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Abstract - The buckling of steel columns is a critical concern in structural engineering design and analysis. Accurate 

prediction of buckling behavior is necessary for ensuring the integrity and safety of steel structures. Buckling phenomena in 

steel columns present a challenging and intricate issue within the realm of structural engineering. In the past few years, 

diverse Artificial Intelligence (AI) techniques have been employed to address complex problems in structural engineering. 

Artificial neural networks (ANNs) encompass a category within the field of AI that can learn complex patterns and 

relationships from datasets. This article endeavors to predict the buckling load in steel columns, addressing it as a complex 

problem in structural engineering. By training an ANN on a dataset that includes information about the parameters affecting 

buckling, such as column dimensions, material properties, and load conditions, it is possible to develop a predictive model. In 

this research, the behavior of steel columns under various loading conditions using Finite Element (FE) is simulated, a large 

amount of data for training ANNs have been generated, and multiple ANNs are trained using various architectures and 

training algorithms. The performance of trained ANNs is evaluated using statistical parameters such as Mean Squared Error 

(MSE) and coefficient of correlation (R2). The results show that ANNs are well-suited for predicting complex and nonlinear 

problems such as buckling load in steel columns. The paper also discusses the importance of proper training and validation 

procedures and the challenges associated with extrapolation beyond the trained data range.  
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1. Introduction  
The prediction of buckling behavior in steel columns 

plays a vital role in guaranteeing the structural integrity and 

safety of various engineering applications. Buckling, which 

refers to the sudden lateral deformation or collapse of a 

column under compressive loads, is a critical failure mode 

that engineers must accurately predict and prevent. 

Traditional analytical methods, such as Euler’s buckling 

formula, have been widely used for buckling analysis. 

However, these methods often rely on simplified 

assumptions and may not capture the complex interactions 

between various parameters affecting buckling behavior. 

The application of AI techniques in structural 

engineering has revolutionized the field by enhancing design, 

analysis, and decision-making processes [1, 2]. AI enables 

engineers to optimize structural designs, predict 

performance, and evaluate risks more accurately. AI 

techniques can analyze large volumes of data to identify 

patterns, optimize material usage, and improve structural 

integrity. Additionally, AI techniques can assist in structural 

health monitoring, detecting anomalies, and providing early 

warning systems for potential failures [3]. In recent years, 

Artificial Neural Networks (ANNs) as one of the AI 

techniques have emerged as powerful tools for predicting 

buckling in steel columns [4-6]. ANNs are computational 

frameworks designed to imitate the human brain, drawing 

inspiration from its intricate structure and functioning. They 

can learn from data patterns and make predictions based on 

learned knowledge. ANNs have gained significant attention 

as a result of their capability to capture complex nonlinear 

relationships and adapt to various input parameters.  

The application of ANNs in predicting buckling 

behavior offers several advantages over traditional analytical 

methods [7-11]. ANNs can handle large and diverse datasets, 

allowing for a more comprehensive exploration of input 

parameters' effects on buckling. They can effectively learn 

and model the intricate interactions between parameters, 

enabling accurate predictions in both linear and nonlinear 
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systems. Moreover, ANNs have the potential to generalize 

well to unseen data, making them valuable tools for practical 

engineering applications. The use of ANNs has become 

widespread because of their ability to produce dependable 

predictions, even when trained with deficient or incomplete 

data.  

In structural engineering, several researchers have 

utilized ANNs to predict the buckling behavior of civil 

structures. For example, A research to assess the feasibility 

of utilizing ANNs to predict the buckling parameters of 

slender channel components under compression and bending 

loads [12]. The authors trained ANNs by inputting various 

parameters, including the dimensions, thickness, stiffener 

placement, and length of the elements. The output data 

comprised the buckling load. A hybrid strategy combining 

the finite strip technique with the equivalent nodal force 

approach was employed to generate training samples. The 

findings demonstrated that the trained algorithms exhibited a 

notable level of precision, with a correlation value of 98%, in 

predicting the buckling loads. This study also provided 

potential avenues for further improvement in ANN-based 

buckling prediction models. 

In a subsequent study, examined the impact of primary 

parameters and various loading conditions on the ultimate 

torsional buckling resistance of steel I-beams with web 

openings [13]. Subsequently, utilizing the provided database, 

an ANN was employed to develop a precise formulation for 

predicting the ultimate lateral torsional buckling strength of 

steel beams. The outcomes indicated that the recommended 

ANN model exhibited a reasonable level of accuracy, 

making it a viable and practical approach for I-beams with 

sinusoidal web openings. 

Moving on, Wu et al. [14] conducted an analytical 

investigation on the buckling performance of prestressed 

stayed beam columns. They also introduced an intelligent 

approach utilizing ANNs to assess the nonlinear failure mode 

and determine the ultimate load. The findings indicated that 

the utilization of the ANN technique provided accurate and 

reliable predictions for the failure mode and ultimate load of 

prestressed stayed beam columns. In another study, Tahir et 

al. [15] employed ANNs to estimate the buckling load of 

slender shell structures experiencing axial compression. A 

dataset comprising 516 specimens was compiled by 

gathering experimental data from 38 prior studies focusing 

on the buckling behavior of thin shell structures under axial 

compression. The training of the networks utilized the 

backpropagation algorithm and involved nine input 

parameters. These parameters encompassed two mechanical 

characteristics, six geometrical factors, the class of 

fabrication tolerance, and a single output parameter 

representing the buckling load of the specimens. In addition, 

Tahir and Mandal [16] performed an extensive analysis of 

experimental data gathered from established literature 

sources using ANNs. The networks were trained using 390 

experimental datasets with the backpropagation algorithm. A 

comparison was made between the critical buckling loads 

predicted by the ANNs and the design guidelines provided 

by Eurocode 3 and the experimental buckling loads. The 

findings indicated that the ANNs could predict the buckling 

load within a 10% margin of the buckling load obtained from 

experiments. Consequently, these models can be considered 

reliable for use within the range of parameters employed 

during the training process. 

In another research, the buckling behavior of prestressed 

CFRP-reinforced steel columns using ANN has been 

investigated by Hu et al. [17]. In this study, the finite element 

was employed to analyse columns subjected to axial 

compression load to generate 312 datasets for the training of 

ANN. The study identified nine significant parameters that 

notably impacted the buckling strength of reinforced 

columns using Carbon Fiber Reinforced Polymer (CFRP). 

These factors included the initial CFRP prestressing force, 

support span, eccentricity, yield strength of steel, column 

slenderness, elastic modulus of CFRP, initial imperfection, 

and boundary conditions. The research findings 

demonstrated that ANNs could accurately predict the 

buckling strength of prestressed reinforced steel columns, 

even when considering the complex nonlinear problem at 

hand. 

Furthermore, in recent years, several researchers have 

explored the advantages and limitations of ANNs in 

predicting buckling behavior [18-25]. They have discussed 

various aspects, such as different ANN architectures, training 

algorithms, and the selection of input parameters. 

Additionally, comparative analyses have been conducted to 

evaluate the accuracy of ANN-based buckling load 

predictions compared to experimental results and theoretical 

models. Based on prior studies, it has been established that 

ANNs exhibit the potential to improve prediction accuracy, 

making them a valuable tool for addressing and reducing 

buckling risks in steel columns. Despite the promising results 

of using ANNs for predicting buckling load in steel columns 

compared to traditional methods, additional research in this 

area is required to assess the efficiency of ANNs. Therefore, 

this study aimed to focus on exploring the potential of ANNs 

to predict the buckling load in steel columns. The findings 

from this study significantly contribute to advancing the field 

of predictive modeling in structural engineering. Reducing 

the necessity for extensive physical testing provides valuable 

insights for engineers engaged in designing and analysing 

steel structures, thereby mitigating the risk of buckling 

failures. 

2. Artificial Neural Networks  
Artificial Neural Networks (ANNs) represent 

computational frameworks that draw inspiration from the 

structure and functionality of biological neurons, specifically 
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the human brain [26-27]. ANNs consist of interconnected 

nodes, or artificial neurons, organized into layers. ANNs 

have become increasingly popular for solving real-world 

issues as they can address complex problems that traditional 

technologies cannot handle, especially those that do not have 

a defined algorithmic solution or have a solution that is too 

complicated to define. Among the various types of neural 

networks, the multilayer perceptron stands out as the most 

commonly employed one in structural engineering. 

As shown in Figure 1, ANNs typically consist of three 

types of layers. The first layer of the network, known as the 

input layer, gets the initial input datasets. The input data's 

dimensionality dictates the input layer's size within a neural 

network. Intermediate layers, known as hidden layers, are 

located between the input and output layers in a network. 

They are termed as hidden because their computations are 

not directly observable from the outside. Hidden layers 

improve the network's ability to grasp complex patterns and 

interrelationships present within the data. ANNs can have 

more hidden layers, depending on the architecture chosen. 

The network's final layer, known as the output layer, 

generates the network's outputs. The number of neurons 

within the output layer fluctuates based on the nature of the 

particular problem under consideration. For example, in the 

case of a binary classification problem, the output layer 

would comprise only one neuron, while a multi-class 

classification problem would have multiple neurons 

representing different classes. 

The structure of an ANN, including the number of layers 

and the arrangement of neurons within each layer, can differ 

depending on the specific problem domain and its 

requirements. Different architectures, such as feedforward 

networks, convolutional networks, recurrent networks, and 

deep networks, offer flexibility in capturing different types of 

patterns and relationships within the data. 

Data preparation is the first step to developing the 

architecture for ANN. This includes tasks like gathering data, 

refining data, data normalization, and feature scaling. The 

data should be properly formatted and prepared to be fed into 

the ANN. The next step is to design the architecture of the 

ANN. This step entails deciding on the number of layers, the 

number of neurons within each layer, the activation functions 

that will be employed, and the connections between the 

neurons.  

In this study, a multilayer feedforward neural network is 

utilized, where the neurons are arranged in layers. Each 

neuron in a particular layer is linked to all the neurons in the 

next layer. During the feedforward phase, the input data is 

forwarded through the network in a unidirectional manner, 

moving from the input layer towards the output layer. Every 

neuron within the network calculates a weighted sum of its 

inputs, employs an activation function to this summation, 

and then transmits the resulting value to the neurons situated 

in the subsequent layer. The backpropagation algorithm is 

widely utilized in multi-layer feed-forward networks due to 

its effectiveness in mathematical modeling and learning 

complex nonlinear relationships. 

    
Fig. 1 Architecture of ANNs 

Backpropagation serves as a fundamental algorithm for 

training ANNs. It encompasses computing the gradient of the 

error function concerning the network's weights and biases, 

followed by modifying these parameters to minimize the 

error. The gradients are calculated and propagated backwards 

through the network. This algorithm is evaluated based on a 

performance indicator, which is the least Mean Square Error 

(MSE). This performance index serves as the convergence 

criterion during the training of ANNs. It involves minimizing 

the average squared difference between the predicted outputs 

of the network and the corresponding targets in the training 

set, aiming to achieve a satisfactory agreement between the 

network's results and the training set outcomes [28]. 

3. Prediction of Critical Buckling Load using 

ANNs  
The precise prediction of buckling behavior plays a 

crucial role in upholding various applications' structural 

integrity and safety. When utilizing ANNs for buckling 

prediction, it is routine to collect a dataset that consists of 

input features and their corresponding output labels, which is 

buckling behavior. In the occurrence of column buckling, 

several parameters play a crucial role. Geometric properties, 

which are the dimensions and shape of the column, such as 

length, cross-sectional area, and moment of inertia, affect its 

susceptibility to buckling. Longer and slender columns are 

more prone to buckling compared to shorter and stouter ones. 

Even minor imperfections in the column's geometry can have 

a significant influence on buckling behavior. Imperfections 

can cause local stress concentrations and initiate buckling at 

lower loads. The material characteristics of the column, 

including its modulus of elasticity, yield strength, and 

stiffness, influence its buckling behavior. Columns made of 
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materials with lower stiffness are more susceptible to 

buckling. The type of support and constraints at the column 

ends significantly impact buckling. Columns with pinned 

ends have higher buckling capacity than those with fixed or 

clamped ends. The magnitude, direction, and distribution of 

applied loads on the column play a vital role in buckling. 

Compression loads acting along the longitudinal axis of the 

column increase the likelihood of buckling.  

This study employed seven variables significantly 

impacting the critical buckling load in steel I-columns to 

develop ANN models. These parameters include section 

depth (h), the width of section (b), thickness of flange (tf), 

thickness of web (tw), slenderness ratio (L/r), the ratio of the 

compression flange to the thickness of flange (c/tf), the ratio 

of the depth between fillets to the thickness of web (d/tw). 

The output of the ANN was designated as the critical 

buckling load in steel I-column (Pcr). Table 1 presents 

statistical information regarding the variation of specific 

parameters associated with the specimens considered in the 

database. This study focuses on utilizing Finite Element 

Analysis (FEA) to simulate the performance of steel columns 

under diverse loading scenarios. As a result, a substantial 

dataset comprising 255 samples has been generated through 

FEA and meticulously prepared to construct models for 

ANNs. All datasets have been collected from simply 

supported columns. At first, the ANN would be trained on 

these datasets to establish comprehension of the relationship 

between the input parameters and the buckling outcome. 

Among the total 255 datasets, 165 datasets were 

designated for training purposes, accounting for 65% of the 

total. Furthermore, 51 datasets were allocated for testing, 

making up 20% of the total, and the remaining 39 datasets, 

which constituted 15%, were utilized for validation. The 

random division of data was conducted across the three 

datasets, and each dataset underwent statistical analysis to 

ensure that it encompassed a comprehensive range of input 

parameters. 

In this research, a feedforward Backpropagation 

Algorithm (BP) was applied for ANN training. During 

training, the network is presented with a set of training 

examples, and the weights and biases are adjusted iteratively 

using optimization algorithms like gradient descent or its 

variants. The training process aims to minimize the error 

between actual datasets and predicted results from ANN and 

improve the network's ability to make accurate predictions. 

In the BP algorithm, an input vector comprising the 

mentioned seven parameters is initially fed into the input 

layer. These input vectors generate a corresponding set of 

output values. Subsequently, the error, computed as the 

distinction between the given output and the desired output, 

propagates backwards through the network. The Mean 

Square Error (MSE) is reduced throughout this procedure, 

leading the ANN's output to approach the target output. 

Table 1. Statistical information of datasets 

Parameter Min Max 

Section’s depth (h), mm 100 890 

Section’s width (b), mm 50 424.4 

Flange’s thickness (tf), mm 6 77 

Web’s thickness (tw), mm 4.5 47.6 

Slenderness ration (L/r) 30 150 

Ratio of the compression flange to 

the thickness of flange(c/tf), 
2.75 13.4 

Ratio of the depth between fillets to 

the thickness of the web (d/tw). 
6.05 68.5 

Critical buckling load in steel I-

column (Pcr), kN 
15.7 7750 

 

When a new sample is presented as input, a well-trained 

ANN is capable of producing successful results. To facilitate 

this, the datasets were normalized within the range of 0 to 1 

and then provided as input to the input neurons of the ANN. 

The training process persists, continually updating and 

adjusting the weights until the ANN is able to generate 

outputs that are deemed satisfactory when compared to the 

target values. 

This study employed numerous neural network 

architectures, each characterized by distinct conditions like 

connection weights, the quantity of hidden layers, the 

quantity of neurons within each layer, and the activation 

function type applied in both hidden and output layers. These 

networks were trained using available datasets to fulfill the 

research objectives. Based on the findings, a network with a 

single hidden layer demonstrated satisfactory convergence 

during the training of the ANN. Therefore, the network 

architecture decided with a 7-15-1 configuration consisting 

of three layers. 

The first layer comprises 7 neurons in the input layer 

representing the seven most effective parameters on buckling 

load in steel beams. The second layer, known as the hidden 

layer, contains 15 neurons. Finally, the output layer has a 

single neuron corresponding to the critical buckling load. 

The network architecture selected for this study is illustrated 

in Figure 2. It should be noted that incorporating a larger 

number of neurons in the network increases computational 

complexity and time requirements. In conclusion, the 7-15-1 

architecture of the ANN was chosen to achieve an optimal 

trade-off between compatibility cost and accuracy, providing 

a balance between efficiency and performance. 

Additionally, the findings demonstrated that the ANN 

model developed with a learning rate of 0.2 and a momentum 

parameter of 0.7 exhibited the lowest error rate. The network 

employed a hyperbolic tangent activation function in both the 

hidden and output layers. Following that, the network was 

trained iteratively until the training error reached its 

minimum, guaranteeing stability within the network. 
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Fig. 2 Architecture of the ANN for predicting buckling load  

 
Fig. 3 Comparison of buckling load predicted by ANN and actual datasets (training sets) 
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Fig. 4 Comparison of buckling load predicted by ANN and actual datasets (testing sets) 

 
Fig. 5 Comparison of buckling load predicted by ANN and actual datasets (validation sets) 

Based on the findings, the correlation coefficient for the 

training datasets was determined to be 0.991. Following the 

training process, the neural network has acquired knowledge 

from the samples, enabling it to predict the buckling capacity 

in steel columns with a Mean Squared Error (MSE) of 

0.0001246.  

Figure 3 presents a comparison between the predicted 

buckling load values generated by the ANN and the actual 

values for the training datasets. 

Once trained, the ANN model can be employed to 

predict the buckling load using datasets not part of the 

training set. Consequently, following the completion of the 

network training, the testing dataset was utilized to evaluate 

the precision of the chosen architecture. The comparison 

between the predicted buckling load by the ANN and the 

actual datasets is depicted in Figure 4. This evaluation was 

conducted using 51 newly introduced datasets as testing sets 

for the network's predictive capabilities. 

The ANN demonstrated success in predicting the 

buckling load of steel columns, as evidenced by a Mean 

Squared Error (MSE) of 0.0001572 for the testing sets, 

indicating a close match to the actual outputs. The correlation 

coefficient for the testing datasets was determined to be 

0.986. These results indicated that the network accurately 

predicted the buckling load in most cases, as evidenced by 

the low error and high correlation values. 

However, it should be noted that the network struggled 

to accurately predict the buckling load in cases with 

exceptionally high loading values. This limitation may be 

attributed to the insufficient availability of datasets within 
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this specific range during the network's training process, 

which could explain its reduced accuracy in such scenarios. 

It is widely acknowledged that an ANN's performance can be 

significantly improved by training it on a diverse range of 

data, particularly large volumes of data. 

Furthermore, the validation dataset was utilized as an 

additional measure to evaluate the neural network's 

generalization ability and to fine-tune hyperparameters such 

as the learning rate and quantity of hidden layers and 

mitigate the risk of overfitting. This tuning process aims to 

enhance the network's performance by optimizing these 

hyperparameters based on the validation outcomes. This step 

aimed to evaluate the reliability and accuracy of the 

functioning of the trained network. The comparison between 

the predicted buckling load by the ANN and the actual 

datasets for the validation datasets is illustrated in Figure 5. 

The validation results revealed the success of the ANN in 

training the relationship between the input and output data, 

as evidenced by an MSE of 0.001839 and a correlation 

coefficient of 0.982. Figure 5 illustrates that the chosen 

network exhibited a strong correlation between the inputs 

and outputs of the network, indicating its capability to 

capture and represent the underlying relationship effectively. 

In this study, it was observed that the critical buckling 

load of columns, as calculated using Euler's buckling theory, 

significantly exceeded the practical load-carrying capacity of 

the columns. This disparity can be attributed to Euler's 

buckling theory, assuming an idealized column with perfect 

boundary conditions, no imperfections, and linear elastic 

behavior. However, real-life columns often exhibit 

imperfections, non-ideal boundary conditions, and nonlinear 

material behavior. These factors contribute to the deviation 

between the predicted critical load based on Euler's theory 

and the actual load-carrying capacity of the columns in 

practice. 

By comparing the results of the ANN with the actual 

datasets, it was possible to observe the influence of input 

variables on the buckling load in steel columns. According to 

the predicted outcomes, the slenderness ratio (L/r) had a 

greater impact on the buckling capacity of steel columns 

compared to the other input parameters. The slenderness 

ratio is a significant parameter in the design of steel columns 

to assess their stability against buckling. It is important to 

note that when the slenderness ratio is small, the column is 

predominantly subjected to compressive forces and is 

considered short, and buckling is not a significant concern.  

By the way, as the slenderness ratio increases, the 

column's load-carrying capacity is influenced by both its 

resistance to compression and its resistance to buckling. 

When the slenderness ratio exceeds a critical value, the 

column is considered long, and buckling causes the column 

to deflect laterally, reducing its load-carrying capacity. 

The depth and width of the section were the second and 

third most significant input parameters in terms of their 

influence on the critical buckling load. According to the 

findings of this study, a larger depth resulted in a higher 

critical buckling load. This is because a greater depth 

provides increased resistance to bending and compressive 

forces, enhancing the column's stability. Similarly, a wider 

section tends to have a higher buckling load capacity since it 

offers more resistance against lateral deflection and bending 

moments. 

According to this research, the ratio of the compression 

flange to the thickness of the flange (c/tf) and the ratio of the 

depth between fillets to the thickness of the web (d/tw) were 

identified as the fourth and fifth significant input parameters 

impacting the critical buckling load in steel columns. The c/tf 

ratio affects the ability of the flange to resist compressive 

stresses. A higher c/tf ratio indicates a wider flange relative 

to its thickness, which generally leads to better resistance 

against local buckling. Conversely, a lower c/tf ratio implies 

a narrower flange in proportion to its thickness, making it 

more prone to local buckling failure. The d/tw ratio affects 

the ability of the web to resist compressive stresses. A higher 

d/tw ratio, indicating a greater depth relative to the web 

thickness, generally results in better resistance against local 

buckling. A larger d/tw ratio indicates a slenderer web, less 

prone to local buckling failure. According to this study, the 

impact of the flange's thickness and the web's thickness on 

the critical local loading of steel columns was minimal. By 

the way, a thicker web generally provides better resistance 

against local buckling. Also, a thicker flange enhances the 

column's resistance to local buckling. 

4. Conclusion   
The prediction of buckling behavior in steel columns is 

of utmost importance in ensuring various engineering 

applications' structural integrity and safety. This paper 

presents an approach utilizing ANNs to predict the buckling 

load of simply supported steel columns accurately. This 

study focuses on developing and training ANNs using a 

comprehensive dataset of steel column properties and 

buckling load data. The seven independent variables 

comprising the depth and width of the section, thickness of 

the flange and web of the section, slenderness ratio, the ratio 

of the compression flange to the thickness of the flange, and 

the ratio of the depth between fillets to the thickness of web 

have been selected as input parameters of ANN. Finite 

element analysis from 255 different columns was used for 

training, testing and validation of ANN. 

From the results, it was determined that ANN predicted 

the critical buckling load in steel columns with a very small 

Mean Square Error (MSE) and a high coefficient of 

correlation. The results demonstrated that the ANN as a 

computational intelligent method has the potential to give a 

very encouraging level of performance for the problem of 
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buckling load prediction in steel columns based on some of 

its influence factors. Consequently, the approach investigated 

in this study shows great potential as a dependable method 

for accurately predicting the buckling load in steel columns. 

Furthermore, this study conducted a sensitivity analysis 

to assess the contribution of input parameters to predict the 

buckling capacity in steel columns. The outcomes 

ascertained that the slenderness ratio (L/r) had a more 

pronounced influence on the buckling capacity of steel 

columns when compared to the other input parameters. 

Additionally, based on the findings of this study, it was 

determined that the impact of the flange thickness and web 

thickness on the critical local loading of steel columns was 

relatively less significant when compared to the other input 

parameters examined. 

Ongoing research and advancements in this area will 

continue to enhance ANN-based methodologies, resulting in 

improved precision and efficiency in buckling load 

predictions. As a result, this advancement will contribute to 

developing structural engineering practices, ensuring 

structural integrity and greater safety. Integrating AI 

techniques in structural engineering holds great potential for 

advancing civil structures' efficiency, safety, and 

sustainability.  
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