging research issue.  

However, projects performed using traditional ML 

algorithms have used difficult ensemble approaches and 

outdated data sets; hence, data is overfitted in the software 

programs [8, 9]. Software development project risk is defined 

as uncertainty in software products developed due to 

potential magnitude loss causing the project failure. [10] 

stated that factors threatening the project's success cause 

uncertainty in the software development project 

environment. 

In other words, incompleteness in software development 

projects is generated by the factors named risk factors. In 

order to maintain risk management in software development 

projects, the researchers [11, 12] have approached risk 

assessment and risk control techniques (i.e. two-step 

forwarding approaches). The success of the project 

compromised through identifying, analyzing and prioritizing 

the risk factors is referred to as risk assessment; eliminating 

or controlling each risk factor by means of acting on it is 

called risk control [12].  

Before the risk assessment is completed, it is impossible 

to perform the risk control activity. The development 

projects pursued by the managers create project failure 

because the risk involved is not sufficiently handled using 

these IS projects. When the managers wrongly recognize the 

associated risks, then risky decisions are made unknowingly 

[13]. Using a risk factor checklist for risk identification is the 

most commonly used method in developing software projects 

[14, 12]. 

A project manager can obtain a list of all potential risks 

using these checklists. Then, the type of risk factors that suit 

the project are verified and decided. Most of the past 

research works have analyzed and found that risk factors are 

combined to obtain the list of software project risks. 

To deal with the complexity of SE activities, numerous 

objective functions have not been required to be formulated 

in any of the prior literal efforts. In other words, these 

difficulties make it a perennial research issue to employ soft 

computing-based methods during various life cycle stages of 

software project development. However, due to the existence 

of improbable elements, imprecision, and complexity 

introduced during carrying out the intermediate phases, 

wrong answers will be generated when employing basic 

algorithms to handle these problems. Soft computing-based 

techniques best handle the aforementioned issues and several 

real-time applications. Due to an unlikely component, the 

majority of current approaches have not been able to resolve 

all the issues generated at the intermediate stage fully.  

1.2. Benefits of Risk Management 

Identifying, analyzing and creating mechanisms to 

control and mitigate software project risks thoroughly from a 

system or process by complete study is called the risk 
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management process. Complete removal or elimination of 

software project risks does not imply the successful 

completion of the risk mitigation process; rather, it implies 

that the risk has been reduced to an acceptable level. It is 

important to gain knowledge about the severity of risk 

factors, all the possible risks and their potential consequences 

before determining risks in a software system. The mitigation 

or control steps have been developed to remove crucial risks 

based on the knowledge obtained on all risks.  

Software developers can complete their projects within 

the scheduled time and cost of expense (budget) by applying 

the preventive approach to risk management. Better quality 

outputs are produced by the risks-managed software projects 

with minimum time and costs. Risk management techniques 

assess risks in all the stages of software project development 

by combining the software development process and risk 

management practices.  

The importance of risk management has been realized 

by the organization with increased software development 

complexity. The reason for this fact is that risk management 

techniques have decreased the probability of project failures 

and uncertainties included in software development.  

Notably, it is important that software developers should 

have knowledge about the causes of risks. Instead of solving 

risks in a single part of a software system, the risks should be 

managed throughout the whole system process. Software 

developers should follow the below-given criteria provided 

during the training program conducted for risk management 

as follows: 

• Risk identification (integrity, process and business). 

• Quantitative assessments are made through computing 

the risk probabilities. 

• Qualitative risk impacts are determined with the 

computation of quantitative. 

• Determining accurately the time for qualitative and 

quantitative risk assessment. 

• Analyzed the hazard and safety measures of a software 

product. 

• Applying management strategies to monitor and mitigate 

the risks. 

• In all processes of the software project, the risks are 

identified. Risks can be identified and classified using 

various risk models. Business risks are managed using 

these models better than product risks. 

 

In the software development process, software defect 

prediction methods have played a major role [15-19]. 

Software testing resources are allocated perfectly by 

accurately predicting the defective software modules. In the 

current trend, software metrics from the software modules 

were extracted by various researchers to form many of the 

training samples.  

Then, software defect distribution prediction models are 

constructed by applying machine learning methods. 

Successful software defect prediction can be made using 

machine learning-based technology [20]. Most commonly 

used machine learning-based algorithms such as Linear 

Classifier (LC), Naïve Bayes (NB), Decision Tree (DT), and 

Particle Swarm Optimization (PSO) have been analyzed in 

the work of [21-25]. Nevertheless, defect classification is 

predicted by applying popular learning algorithms, namely, 

imbalanced learning, semi-supervised learning, unsupervised 

learning, and migration learning. Software quality attributes 

are predominantly ascertained with the support of search-

based techniques having better predictive abilities [26].  
 

Furthermore, error-prone modules were found to be 

difficult to predict due to complexities and difficulties in 

measuring software modules. The machine learning method 

[27] was applied in the software defect prediction model to 

satisfy the requirement of a large number of actual 

complexity measurement attributes. Curse of dimensionality 

issues are faced by many of the complex metric attributes 

[28].  

Furthermore, data redundancy is produced by the 

software defect prediction method while introducing a 

greater number of software metric attributes. To withstand 

these issues, a model for ML-Based Software Risk 

Assessment Using Naive Bayes has been recommended to 

eliminate software defect modules. 

The following software project hazards are identified, 

predicted, and classified using a novel supervised learning 

and classification technique described in this dissertation: 

• To better accurately describe software risk by 

implementing Naive Bayesian Classification. 

• Machine learning techniques are used to build a model 

that predicts possibly defective modules to the metrics of 

a given set of software modules. 

• By using machine learning techniques and considering 

their individual metrics, potentially infected modules in 

the software project are predicted. 

• The classification of complicated and non-complex 

software risks is done using a Naive Bayesian technique. 

 

2. Classification Model 
The working procedure of this system is shown in Figure 

1. A process of handling, monitoring, analyzing and 

identifying risk in a specific project is called risk 

management. For the project's entire lifecycle, the risks are 

analyzed, handled, and assessed (prioritizing the risks), and 

front planning is made continuously using the risk 

management process. Prior to the damage to the whole 

project, the risk management process largely focused on 

identifying, communicating, analyzing and controlling the 

risks causing software failures. A core functionality of the 
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risk management process is to maintain the applicable 

principles by means of analyzing the independencies 

between the success of the project and risk occurrence. 

 

Step 1: Input Selection 

The first stage involves choosing the right input. 

The dataset's data are examined during this input 

selection procedure. The dataset used in this study is 

defined by a single statistical data matrix. Rows and 

tables in the matrix indicate the variable and data 

members. Each member's height and weight are 

elucidated in the data set lists. 

 

Step 2: Data Processing 

The duplication and missing attributes are 

rearranged and normalized in the data processing 

step to improve the software risk prediction process 

further.  

 

Step 3: Attribute classification based on Naive Bayes 

classifier 

Based on the Naive Bayes classifier, a supervised 

ML approach is created to categorize the predictable 

software risks. Initially, precise monitoring of risk 

factors is accomplished by combining data from 

various sources. Risk factors have a significant 

impact on some important factors, including time, 

resources, and expense budgets. Risk management 

primarily addresses risks that arise from project-

related activities like event control, planning, 

analysis, and identification. Monitoring risk factors 

like geographic distribution, temporal trends, and 

intensity is crucial.  

 

Step 4: Probability Estimation 

In Naive Bayes classification, the risk can be 

defined by probability functions, which are used to 

describe the fundamental relationships between 

variables that can accept input in the form of a set of 

parent node values and compute the given node 

probability and can be placed in node probability 

tables. 

 

Step 5: Risk Classification 

Based on the probability score and machine learning 

method, the software risks will be classified.  

 

Step 6: Risk Evaluation 

Once the risk is classified, the risk evaluation is 

done by F-measure (i.e. precision and recall's 

harmonic mean values), recall, precision and 

accuracy. 

 

Step 7: Predict Risk Factors  

Based on the risk evaluation process, the risk factor 

will be predicted.  

  
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 
                                           Fig. 1 Defect prediction model 
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3. Results and Analysis  
3.1. Dataset Selection 

Experiments were performed on the NASA metric data 

program (MDP) repository [30], which was applied 

successfully to predict the software defects included in 13 

data sets. Table 1 indicates the datasets used in this study. 

Different samples included in each dataset are associated 

with each software module. In each software module, a 

number of attributes associated are identified by considering 

the number of static code attributes comprised in each 

software module. [31] Halstead attribute [15] and Line of 

Code (LoC) are the static code attributes determined in each 

code. Experiments are verified using MW1, MC2, PC4, PC1, 

KC3, and CM1 of NASA. 

3.2. Evaluation Metrics 

The predictive ability of the system model is evaluated 

using certain well-known system metrics, namely, F-measure 

(i.e. precision and recall's harmonic mean values), recall, 

precision and accuracy . The recall measure is the number of 

detected defective modules in relation to the total number of 

defective modules in a software system. Conversely, the 

number of defects predicted to a system's total number of 

defective modules is called precision rate.  

A better trade-off maintained between precision and 

recall rate is called F-measure. Parameter optimization can 

be described clearly using a sample CMI data set focused on 

the appropriate order of importance for software risk 

prioritization in developing software fields. Providing a good 

solution is the primary challenge. The fuzzy DEMATEL 

approach has considerably increased the prioritization's 

effectiveness. 

 

3.2.1. Accuracy (ACC) 

The "correct classification rate" is another name for 

accuracy, which is calculated by dividing the number of 

predictions produced properly by the software defect 

prediction model by the number of predictions made overall.

  

  𝐴𝐶𝐶 =
𝑇𝑝𝑜𝑠𝑖  +𝑇𝑛𝑒𝑔𝑎

𝑇𝑝𝑜𝑠𝑖  +𝑇𝑛𝑒𝑔𝑎  +𝐹𝑝𝑜𝑠𝑖  +𝐹𝑛𝑒𝑔𝑎  
       (1) 

 

3.2.2. Sensitivity (SEN) 

Sensitivity, also called true positive rate, is calculated by 

determining the proportion of correctly detected not-

defective software modules and is expressed as: 

 

 𝑆𝐸𝑁 =
𝑇𝑝𝑜𝑠𝑖  

𝑇𝑝𝑜𝑠𝑖  +𝐹𝑛𝑒𝑔𝑎  
          (2) 

 

3.2.3. Specificity (SPE) 

Specificity, also known as true negative rate, is 

expressed as the percentage of correctly identified defective 

modules and is calculated as follows: 

 

 𝑆𝑃𝐸 =
𝑇𝑛𝑒𝑔𝑎

𝑇𝑛𝑒𝑔𝑎+𝐹𝑝𝑜𝑠𝑖  
       (3) 

3.2.4. Precision (PRE) 

It can be determined by adding the total predicted not-

defective software modules and the amount of correctly 

detected defect-free software modules, resulting in the 

formula shown below: 

  

             𝑃𝑅𝐸 =
𝑇𝑝𝑜𝑠𝑖

𝑇𝑝𝑜𝑠𝑖+𝐹𝑝𝑜𝑠𝑖  
    (4) 

 

3.2.5. F-Measure (F) 

It is determined by computing the harmonic mean of 

sensitivity and precision. 

 

              𝐹 =
2∗𝑆𝐸𝑁∗𝑃𝑅𝐸

𝑆𝐸𝑁+𝑃𝑅𝐸
            (5) 

 
3.2.6. Recall (REC) 

An accurate model can be used to define the majority of 

true positives. 

                 𝑅𝐸𝐶 =
𝑇𝑝𝑜𝑠𝑖

𝑇𝑝𝑜𝑠𝑖+𝐹𝑛𝑒𝑔𝑎
 (6) 

Table 1. NASA dataset 

Dataset Attributes Modules Defective Non-Defective Defective (%)  
CM1 38 327 42 285 12.8 

JM1 22 7,720 1,612 6,108 20.8 

KC1 22 1,162 294 868 25.3 

KC3 40 194 36 158 18.5 

MC1 39 1952 36 1916 1.8 

MC2 40 124 44 80 35.4 

MW1 38 250 25 225 10 

PC1 38 679 55 624 8.1 

PC2 37 722 16 706 2.2 

PC3 38 1,053 130 923 12.3 

PC4 38 1,270 176 1094 13.8 

PC5 39 1694 458 1236 27.0 
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3.3. Analysis of Parameter Optimization 

The experiment is performed by adopting the ten-fold 

cross-validation technique for verifying the predictive 

capability of the naive bayes model. About ten subsets are 

formed by dividing the training data sets. All 9 subsets are 

considered the training sets, and the residual one is the 

testing subset. Using one test set, a total of ten experiments 

are performed. An average of ten experiments is conducted 

to evaluate the performance of the naive bayes system. Four 

evaluation indicators are applied to select synthetically the 

parameter d. The system's accuracy is influenced greatly by 

the parameter k, which means different accuracies are 

produced by using the same dataset for selecting different 

sample sizes. For CM1 (software defect dataset), the intrinsic 

dimension is computed by means of considering the 

maximum probability occurrence of the algorithm (i.e. d=4). 

Figure 1 indicates the software defect prediction estimated 

using the naive bayes model on applying different 

dimensions d, and the size of the samples varied from 0 to 

100. From the figure, it is observed that the naive bayes 

machine learning-based Naive Bayes classification algorithm 

has achieved better classification accuracy on varying the 

dimensional to 10 (i.e. d=10). 

3.4. Comparative Analysis of Different Prediction 

Algorithms 

Four evaluation indexes with the same feature are 

considered to compare the efficiency of the naive bayes 

classification algorithm with conventional classifiers, 

namely, KNN, SVM, and Neural Networks. Tables 2 to 7 

indicate the obtained prediction results under different 

datasets. The SVM classifier is chosen because it adheres to 

the Structural Risk Minimization (SRM) principle, which 

lowers the likelihood of risk during the training phase and 

improves its capacity to generalize. With the aid of already 

identified data samples, also known as nearest neighbors, 

KNN discovers new or unidentified data samples and assigns 

the class to data samples using a voting mechanism. The 

classification of data samples includes participation from 

more than one nearest neighbor. Sensitive analysis was used 

by the NN model, which was trained using previous data, to 

identify significant metrics.Separate Neural Network models 

were created using the identified metrics to predict the 

problematic modules. However, the Naïve Bayesian 

classifier considers data samples' discrete, posterior, and 

prior probability distributions and is a probabilistic classifier. 

NB is efficiently used in software defect prediction because 

of its excellent performance and simpler computation 

technique. Additionally, this probabilistic Naive Bayes 

classifier does a good job of handling nonlinear issues. From 

the results, it is evident that the machine learning-based 

Naïve Bayes algorithm has outperformed all three 

conventional classifiers in terms of accuracy, F-measure, 

precision and recall. The reason for this fact is that nonlinear 

problems in the dataset cannot be solved using conventional 

algorithms. 

Tables 2 to 7 indicate the obtained prediction results 

under different datasets. As can be seen from the results, the 

proposed machine learning-based Naive Bayes algorithm 

outperformed all three conventional classifiers in terms of 

accuracy, F-measure, precision, and recall (For MW1, the 

average of predicting defective software modules is 98% and 

non-defective is 96%; For MC2; For PC4, the average of 

predicting defective software modules is 95% and non-

defective is 94%; For PC1, the average of predicting 

defective software modules is 88%). KC3's average for 

predicting defective software modules is 92%, while CM1's 

average for predicting defective software modules is 99%, 

and KC3's average for predicting non-defective software 

modules is 95%. Because the dataset contains nonlinear 

problems, traditional algorithms cannot be used to tackle 

them. 
Table 2. Prediction results obtained on the MW1 dataset 

Classifier F-measure Recall Precision Accuracy 

SVM 87.65% 91.0% 84.43% 83.3% 

KNN 89.05% 94.13% 86.25% 85.6% 

Neural Networks 91.45% 95.3% 86.37% 87.85% 

Naive Bayes 95.3% 98.7% 88.98% 96.5% 
 

Table 3. Prediction results obtained on the MC2 dataset 

Classifier F-measure Recall Precision Accuracy 

SVM 80.66% 91.05% 72.43% 72.67% 

KNN 86.05% 94.82% 82.26% 85.66% 

Neural Networks 89.45% 92.3% 87.37% 87.52% 

Naive Bayes 94.3% 93.7% 89.95% 97.53% 
 

Table 4. Prediction results obtained on the PC4 dataset 

Classifier F-measure Recall Precision Accuracy 

SVM 73.66% 89.05% 72.43% 73.67% 

KNN 80.06% 93.82% 72.35% 86.66% 

Neural Networks 95.45% 90.3% 77.47% 88.52% 

Naive Bayes 96.3% 92.7% 90.95% 98.53% 
 

Table 5. Prediction results obtained on the PC1 dataset 

Classifier F-measure Recall Precision Accuracy 

SVM 80.65% 88.05% 77.43% 76.67% 

KNN 85.07% 92.82% 75.35% 87.66% 

Neural Networks 92.45% 89.3% 79.47% 89.57% 

Naive Bayes 97.3% 92.75% 95.95% 95.53% 
 

Table 6. Prediction results obtained on the KC3 dataset 

Classifier F-measure Recall Precision Accuracy 

SVM 87.65% 87.05% 78.43% 77.77% 

KNN 89.07% 93.82% 76.35% 88.68% 

Neural Networks 94.45% 90.3% 80.47% 94.57% 

Naive Bayes 97.45% 93.75% 96.95% 98.53% 
 

Table 7. Prediction results obtained on the CM1 dataset 

Classifier F-measure Recall Precision Accuracy 

SVM 90.65% 88.05% 82.43% 92.56% 

KNN 92.76% 93.82% 75.35% 97.83% 

Neural Networks 95.45% 92.3% 83.47% 95.58% 

Naive Bayes 98.45% 95.65% 96.99% 99.43% 
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4. Conclusion 
This paper examined software projects to increase the 

system's prediction rate by efficiently detecting and 

removing defective modules in software projects using the 

machine learning-based naïve bayes classification algorithm. 

This model selects inputs from the dataset by navigating 

through it. The dataset used in this study is defined by a 

single statistical data matrix. Rows and tables in the matrix 

indicate the variable and data members. Each member's 

height and weight are elucidated in the data set lists. 

Potentially Defective modules in the software project are 

predicted by applying the machine learning methods by 

means of considering their respective metric. Also, the Naïve 

Bayesian classification approach is applied to classify the 

complex and non-complex software risks. However, the 

software prediction problem is solved alone using two 

classification cases. 

 

Also, this work does not elucidate defect severity using a 

software complexity metric dataset. In the future, cost 

computation should be reduced while training many different 

samples to optimize the parameters. 

Abbreviations 
SVM - Support Vector Machine 

KNN - K-nearest neighbor 

DT  - Decision Tree  

PSO - Particle Swarm Optimization 

TPOSI - True Positive 

TNEGA - True Negative 

FPOSI - False Positive 

FNEGA - False Negative   

NN - Neural Network 

NB  - Naïve Bayes 
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