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Abstract - Lithium compounds (carbonate, chloride) are the most widely used materials in glass, ceramics, pharmaceuticals, 

and electric vehicle batteries. The production of vehicles runs on electricity, and some of the devices having electronic circuits 

gradually increased the Li demand for the derivatives. The material base is mainly focused on Li production and Li derivatives. 

Lithium reserves account for 70-80% of Salt Lake waters; marine and geothermal waters account for the total lithium reserves 

and can be used as the best raw material for Li extraction. Many ways of extracting Li have been investigated using water 

resources. The adsorption method is the most effective method among those. This article provides information about some 

sorbents which is used in the process of Li extraction by adsorption method, their merits and demerits, as well as their impact 

on the environment. The use of the efficient and most promising selective type of sorbents with higher functionality, lower energy 

consumption, and environmental safety ensures the achievement of high economic performance. 

Keywords - Recovery of lithium, Ion exchange, Adsorption, Saline-like, Geothermal water, Brine. 

1. Introduction 
In the periodic table of chemical elements, lithium is an 

element that comes in third place after H and He. This has 

6.939 ha atomic weight and 0.534 g/cm3 in the literature, such 

as the conventional method of evaporation precipitation, 

solvent extraction method [9-11], and adsorption method, new 

density [1]. It is the lightest metal among metals. Further, 

among all of the solid elements in the table, it has the highest 

specific heat capacity [2-4]. The properties of Li compounds 

ensure their wide application in various fields. Not limited to 

Lithium-Ion Batteries (LIB), metallurgy, pharmaceuticals, 

aerospace, ceramics, and glass industries [1]. 

Lithium is one of the rare and expensive elements; it 

amounts to 0.007% of the earth's crust [5-7]. The resources of 

Li are divided into solid and liquid. Seawater brines, lake salts 

and geothermal waters are categorized under liquid and 

mineral deposits, waste from Li-ion batteries, the secondary 

raw materials and the industries related to electronics are 

categorized under solid [4]. 

Lithium reserves account for 70-80% of Salt Lake waters, 

and marine and geothermal waters account for the total lithium 

reserves. They can be used as the best raw material for Li 

extraction [5, 8]. 

The methods for extracting Li from water are available 

technologies such as electrochemical methods [12-16] and 

membrane technology [17-22]. There are key factors that 

adversely affect lithium recovery. These are the effects of 

polyvalent cations that pollute water and some of the elements 

that disrupt the extraction process (Na+ and K+) [23]. 

The precipitation method commonly used is limited due 

to the high amount of Li/Mg ions contents because of the time-

consuming, complex and primary processes to remove 

elements present in the seawater [24-26].  

Lithium from poly-ionic seawater exhibited some 

undesirable stability during the solvent extraction process 

since the organic solvents we use there can cause some 

corrosion in the experimental equipment and environmental 

pollution, too [27-28]. Systems of electrochemical extraction 

of Li, including capacitive deionization and electrodialysis 

based on electrochemical ion exchange based on an external 

electric field, lead to high-energy consumption [29-34]. 
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Membrane technologies to extract lithium, including 

selective electrodialysis, membrane capacitive deionization, 

nanofiltration, trace ion membranes, and membrane 

distillation crystallization, are controlled by pressure, electric 

field and temperature gradient [35-47]. 

These types of technologies have greater potential for 

development within the future generation perspective, but 

their implementation is difficult due to problems associated 

with the consumption of energy, membrane durability and 

technology efficiency. The Li/Mg separation technology 

reaction to precipitate Al and Mg ions with a hydroxide 

solution is in its infancy up to now [48-49]. 

Compared with all the technologies discussed above, the 

adsorption method shows high lithium selectivity, simple and 

efficient operation, wide application in almost all saline water 

resources, high economic efficiency, and low environmental 

impact [50-51]. The adsorption method uses lithium-selective 

adsorbents to extract lithium from polyionic water sources and 

then desorb them with other solvents to extract lithium. The 

main adsorbent requirements include sufficient capacity for 

adsorption, adequate performance stability and high Li 

selectivity [52]. 

Adsorbents used to extract lithium from water sources can 

be divided into three main groups. They are divided into 

inorganic, organic, and composite adsorbents [53-57]. 

The use of organic adsorbents such as polymeric ion 

exchange resins is limited because it has hazardous feedstocks 

of organic compounds, and the synthesis processes are more 

complex. Their price and quantity are important when using 

inorganic and metal adsorbents, such as naturally available 

mineral and metal adsorbents. It is difficult to use saltwater 

sources in various fields. At present, metal-based adsorbents 

are becoming the main technology for the most massive 

studies of lithium extraction. The advantages of metal Li 

adsorbents are the highest Li retention capacity, low feedstock 

losses during the regeneration process, high percentage of 

efficiency, relatively low consumption of power, and excellent 

Li selectivity that make them promising environmentally 

friendly ways to recover Li from water sources [58-59].  

Even if numerous adsorption techniques are used to 

extract Li from water sources, it is advisable to understand the 

benefits and drawbacks of each technique in order to choose 

the most effective one for Li extraction. However, we could 

not locate any pertinent analyses of the adsorption methods 

that explicitly stated the most effective technique for doing so. 

Therefore, there is a need to find the appropriate analysis to 

determine the efficient and effective adsorption method. We 

attempted to provide information about the many organic, 

inorganic, combined and other adsorbent types employed in 

the process of using the adsorption method to extract Li from 

water sources in this review paper. Future researchers can 

choose an adsorption technique more effectively and spend 

less time looking for the right one. 

 

2. Demand for Lithium and its Economic 

Prospects 
According to the forecasts of world scientists, the global 

demand increases significantly in future for lithium, and the 

deficit is also expected to rise [5, 60]. By 2025, it will triple 

due to increased production of electric vehicles and electrical 

appliances, and it will be difficult to satisfy the need for 

lithium on Earth [61]. According to other estimates, the 

demand will exceed around 2,000,000 MT in 2030 [62]. 

As mentioned earlier, lithium has many end uses other 

than batteries. The metal consumption in the world is 

associated with the Li battery sector: thirty five percent of the 

production of Li is utilized for batteries. The production of 

ceramics and glass also requires resources of around 32%. 

Lubricants and greases accounted for around 9%, and air 

treatment and continuous casting accounted for 5%. Polymer 

production utilizes 4%. Sanitation, construction, organic 

synthesis, pharmaceuticals, alkyd resins and alloys account for 

around 9%, as shown in Fig. 1 [63, 64]. 

Without efficient technologies to produce this precious 

metal using water sources as raw material, it will be difficult 

to meet Li demand globally. An important factor is investing 

in research and innovation to obtain lithium and its 

compounds and new technology development, ensuring a 

stable supply of raw materials. Increased investment from 

automakers and electronics companies increases the demand 

for new offerings entering the market. Therefore, it is 

important and necessary to find an additional alternative to 

fulfil the demand for Li in all types of industries [65]. 

Conducted literature materials show that the adsorption 

method of extracting Li is the most promising and trusted 

method to obtain Li from water sources in terms of 

manufacturability, resource and energy savings, economic 

efficiency and environmental friendliness. 

3. Lithium Recovery from Liquid Sources 
The ocean will serve as a promising and important 

resource for Li to cater to global Li demand [66]. The world 

reserve in total of lithium in the oceans is 2.6 x 1011 tons. [67]. 

In some countries, Li extraction from hydro-mineral sources 

was done in semi-industrial scale salt lakes in the USA [68-

70] and geothermal waters in Japan and Israel [71, 72]. The 

extraction of Li from seawater has become an integral part of 

the chemical industry [73]. The Li extraction from water 

sources (geothermal and saline seawater) is explored with 

great interest in China, Bulgaria, Germany, and Korea [74].
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Fig. 1 Application of metallic lithium and lithium compounds throughout the world in percentage [63, 64] 

 

Li extracted from the seawater is mainly through the 

chemical precipitation, adsorption ion exchange and 

extraction processes. In connection with the development of 

chemical technology, various methods are used to extract Li 

from seawater, including the L-L extraction method and the 

membrane method, which also belongs to. 

However, among the above methods, the adsorption 

method is the most rapidly developing and widely used; a brief 

analytical summary is given in Table 1 [74]. 

The Li extraction from water sources (seawater) is the 

main potential resource available now to extract Li. It is 

advisable to consider the following when extracting Li from 

water sources for economic advantages.  

Those are attention to the stability of the soil of ponds 

intended for the collection of seawater and their evaporation 

under the influence of sunlight, the Li concentration in 

seawater, alkaline earth elements, the alkali metals ratio, the 

complexity of chemical phases [84]. 

 

Table 1.  Extraction of lithium from seawater with sorption flow mechanism [77]

Process Chemical Reference 

Adsorption method 

λ-Manganese Oxide adsorbent [75] 

Aluminium Hydroxide layer [76] 

(HMnO) ion-sieve (microporous) [77] 

λ - Manganese Oxide [78] 

Manganese Oxide [79] 

HMnO [80] 

Nanostructure Manganese Oxide ion-sieve [81] 

Manganese Oxide adsorbent [82] 

H1.6Mn1.6O4 [83] 

Batteries, 35%

Ceramics and Glass, 

32%

Lubricating greases, 

9%

Continous casting, 

5%

Polymers, 4%

Other uses, 9%

Aluminium 

production, 1%
Air treatment, 5%
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Table 2. Compositions of various global lithium brine [84] 

Location 

 Composition (wt. %) 

Na K Li B Cl Mg Ca SO4 

Bonneville, USA 8.30 0.50 0.01 0.01 14.0 0.40 0.01 - 

Great Salt Lake, USA 7.00 0.40 0.01 0.01 14.0 0.80 1.50 - 

Clayton Valley, USA 4.69 0.40 0.02 0.05 7.26 0.02 0.05 0.34 

Hombre Muerto, Argentina 10.0 0.70 0.10 - 16.0 0.09 0.08 1.00 

Salar de Atacama, Chile 9.10 2.36 0.16 0.04 18.9 0.97 0.05 1.59 

Dead Sea, Israel 3.01 0.56 0.001 0.003 16.1 3.09 1.29 0.06 

Sua Pan, India 6.00 0.20 0.002 - 7.09 - - 0.83 

Salar de Uyuni, Bolivia 7.06 1.17 0.03 0.07 5.0 0.65 0.03 - 

Taijinaier, China 5.63 0.44 0.31 - 13.4 2.02 0.02 3.41 

Zabuye, China 7.29 1.66 0.05 - 9.53 0.003 0.01 - 

Based on scientific research conducted by world 

scientists, it can be seen that lithium compounds mainly 

contain dissolved sulfates or chlorides salts, or carbonates and 

hydroxides of metals. 

The concentration of Li in salt water in the world varies 

from 10-1500 ppm. B+, Na+, K+, Mg2+, and Ca2+ 

concentrations also vary. Based on the salt composition, the 

salt solution was prepared artificially, which contains Li in 

moderate concentrations, as shown in Table 1.  

The salt concentration was taken into account and 

normalized according to the ratio with lithium [84]. 

It should be noted that the more complex the 

mineralogical composition of seawater, the more complicated 

way of Li extraction from it, which complicates the processing 

technology. Therefore, it is important and desirable to pre-

evaporate seawater in the sun [59]. 

In addition, it should be taken into account that the 

compositional concentration of seawater may increase or 

decrease depending on the season. Studies show that the Li 

concentration in seawater is comparatively high, mainly in the 

summer months [22]. 

The Li extraction from the seawater is determined by the 

volume, concentration, and local brine processing technology 

[85]. 

4. The Adsorption Process of Li Extraction 
Adsorption means the ability of an adsorbate to be 

absorbed by an adsorbent. It is a separation method well suited 

for the removal of dilute contaminants as well as some 

valuable metals recovery from the water sources. In this Li 

extraction process, the adsorbent's particle size is controlled 

by pressure drop, which is a hydrodynamic phenomenon [86].  

Van der Waals force is one of the main parts of the 

adsorption related to the physical nature and the force. This 

kind of adsorption is comparatively weak and does not depend 

on the surface reactions because they are not strong enough to 

significantly affect the molecule's reactivity. The second part 

of adsorption is much stronger, called chemisorption. 

Adsorbed molecules are available on the surface, and the same 

type of attractive force occurs between the bonded atoms in 

the molecules. Ten to one hundred kcal/mole of heat is 

released, compared to physical adsorption, which is <5 

kcal/mole [87]. 

So many adsorbents are used in Li extraction from salt 

lakes, seawater and geothermal water. Inorganic, organic, and 

other types of sorbents show very good selectivity during the 

Li extraction from seawater [53, 88-93].  

5. Organic Sorbents 
The use of strongly acidic cation exchange resins during 

the Li extraction from saltwater, geothermal, and Li source 

solutions has been studied since 1970 [94, 95-99]. 
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Table 3. Materials used in Lithium-ion batteries and adsorbents [108] 

Component 

The weight 

Percentage of 

the Total 

Weight of the 

Battery 

Material Name Li Structure Properties and Advantages 

Cathode 39.1±1.1 

LiCoO2 Layered 
Higher structural stability, cycled >500 times 

with 80-90% capacity retention. 

LiNiO2 Layered 

Having a high energy density (20% higher by 

weight and 15% higher by volume), it is 

cheap; however, it is less stable and organized 

than LiCoO2. 

LiMn2O4 Spinel 
Ecological, attractive and economic reasons; 

discharges ~3 V 

LiCo1/3Ni1/3Mn1/3O Layered/Spinel 
Safe, high capacity with thermal and structural 

stability. 

Li2FePO4F Olivine - 

LiFePO4 Olivine Biomedical applications, cheap and safety 

Li(LiaNixMnyCoz)O2 Layered/Spinel - 

Anode 

C Graphite 
Availability and cheap. Reversibly absorb and 

release a significant amount of Li  (Li:C = 1:6) 

Hard C Microspheres - 

AmberSep™ G26 H, which is a resin with strong acid 

cation exchangeability, can be utilized to extract Li from water 

sources. Li has a much lower affinity for resins (ion exchange) 

than the cations; conventional resins are not suitable for the 

process of Li extraction [98, 99]. This resin type is effectively 

used in the selective extraction of Li only in combination with 

inorganic lithium-selective sorbents [100, 101-104]. 

Much research has been done to explore organic 

polymers' extraction and applications, specifically Li 

extraction over some metal ions. Introducing reagents into 

steric structures of a certain size by using an ion-imprinting 

process, which allows Li ions to enter rather than competing 

ions due to better metal selectivity.  

A nanocomposite sorbent that consists of Li-containing 

polymer resins and molecular sieve nanoparticles for selective 

Li extraction from geothermal waters [105, 106]. However, 

such sorbents have not yet been used in practice due to their 

low selectivity [100]. 

6. Inorganic Ion Exchange Adsorbents 
Inorganic solids such as aluminium hydroxide Al(OH)3, 

crystalline aluminium oxide (AlOx), titanium oxide (TiOx) and 

manganese oxide (MnOx) show selectivity for Li [107].  
 

Most Li sorbents are recommended to extract Li from 

brines and are applied in the Li batteries as cathode materials 

(Table 3) [108]. Dow Chemical was one of the first companies 

to use microcrystalline Al(OH)3 in the anion exchange resins 

during the Li extraction from salt water [95]. The use of 

sorbents MnOx during the Li extraction from seawater was 

recommended by Ooi and others [77, 109].  

Titanium oxides (TiOx) are widely used in Li-ion 

batteries. Titanium oxides have also been proposed as sorbents 

for Li extraction from geothermal and saline waters [96, 110-

113]. The properties of inorganic crystalline sorbents are 

being made to utilize these solid sorbents in technological 

systems to extract Li from industrial fluids and natural fluids, 

including geothermal waters [114]. 

When choosing sorbents to extract Li from water sources 

by applying the adsorption method, their metallic crystal 

structure is important. The main reason is that the exchange 

sites of cations are protected within the crystalline matrix and 

act as the molecular sieve for this process. Small Li ions can 

penetrate the internal ion exchange centres through the 

molecular sieve, while large cations cannot penetrate the 

internal centres. Feng and his colleagues showed that the main 

reaction of lithium MnOx sorption is ion exchange rather than 

redox reactions [115-116].  

As a result of the studies, it became known that the 

property of selective adsorption of MnOx, Li ions are allowed 

to enter the crystal lattice, but it has a crystalline structure that 

acts as the molecular sieve, sterically preventing the 

penetration of other ions [79, 115-117]. 
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Many scientists noted that the selective adsorption 

capacity of TiOx and Al(OH)3 crystals is very close and similar 

to the adsorption selectivity of MnOx [96, 111-124]. 

7. Sorbents Based on Aluminium 
The main reasons for the industrial interest in Al-based 

sorbents are that they are environmentally friendly, 

inexpensive, and very little secondary waste is generated 

during their use [125]. During the process of Li extraction, the 

counter-current alumina pellets are in contact with the brine. 

Precipitation of AlCl3, LiOH and Al(OH)3 requires precise 

and suitable mixing. Then, the adsorbed material is washed 

with the dilute LiCl solution and concentrated by solar 

evaporation [126]. 

Al-based sorbents [LiAl2(OH)6]+Cl-·nH2O are called Li-

Al layered with double hydroxide chlorides and have the 

hexagonal shape in which aluminium cations occupy 2/3 of 

octahedral positions, hydroxyl anions occupy between the 

layers, and lithium cations occupy the remaining octahedral 

positions [127]. 

 

In this structure, the Aluminium-based sorbent layer is 

separated by the balanced molecular charges; therefore, the 

gap between the layers is extremely small to penetrate any 

other ions except Li-ion. During the extraction process of Li, 

the Li ions are filled with free octahedral sites [124]: 

xLiCl (brine)+(1-x) 

LiCl.mAl(OH)·3nH2O→LiCl.mAl(OH)3·nH2O 

The concentration of Li ions in sea salt water can reach 

360 mg/L where the sorbent is saturated, and it cannot 

additionally absorb any Li+. In the process of desorption, Li 

ions are transported along the chloride cycle, where a low 

concentration of Cl- in the sorbent interlayers leads to charge 

balance disturbance and a change in the direction of Li 

diffusion [124]. 

 

Unlike sorbents based on Ti and Mn, the sorbent 

regeneration based on aluminium does not lead to the 

formation of a secondary type of waste; perhaps the LiCl 

solvent is important to maintain chemical stability, prevent the 

formation of nonreactive gypsum, and allow the sorbent to be 

reused [124]. 

 

Despite recent interest in the use of double hydroxide 

chlorides with lithium and alumina layers, Li recovery focuses 

on recovery from brines by nucleation of double hydroxide 

chlorides with lithium and alumina layers, with little regard to 

reusability and chemical stability sorbent [124]. 

8. Sorbent Based on Manganese Oxides 
MnOx is used in Li extraction from liquid sources with 

spinel structures [115, 128]. In these structures, octahedral 

pores are larger than tetrahedral ones. Cavity MnOx crystals 

can enclose octahedral MnO6 units with common corners or 

edges [129]. In the process of obtaining porous MnOx crystals, 

organic base ions and metal ions can be utilized as a template 

for constant control of the size of pores in the course of various 

types of syntheses [128]. 

 

Manganese oxides have an ion-filtering ability and belong 

to the spinel type with a pore radius of 0.7 Å, which makes 

them selective concerning Li adsorption [128]. Materials 

widely used as MnOx templates for Li adsorption include Mg 

and Li. However, other types of metals also can be used here 

[111, 113, 116, 130, 131]. 

 
Fig. 2 Diagram of Al(OH)3 layer with the octahedral holes through which Li can penetrate [118] 
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Some researchers studied HMnO(Mg) in adsorption 

properties to extract Li from brines [109]. HMnO(Mg) has a 

high selectivity for Li in monovalent and divalent cations, with 

the order of selectivity found to be Mg<Ca<Na=K<< Li at the 

pH of 8. This sorbent has HMnO(Sr), HMnO(Ca), and 

HMnO(Ba), which shows selectivity and limited capacity. The 

Li sorption rate increases with the increase in pH and 

adsorption temperature. The maximum level of adsorbed Li 

from seawater reaches 8.5 mg of Li/g of HMnO (Mg). The 

adsorption capacity of Li is decreasing gradually with repeated 

adsorption cycles, therefore, after 4 applications, the 

adsorption capacity of Li HMnO (Mg) drops to 60% of the 

initial value [77, 109]. 

 Li adsorption in the geothermal water in the form of 

granular and powdered forms of the λ-MnO2 is created from 

Li manganese dioxide with a spinel structure [132]. The MnOx 

sorbent is a part of Li-extracting technology from geothermal 

water. Pre-treatment to remove divalent cations and silica was 

considered important to get rid of the MnOx sorbent coating 

from affecting Li sorption [133]. 

Scientific studies have shown that MnOx crystals exhibit 

the best lithium selectivity compared to monovalent and 

divalent cations prepared with magnesium or lithium [134-

136]. Many varieties of manganese oxide have been 

synthesized and experimented with for Li adsorption in 

various conditions. Due to several modifications, the sorption 

capacity of lithium has been increased [79] and succeeded in 

synthesizing Li1.6Mn1.6O4, dissolving Li+ in acid, and 

preparing a MnO2·0.5H2O ion-exchange sieve at the pH of 10 

with 10 mg/g ion-exchange capacity. In the next steps, the 

sorption properties of lithium-antimony oxides are added-

manganese formed by the interaction of antimony (V) 

chlorides and the aqueous solution of manganese (II) with Li 

hydroxide; modifications increase the capacity of Li exchange 

to 38.9 mg/g [137]. 

In addition, at the pH of 7.2, the iron-doped manganese 

oxide with a capacity of sorption of 0.028 g/g was obtained 

from another research [138], and up to 28.2 mg/g Li 

absorption with a spinel structure was obtained from tartaric 

acid form nano-Li1.33Mn1.67O4. This made it possible to use 

artificial seawater to extract lithium at least 5 times [139]. 

Manganese oxide sorbents found that the maximum 

capacity of Li1.33Mn1.67O4 is around 55 mg/g; however, in most 

cases, this value ranges from 20-40 mg/g [96].  Another study 

has shown that with an increase in pH to the value of 10, the 

sorption of Li on MnOx can be increased from about 6-25 mg 

[139]. The application of manganese oxide in complex 

solutions results in less than synthetic solutions. Some of the 

synthesized MnOx include Li1.66Mn1.66O4, LiMn2O4, and 

Li4Mn5O12. They identified that the powdered form of 

Li4Mn5O12 worked best at low Lithium concentrations. 

However, the maximum adsorption capacity of this 

composition did not exceed 8.98 mg/g during the same study 

with real geothermal brines [140]. 

Manganese oxide ion sieves have high Li ion selectivity 

and also a high capacity of ion exchange in the Li extraction 

from various water sources, but they identified that the 

dissolution state of sorbent used in the experiment in acid 

regeneration deteriorates the capacity of ion exchange, which 

leads to process failure. The instability of manganese oxide in 

acidic conditions is the limiting factor to utilizing MnOx as a 

sorbent, and research is currently underway on alternative 

elements that do not disturb the crystal structure of MnOx 

[141]. The industrial use of manganese oxide sorbent is often 

aimed at increasing the stability of sorbents and using 

regenerating solutions that do not destroy their structure. Lilac 

Solutions is an active marketing form of sorbent to recover Li 

from brines [142] and is evaluated and tested for use in 

geothermal waters [114]. 

9. Sorbent Based on Titanium Oxides 
Crystalline titanium oxides (TiOx) are used in some 

batteries, which act as a molecular sieve or the ion exchange 

adsorbent for Li [110, 143]. Titanium oxide spinel structures 

operate on the same principle as MnOx spinel pore in the 

crystal structure and were determined to find the specificity 

and efficiency of molecular sieve [113]. The synthesis of 

titanium oxide sorbents with 37 mg/g as the maximum 

capacity [121]. Scientific experiments show that the efficiency 

of titanium oxides in the Li-ion sorption from solutions is 

lower than that of manganese oxide [96, 111, 112, 143]. Spinel 

TiOx has a relatively high level of acid resistance and exhibits 

energy efficiency when alternating sorption and desorption 

processes [96]. Titanium oxides have many advantages over 

MnOx, which is an environmentally friendly sorbent, too [96, 

113]. 

The Li-ion sorption from Salar de Uyuni salt water in 

Bolivia by the layered H2TiO3 obtained from the Li2TiO3. The 

research found that the H2TiO3 has the highest Li selectivity 

(Li+, K+, Na+, Mg2+, Ca2+), (pH - 6.5) the capacity of 

adsorption was 0.0326 g/g when they applied molecular sieve 

method [112, 144, 145]. 

Titanium oxides are being studied at a fundamental level 

in laboratories. So many scientific articles have tested the 

effectiveness of titanium oxide in complex brines [96, 112, 

113, 143]. However, TiOx sorbents' processes to extract 

lithium from water sources have been patented [146, 147]. 

In 1989, Onodera and his research group succeeded in 

developing the first method for obtaining lithium by acid 

treatment of Li2TiO3 using a titanium-based ion exchanger 

[148]. It can form a reaction of solid phase involving Li2CO3 

and TiO6 subsequent crystallization under high temperatures 

[149].  
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Fig. 3 Crystalline structure of Li2TiO3 (Li, Ti and O are shown in purple, grey and red spheres) [83]

In the monoclinic crystal structure of lithium and 

titanium, 2/3 of the lithium ions occupy octahedral positions 

between the octahedral TiO6 layers, and the remaining 33% of 

the Li ions are located inside the octahedral TiO6 layers (Fig. 

3) [150 -152]. 

During Li desorption, when Hydrogen ions replaced the 

Li ions in an octahedral structure, the OH groups and TiO6 

groups located inside the octahedral layers form molecular 

hydrogen bonds [151, 152]. The preparation of sorbents from 

titanium oxides for Li extraction from water sources has been 

the main focus of researchers in the last decade. This is mainly 

because lithium is very convenient to extract from 

unconventional resources such as process fluids [153-157]. 

Titanium oxide sorbents have several advantages over other 

metal-based sorbents, where they give ease of manufacture 

and a low amount of loss in the weak acids condition. 

10. Combination of Adsorptive Separation 
When Asanic-containing geothermal water was fed into 

the MnO2-containing column, suppression of Li+ adsorption 

and breakdown of MnO2 were observed. Magnetite (Fe3O4) 

were used to remove Asanic from geothermal water; the 

breakdown of MnO2 was considerably reduced during Li+ 

adsorption, while a minor quantity of Asanic remained [158]. 

 

11. Other Types of Metal Oxides as Sorbent 
In addition to the sorbents studied above, oxides of other 

metals, for example, HSbO3·12H2O [159-160], H8Nb22O59 

8H2O [161], including HTaO3 [162] and how these metal 

compounds will form an ion exchange when Li is a presence 

there. Their selectivity of Li is reduced due to K+ or Na+ 

presence and competing with ions; therefore, they cannot be 

compared with other metal-based sorbents [165]. Previous 

studies have shown that the above sorbents are reinforced with 

Ti or Sn, which is a tetravalent metal that can be effectively 

prepared with sorbents with a crystal structure and used to 

increase the separation factor of Li [166-167]. Nevertheless, 

due to the complex synthesis process, the metal oxide 

dissolution and the high cost of reagents were the limiting 

factors for industrialization. 

12. Conclusion 
So many sorbents have the same type of defects. These 

include low lithium-ion absorption index, poor acid resistance, 

and loss of sorbents after several applications. Titanium 

oxides are the most effective sorbents, which have a 28 mg/g 

capacity compared to other sorbents. In addition, it is resistant 

to acids and shows energy savings when switching from the 

adsorption to the desorption process. It has several advantages 

over manganese oxides, including easier production, 

environmentally friendly and less wastage in use. Many types 

of research have been conducted to strengthen the sorbent's 

stability, increase the ability to absorb Li ions and selectivity 

and reduce the sorption time. However, not all of this allows 

the use of the lithium adsorption method on an industrial scale. 

For this reason, developing and improving Li extraction from 

water sources by adsorption method remains difficult. 

Soon, lithium production by the adsorption method may 

become the most efficient and alternative option for meeting 

the demand for lithium, primarily due to energy stability, 

environmental friendliness, and closed-loop economy. 
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