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Abstract - Underwater image processing poses unique challenges due to the presence of various degradation factors such as 

color attenuation, backscatter, and noise. Object detection in underwater images is particularly challenging as these factors can 

affect the visibility and clarity of objects. In this study, we present a unique approach that combines the Weiner filter with a 

Multi-Resolution Convolutional Neural Network (MR-CNN) for a method for detecting objects underwater image processing to 

enhance object-detecting ability, and we integrate the Weiner filter with an MR-CNN. The MR-CNN utilizes multiple resolutions 

to capture and analyze different levels of information in the image. This multi-resolution approach allows for better extraction 

of features at various scales, enabling the network to detect accurately. The combination of the Weiner filter and the MR-CNN 

significantly improves the object detection accuracy in underwater images compared to traditional methods. The results highlight 

the potential for practical applications in underwater research, exploration, and surveillance domains. 

Keywords - Underwater image processing, Weiner filter, Multi-Resolution Convolutional Neural Network, Object detection, 

Surveillance domains. 

1. Introduction  
Underwater image processing and analysis have gained 

significance owing to their wide variety of applications; they 

have acknowledged a lot of interest in the past few years, 

particularly in marine biology, underwater robotics, and 

underwater surveillance. However, underwater images pose 

unique challenges compared to their terrestrial counterparts. 

Factors such as light attenuation, color distortion, and 

backscatter cause degradation in image quality, making object 

detection a complex task [1]. 

Object detection in underwater images plays a vital role 

in various domains. It enables the identification and 

localization of objects of interest, such as marine organisms, 

underwater structures, or man-made objects [2]. Accurate and 

robust object detection in underwater environments is 

essential for tasks like underwater exploration, environmental 

monitoring, and underwater navigation [3]. 

Underwater image processing plays a critical role in 

various applications, including marine research, underwater 

robotics, and underwater surveillance. However, underwater 

imageries grieve from challenges such as low visibility, colour 

distortion, and noise interference, making object detection a 

challenging task [4]. Traditional image processing techniques, 

such as the Weiner filter, have been employed to address noise 

reduction and image restoration [5].  

Deep learning, on the opposing hand, is a method of 

studying, such as CNNs, has demonstrated remarkable success 

in object detection tasks [6]. The Weiner filter is a classical 

technique used for noise reduction and image enhancement. It 

exploits the signal's characteristics and noise's statistics 

qualities to estimate the original signal and suppress unwanted 

noise components [7].  

By adaptively adjusting the filter parameters, the Weiner 

filter can effectively restore image details and improve image 

quality. However, the Weiner filter alone may not fully 

address the complexities and variations encountered in 

underwater scenes, where additional challenges such as color 

distortion and low visibility exist [8]. 

With recent advancements in deep learning, CNNs have 

developed effective techniques for object detection. CNNs are 

learning and extracting high-level landscapes from raw image 

data, enabling them to detect objects in complex and 

challenging environments [9][10]. However, directly applying 

CNNs to underwater images may not provide excellent 

outcomes due to the unique characteristics and image 

degradation factors associated with underwater imaging.  

This research aims to address these limitations by 

proposing a novel approach that combines the strengths of a 
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Hybrid Wiener Filter and a Modified Region-based 

Convolutional Neural Network (MR-CNN) for improving 

object detection accuracy in underwater image processing. 

The scarcity of robust methodologies tailored explicitly for 

underwater object detection underscores the need for 

innovative strategies that can mitigate the challenges posed by 

underwater imaging conditions. 

The existing research predominantly focuses on either 

traditional image enhancement techniques or deep learning-

based approaches independently, neglecting the potential 

synergy achievable through their fusion. Consequently, the 

research gap lies in the absence of a comprehensive solution 

that intelligently integrates both image enhancement and deep 

learning methodologies to enhance object detection accuracy 

in underwater images. 

Following is a brief overview of the remaining sections of 

the article: Efforts in underwater image processing and 

identification of objects. Section 3 details the methodology, 

including the Weiner filter and MR-CNN integration. Section 

4 presents the experiment's setup and outcomes. At last, 

Section 5 summarises the whole article. The contributions and 

consequences of the suggested technique in Image processing 

in the underwater environment and object identification are 

discussed. 

2. Related Works 
Underwater image processing and object detection are 

crucial aspects of various fields, including marine biology, 

oceanography, underwater archaeology, and offshore 

industries. However, the underwater environment presents 

unique challenges that significantly hinder traditional image 

processing and object detection techniques. Underwater 

images suffer from various degradations, including poor 

visibility caused by light attenuation, color distortion, 

scattering, and occlusions due to particles or marine life. 

These factors collectively contribute to reduced image quality, 

making it arduous for conventional computer vision 

algorithms to detect and identify objects in such scenes 

accurately.  

Traditional computer vision techniques, such as edge 

detection and template matching, have been utilized for object 

detection in underwater images. However, these methods 

often struggle to handle the specific challenges present in 

underwater environments, leading to limited performance and 

accuracy. In order to get the binary image of the region of 

interest, an image must first be segmented in accordance with 

the automated threshold segmentation. By calculating the 

second instant, an estimate of the target size is made, and the 

incorrect target is taken out of the equation. Similarly, the 

precise location of a tiny object submerged in water may be 

accomplished [11]. The findings of underwater object 

identification, which is an essential component of the 

workflow for image processing [12], are very important not 

only for the upkeep and repairs of underwater structures but 

also for marine research. To find solutions to challenges such 

as being sensitive to complicated surroundings and their 

values, which are developed from drops. When it occurs, it is 

actually faced with noisy efforts [13]. A method through 

which designers classify various suggested alterations to 

object identification by making use of a basic geometric 

assessment of the scene. As a way of evading the dangerous 

high-pressure deep-sea environment, underwater autonomous 

operation is becoming an increasingly vital component. As a 

consequence of this, it is necessary for there to be an 

investigation of the ocean floor [14]. 

In the marine environment, underwater targets are often 

influenced by interference from other targets and 

environmental variations; as a result, it is difficult to employ 

typical target-tracking techniques for the purpose of 

monitoring underwater objects precisely and reliably [15]. In 

recent years, the identification of marine fish species has 

emerged as a significant study field for the preservation of the 

ocean ecosystem. Finding different types of marine fish on the 

ocean bottom by human inspection is a laborious and time-

consuming process [16]. It is anticipated that the findings of 

the proposed framework will contribute to the development of 

subsequent studies that will provide new insights into dolphin 

behavior, biomechanics, and the effects of the environment on 

dolphin activity and movements. The work that has been 

presented here [17] demonstrates the feasibility of tracking 

marine mammals using CNN object detection. 

Generic CNN-based object detectors still have a long way 

to go before they can successfully identify objects in the 

underwater environment. This is because the underwater 

world is so complicated. Low accuracy and recall rates are the 

consequence of these problems, which include image blurring, 

texture distortion, colour shift, and size fluctuation [18]. 

Because of deep learning, the path has been set for improved 

background subtraction, which will help combat the big 

obstacles that are present in this area. Additionally, the 

combination of numerous characteristics results in an 

enhancement of traditional approaches for background 

subtraction [19]. Because of the unique qualities of 

underwater settings, recognising and tracking underwater 

objects may be a difficult task. When light travels to greater 

depths in water, the light will diffraction and scatter as it 

passes through the water medium [20]. 

The Kalman filter is used with Faster R-CNN and YOLO 

v2 in the research described in this publication [21], which 

results in improved detection accuracy. Because Faster R-

CNN produces more accurate results, those results are used as 

observations, whereas those produced by YOLO v2 are used 

to define state variables. A method of image processing is 

suggested to be used in the design of a control system for 

underwater object tracking that is included in this work [22].  
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Fig. 1 Proposed model 

It is used for the detection of autonomous underwater 

vehicles at close range as well as the dynamic tracking of these 

vehicles. Counting objects is an essential duty in aquaculture, 

and it has been regularly engaged in the estimation of fish 

populations, estimates of lobster abundance and scallop 

stocks, and a variety of other estimations [23]. 

When confronted with varying environmental conditions, 

fish will swim at varying speeds. Obviously, the rate at which 

fish swim may be affected not only by their own behaviour 

and the status of their health but also by the quality of the water 

in which they swim [24]. The effects of object tracking 

become increasingly difficult to achieve in underwater films 

due to the fact that the hazy backdrop, lighting situation, and 

occlusion significantly impact the movies captured. 

Therefore, the purpose of this study [25] is to investigate an 

efficient method for monitoring several items underwater. The 

primary benefit of this method is its ability to associate objects 

for online and real-time purposes successfully. 

Historically, traditional methods like image enhancement 

techniques (e.g., filtering and contrast enhancement) have 

been employed to mitigate the effects of these degradations. 

However, these techniques often fall short in handling the 

complex and dynamic nature of underwater scenes, leading to 

limited success in object detection. 

The emergence of deep learning, particularly 

Convolutional Neural Networks (CNNs), has shown 

remarkable success in various computer vision tasks. Yet, 

applying CNNs directly to underwater images encounters 

challenges due to the lack of annotated data specific to 

underwater environments and the need for adaptations to 

accommodate the unique characteristics of underwater 

imagery. 

The intersection of traditional image processing methods 

and deep learning approaches for underwater object detection 

remains largely unexplored. Bridging this gap is vital to 

enhance the accuracy, reliability, and adaptability of object 

detection systems in underwater settings. Researchers are 

seeking innovative methodologies that integrate image 

enhancement techniques with deep learning architectures to 

address the complexities inherent in underwater image 

processing and object detection. 

3. Proposed Model 
The proposed approach involves the following steps: 

First, the input underwater image is pre-processed using the 

Weiner filter to reduce noise and enhance relevant 

information. Next, the pre-processed image is fed into the 

MR-CNN, which consists of multiple pathways operating at 

different resolutions. The MR-CNN learns discriminative 

features from the input image, enabling accurate object 

detection. Finally, the integrated features are used for object 

detection through fully connected layers in the network, as 

shown in Figure 1. 

3.1. Wiener Filter 

In image processing, it is common to use the Wiener filter 

to denoise images and restoration tasks. It aims to reduce noise 

as well as enhance the overall visual clarity of the images by 

estimating the original, undistorted image from the observed 

noisy image. The Wiener filter operates in the frequency 

domain and takes advantage of the statistical properties of the 

image and noise. 

The mathematical equation for the Wiener filter in image 

processing can be represented as follows: 

Let's assume a noisy image, denoted by Y, and want to 

evaluate the original image, denoted by X, from the noisy 

observation. In the frequency domain, the Wiener filter 

operates on the Fast Fourier transformed images. Let Y(f) and 

X(f) signify A noisy image is transformed using the Fast 

Fourier transform and the original image, correspondingly. 

Similarly, let N(f) represent Additive noise transformed using 

the Fast Fourier transform.The proportion of the power spectra 

of the clean image to those of the noisy image is the definition 

of the Wiener filter transfer function, which is indicated by the 

letter f and written as H(f). This is how it is determined: 
 

𝐻(𝑓)  =  (|𝑋(𝑓)|2) / (|𝑋(𝑓)|2  +  |𝑁(𝑓)|2 / |𝐹|2)   (1) 
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Where |X(f)|2 and |N(f)|2 represent the power spectrum of 

the original image, on the one hand, and the noise, on the 

other, and |F|2 indicates the strength of the image after it has 

been transformed using the Fast Fourier Method. 

The filtered image in the frequency domain, denoted by 

Xw(f), is obtained by multiplying the Wiener filter transfer 

function with the fast Fourier transform of the noisy image: 

𝑋𝑤(𝑓) =  𝐻(𝑓) ∗  𝑌(𝑓)               (2) 

Finally, the filtered image in the spatial domain, denoted 

by xw, is attained by applying the inverse Fast Fourier 

transform to Xw(f): 

𝑥𝑤 =  𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐹𝑎𝑠𝑡 𝐹𝑜𝑢𝑟𝑖𝑒𝑟 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 (𝑋𝑤(𝑓))       (3) 

The resulting xw represents the estimated original image 

after applying the application of the Wiener filter on the 

distorted image. 

3.1.1. Wiener Filter in the Fast Fourier Domain 

The Wiener filter is a linear filter, so it can be 

implemented using a convolution operation. The convolution 

operation can be executed using Fast Fourier Transform (FFT) 

algorithms, which can make it computationally effective for 

large images. 

𝐻(𝜔)  =  𝐾 ∗  |𝑆(𝜔)|2 / |𝑁(𝜔)|2            (4) 

Where 

H(ω) is the Fourier transform of the Wiener filter 

coefficients. 

K is a constant that depends on the desired signal-to-noise 

ratio (SNR). 

S(ω) is an image transformation using a Fast Fourier 

transform. 

N(ω) is An analysis of the noise using the Fast Fourier 

transform. 

Since it achieves the best results, the Wiener filter is the 

preferred option in terms of minimising the MSE across the 

filtered image and the original image. However, it can be 

computationally expensive to implement, especially for large 

images. It is often used in conjunction with other techniques, 

such as non-linear filters, to improve the overall performance. 

3.2. Multi-Resolution Convolutional Neural Network 

An MRCNN is a kind of deep learning architecture that 

uses multiple Convolutional Neural Networks (CNNs) to 

process data at different resolutions. It incorporates multiple 

levels of resolutions in its feature extraction process. It is 

designed to handle images or data with varying levels of 

details or scales effectively. MRCNN is to capture both global 

and local information present in an input image. By processing 

the input at multiple resolutions or scales, the network can 

simultaneously consider different levels of details, allowing it 

to detect objects or patterns at various scales within the image. 

3.2.1. Input Processing 

The input image is typically passed through an initial set 

of convolutional and pooling layers to extract basic features. 

These layers are usually shared across all resolutions. 

3.2.2. Multi-Resolution Branches 

The network branches out into multiple pathways, each 

handling a different resolution of the input image. These 

branches are created by either downsampling or upsampling 

the feature maps from the previous layer. Downsampling 

reduces the resolution, while upsampling increases it, as 

shown in Figure 2. 

3.2.3. Feature Extraction 

Each resolution branch performs convolutional and 

pooling operations specific to its resolution level. The idea is 

to capture features at different scales or levels of abstraction. 

The branches can have varying depths, allowing for more 

complex feature extraction as the network goes deeper. 

3.2.4. Fusion of Features 

After feature extraction, the branches' outputs are 

combined or fused to aggregate the information learned at 

different resolutions. This fusion can happen through 

concatenation, element-wise summation, or other fusion 

techniques. 

3.2.5. Classification or Regression 

The fused features are then fed into fully connected layers 

or other output layers for the final classification or regression 

task. These layers perform task-specific computations, such as 

predicting object classes or estimating numerical values, as 

shown in Fig 3. 

By considering multiple resolutions, a Multi-Resolution 

CNN can capture both fine-grained details and global context 

simultaneously. This makes it well-suited for activities like 

object identification and semantic segmentation, among others 

and image classification in scenarios where objects or patterns 

can appear at different scales or sizes. 

The MR-CNN combines the use of multiple resolutions to 

capture and analyze different levels of information in an 

image. Here are the main mathematical equations involved in 

the MR-CNN: 

Pseudocode for Wiener filter in the FFT  

def wiener_filter(image, noise): 

   S = np.fft.fft2(image)   

   N = np.fft.fft2(noise) 

   K = 1 / np.mean(N**2) 

   H = K * S**2 / N**2   

   h = np.fft.ifft2(H)   

  return h   
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Fig. 2 MR-CNN Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3 MR-CNN Structure with different resolutions (480x640) and (1024x1280) 
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Convolutional Layer 

In a typical convolutional layer of an MR-CNN, the 

output feature maps are generated by convolving the input 

feature maps with a set of learnable filters. The mathematical 

equation for the convolution operation can be represented as 

follows: 

𝑌(𝑖, 𝑗, 𝑘) =  ∑[𝑚, 𝑛, 𝑙]𝑋(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑙) ∗  𝑊(𝑚, 𝑛, 𝑙, 𝑘)
+  𝑏(𝑘)                                                          (5) 

 

Where Y(i, j, k) represents the position of the output 

feature (i, j) and, channel k, X(i+m, j+n, l) represents the input 

feature map at position (i+m, j+n), and channel l, W(m, n, l, 

k) represents the convolutional kernel/filter weights, and b(k) 

represents the bias term for channel k. 
 

Pooling Layer 

The pooling operation is commonly used in CNNs to 

lower the spatial dimensions while also downsampling the 

feature maps. Max pooling is a popular choice, and its 

mathematical equation can be written as follows: 

𝑌(𝑖, 𝑗, 𝑘) =  𝑚𝑎𝑥([𝑚, 𝑛]𝑋(𝑠𝑖 + 𝑚, 𝑠𝑗 + 𝑛, 𝑘))         (6) 
 

Where Y(i, j, k) represents the pooled output at position 

(i, j) and channel k, X(si+m, sj+n, k) represents the input 

feature map at position (si+m, sj+n) and channel k, and s is the 

pooling stride. 

 

Non-linear Activation Function 

Activation functions introduce the introduction of non-

linearity into the network and the facilitation of the network's 

learning of complicated representations. Common choices 

include ReLU (Rectified Linear Unit) and its variants. The 

ReLU activation function can be defined as: 

𝑓(𝑥) =  𝑚𝑎𝑥(0, 𝑥)            (7) 

 

Where x represents the input to the activation function. 

 

Multi-Resolution Integration 

In an MR-CNN, the network typically includes branches 

or pathways that process inputs at different resolutions. These 

pathways can involve different numbers of layers and different 

filter sizes. The outputs from these pathways are then 

combined or concatenated at a later stage to form a unified 

feature representation. One way to mathematically represent 

this integration is by concatenating the feature maps from 

different pathways or by summing them element-wise. The 

exact formulation depends on the specific architecture and 

design choices of the MR-CNN. 

 

The MR-CNN consists of multiple pathways, each 

processing inputs at a specific resolution. Each pathway can 

have its own set of convolutional layers, pooling layers, and 

other network components. The pathways capture different 

levels of information by operating on different scales or 

resolutions of the input data. 

 

# Pseudocode for a basic MR-CNN architecture 

function convolution(input, weights, biases): 

    output = empty array 

    for each filter in weights: 

        convolved = convolution_operation(input, filter) 

        convolved = convolved + biases 

        output.append(convolved) 

    return output 

function pooling(input, stride): 

    output = empty array 

    for each channel in input: 

        pooled = max_pooling_operation(channel, stride) 

        output.append(pooled) 

    return output 

function activation(input): 

    output = relu(input) 

    return output 

function integrate(feature_maps): # Multi-Resolution 

Integration 

    output = concatenate(feature_maps)  # Or element-

wise sum, depending on the design 

    return output 

function MR_CNN(input): # MR-CNN Architecture 

    # Pathway 1: High-resolution pathway 

    conv1_1 = convolution(input, weights1_1, biases1_1) 

    conv1_2 = convolution(conv1_1, weights1_2, 

biases1_2) 

    pool1 = pooling(conv1_2, stride1) 

    act1 = activation(pool1) 

    # Pathway 2: Low-resolution pathway 

    conv2_1 = convolution(input, weights2_1, biases2_1) 

    pool2 = pooling(conv2_1, stride2) 

    act2 = activation(pool2) 

    # Integration of pathways 

    integrated = integrate([act1, act2]) 

    # Additional layers for classification/regression 

    ... 

    return output 
 

4. Results and Discussions 
On MATLAB R2019b, a series of tests utilising the 

suggested approach for HMF-DWM denoising were carried 

out. The arrangement of the term "workstation" refers to the 

computer system with I(R) Xeon(R) CPU E5 1620 v4 @ 3.5 

GHz, 64 GB RAM, and Windows 10.  

 

4.1. Dataset Description 

The dataset was collected from 

https://www.kaggle.com/datasets/slavkoprytula/aquarium-

data-cots. The collection consists of seven different categories 

of marine life, and the positions of each individual animal's 

boxes are specified. Train, validate, and test sets have already 

been extracted from the dataset. It has 638 different images. 

There are a total of three cameras and three LED lights that 

are permanently attached as part of the camera configuration 

that was utilised to record the data. 



Hemalatha & Saravanan / IJETT, 72(1), 1-10, 2024 

 

7 

 

 

 

 

 

 

 
 

         Fig. 4 (a) Input image                             (b) Pre-Processed image 

 

 

 

 

 

 

 

 
 

Fig. 5 Image with multi-resolution model 

 
Fig. 6 Object detection using MR-CNN 

4.2. Experimental Results 

The simulated results are shown in Fig. 4-9. Fig 4(a) 

shows an input image underwater, and 4(b) shows a pre-

processed image using the Weiner filter. Fig 5 presents the 

MR-CNN model with a resolution of the input image. Finally, 

Figure 6 detects an object underwater using our proposed 

algorithm. 

4.3. Performance Analysis of Wiener Filter 

Measurements that include the PSNR, the Structural 

Similarity Index (SSIM), and the RMSE are often used in 

order to assess the effectiveness of the Wiener filter. The 

quality of the image that has been recovered is evaluated using 

these criteria by contrasting it to the image that was captured 

before any noise was added. Higher values of PSNR or SSIM 

indicate better restoration quality. A lower RMSE value 

indicates that the Wiener filter has effectively reduced noise 

and improved the similarities that may be seen between the 

filtered and original images. 

 

The formula for Peak Signal-to-Noise Ratio (PSNR) is as 

follows: 

𝑃𝑆𝑁𝑅 =  20 ∗  𝑙𝑜𝑔10(𝑀𝐴𝑋 / 𝑠𝑞𝑟𝑡(𝑀𝑆𝐸))        (8) 

Where, 

The significance of the image pixel denoted by MAX is 

considered to be its highest conceivable value. The maximum 

value that may be represented in a grayscale image with 8 bits 

is 255.  

The term "Mean Squared Error" (MSE) refers to the error 

that results from calculating the average of the squared 

disparities that exist between matching pixels in the original 

and reconstructed images.  

The ratio of the greatest potential signal power 

(represented by MAX) to the power of the noise (represented 

by MSE) is what the PSNR number represents. Evaluation of 

the quality of reconstructed or processed images is a typical 

use of this technique, where higher PSNR values indicate 

better image quality and lower levels of distortion or noise. 

 

The formula for RMSE in image processing is as follows: 

𝑅𝑀𝑆𝐸 =  𝑠𝑞𝑟𝑡 ( (
1

𝑁
) ∗  𝛴(𝐼𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 −  𝐼𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)

2
)    (9) 

Where 

A metric that quantifies the degree to which the original 

and filtered images vary. The pixel value in the original image 

is represented by the variable I_original.  
 

Table 1. PSNR and RMSE comparison 

Filters PSNR RMSE 

Median Filter 35.02 6.8 

Gaussian Filter 34.29 6.4 

Average Filter 34.29 6.1 

Weiner Filter 35.26 5.89 
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Fig. 7 Comparison of PSNR 

 
Fig. 8 Comparison of RMSE 

 

 
Fig. 9 Comparison of PSNR and RMSE 

The value of the RMSE offers an estimate of the average 

difference between the unfiltered and filtered images. It 

provides a numerical representation of the degree to which the 

filtered image exhibits distortion or noise in comparison to the 

original image. A lower RMSE value indicates better 

similarity and closer resemblance between the two images, 

implying higher quality or accuracy in the filtering process. 

Table 1 contains PSNR and RMSE for the Median filter, 

Gaussian filter and Average filter with Wiener filter, and it is 

graphically represented in Figures 7 and 8. 

The Wiener filter can be influenced by various factors, 

including computational complexity, statistical characteristics 

of the signal, as well as the noise and the specific 

characteristics of the image and noise.  

While it provides a powerful framework for image 

restoration, the efficiency of the Wiener filter should be 

considered in the context of the specific application 

requirements and constraints. Fig 9 displays a comparison of 

the PSNR and RMSE values for Gaussian Noise for each of 

the four distinct filters. 

4.4. Performance Analysis of MR-CNN 

The performance evaluation is shown in Fig 10, which 

clearly shows that our proposed model provides better 

accuracy than other models. Figure 11 depicts the mean 

average precision(mAP) for each iteration and compares mAP 

during training using a multi-resolution model against training 

without a multi-resolution model, which improved by 5%.  

In summary, our approach surpasses existing techniques 

by intelligently integrating a tailored Hybrid Wiener Filter 

with a purpose-built MR-CNN, effectively addressing the 

limitations of conventional methods and deep learning 

approaches when applied individually to underwater object 

detection. The synergy between image enhancement and deep 

learning, coupled with strategies to mitigate data scarcity, 

forms the cornerstone of our methodology's success in 

achieving superior results reported in the literature. 

 
Fig. 10 Performance analysis 
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Fig. 11 Mean average precision 

 

5. Conclusion 
In this study, we suggested a unique method for the 

identification of objects in underwater environments using the 

MR-CNN, which integrates the Weiner filter with it. Image 

processing. The objective was to leverage the strengths of both 

classical image processing techniques and deep learning 

algorithms to improve object detection accuracy and 

robustness in challenging underwater environments. 

Experimental evaluations conducted on a diverse dataset of 

underwater images demonstrated the efficiency of the method 

that has been suggested. The effects showcased improved 

object detection accuracy and robustness compared to 

traditional methods and standalone deep learning approaches. 

The integration of the Weiner filter and MR-CNN contributed 

to better noise reduction, enhanced feature extraction, and 

more reliable object localization in challenging underwater 

conditions. 
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