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Abstract - The precise identification and categorization of cutaneous lesions and melanoma are of paramount importance in the 

timely discovery and successful management of these conditions. This paper presents a unique methodology that integrates the 

Intuitive U-Net and Long Short-Term Memory (LSTM) architecture to achieve precise categorization of skin lesions and 

melanoma. The Intuitive U-Net architecture, which draws inspiration from the U-Net model, has been specifically developed to 

effectively capture complex characteristics and complicated patterns present in dermoscopic images. Skip connections are 

employed in order to maintain spatial information and retrieve pertinent features at various scales. This improves the model’s 

capacity to discern distinct categories of lesions and effectively categorize instances of melanoma. In order to enhance the 

precision of temporal relationships among sequences of images, the network is augmented with LSTM units. The Long Short-

Term Memory (LSTM) architecture facilitates the model in taking into account the sequential context of images, thereby capturing 

temporal changes and patterns. Monitoring the advancement of skin lesions and the evolution of melanoma holds significant 

importance in this context. The methodology we propose is assessed using a heterogeneous dataset that includes a range of skin 

lesions and instances of melanoma. The proposed findings illustrate the efficacy of the Intuitive U-Net and LSTM architecture in 

accurately categorizing skin lesions and melanoma using transforming modelling with the U-LSTM model. The integration of 

feature extraction from pictures with temporal modelling using Long Short-Term Memory (LSTM) has been found to enhance 

sensitivity, specificity, and accuracy in comparison to current methodologies. With this approach, we demonstrate the overall 

design model with different specification parameters indicating the effectiveness of classification and identification with an 

accuracy of 91.5% on lesions while melanoma with 98.2%. The other performance metrics, such as sensitivity, specificity, and 

ROC curves, are utilized to emphasize providing the best classification model feature performance when compared to state-of-

the-art architectures. 

Keywords - Convolutional Neural Networks (CNN), Dense-Net architecture, K – Nearest Neighbours (KNN), Long Short-Term 

Memory (LSTM), U-Net Architecture. 

1. Introduction 
Cancer, an ailment characterized by the unregulated 

proliferation of cells, continues to pose a significant 

worldwide health concern. It exerts an impact on multiple 

physiological systems and represents a prominent contributor 

to mortality rates. Skin cancer, a commonly occurring kind of 

cancer, begins inside the epidermis, the outermost layer of the 

skin. Previous studies have employed machine learning 

techniques to identify skin cancer by leveraging protein 

sequences and imaging modalities. Nevertheless, 

conventional machine learning methods require extensive 

manual effort in feature engineering. The concern has been 

alleviated by the utilization of deep learning, which provides 

automated feature extraction. The present study utilizes 

convolution-based deep neural networks as a means to identify 

and classify instances of skin cancer, employing the ISIC 

dataset for this purpose. Ensemble learning is utilized in order 

to enhance accuracy, considering the crucial significance of 

cancer diagnosis. A combination of VGG, CapsNet, and 

ResNet deep learning models is employed, resulting in 

improved sensitivity, accuracy, and other performance 

indicators. The study proposes that there are wider 

implications for the diagnosis of diseases. The rapid 

proliferation of skin cancer underscores the importance of 

early detection in order to facilitate effective treatment. Deep 

learning, specifically Convolutional Neural Networks 

(CNNs), has demonstrated exceptional performance in the 

tasks of object detection and categorization. The MNIST: 

HAM10000 dataset, which consists of seven distinct types of 

skin lesions, is utilized. The utilization of preprocessing 

techniques and transfer learning methods has been observed 

to improve the performance of models significantly. The 

classification of skin cancer with the use of computers 

frequently depends exclusively on the analysis of 

photographs.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Daisy Rani et al. / IJETT, 72(1), 20-39, 2024 

 

20 

The integration of patient metadata has the potential to 

improve the precision of diagnoses. The MetaBlock 

algorithm, a novel approach in metadata processing, has been 

developed to improve picture feature extraction. This 

algorithm has demonstrated superior performance compared 

to alternative methods across several circumstances. The 

timely and accurate detection of skin cancer is of paramount 

importance for the overall survival and well-being of patients. 

The utilization of deep learning techniques has proven to be 

beneficial in assisting dermatologists in attaining precise 

diagnoses. The utilization of deep learning algorithms enables 

the prompt identification of cases, leading to accelerated 

treatment, decreased workload, and enhanced management of 

intricate cases. Numerous methodologies utilizing deep 

learning techniques have been put forth for the purpose of 

detecting skin cancer. The authors of the study effectively 

tackle obstacles such as domain shift and imbalanced datasets, 

yielding noteworthy outcomes. The proposed methods employ 

novel approaches such as clustering, integration of images and 

metadata, and the use of lightweight recognition models. The 

task of identifying melanoma presents a significant need for 

the development of strong and reliable deep-learning 

methodologies. Transfer learning, generative models, and 

hybrid architectures have been suggested as potential 

solutions to address the issue of limited data availability, 

improve accuracy, and handle intricate image attributes. These 

methodologies have significantly transformed the process of 

identifying early-stage melanoma. The field of deep learning 

has made substantial progress in enhancing the accuracy of 

skin cancer diagnosis.  

However, the issue of domain shift continues to be a 

matter of concern. The integration of multiple datasets and the 

effective management of class imbalance are essential 

methodologies in academic research. Hybrid methodologies, 

such as the utilization of 3D surface analysis, progressive 

transfer learning, and ensemble classifiers, demonstrate 

potential. The incorporation of deep learning into the field of 

the Internet of Things (IoT), particularly in the context of the 

Internet of Medical Things (IoMT), has brought about a 

transformative impact on the healthcare industry. The 

integration of intelligent devices, advanced deep learning 

algorithms, and cloud-fog-edge architectures collectively 

facilitate the early identification of skin cancer while 

simultaneously ensuring the privacy of patient data and 

enhancing the efficiency of diagnosis. The diagnosis of skin 

cancer is enhanced by the utilization of multi-modal and 

feature-rich methodologies. The utilization of deep learning 

methods, including Convolutional Neural Networks (CNNs) 

and Local Binary Pattern (LBP) techniques, has been found to 

improve the accuracy of classification tasks significantly. The 

integration of architectural elements surpasses the 

performance of standalone components. The identification of 

skin cancer necessitates the integration of advanced solutions 

that amalgamate medical expertise and technological 

advancements.  

Brain tumors can be classified using pre-trained models 

in deep learning frameworks, such as GoogLeNet. The 

transfer learning model exhibits higher performance across a 

range of evaluation parameters. Innovative techniques 

contribute to the progress of skin lesion diagnosis. The 

application of architectural search frameworks in the context 

of malignant melanoma identification has been found to 

produce outcomes of superior quality while also minimizing 

computing expenses. These methodologies facilitate the 

automation of network design, thereby enhancing both 

accuracy and efficiency. 

1.1. Problem Statement 

The precise and timely identification of skin lesions and 

malignancies holds significant significance within the realm 

of dermatology and healthcare. Nonetheless, the intricate 

visual attributes of skin lesions, fluctuations in imaging 

settings, and the requirement for accurate discrimination 

between benign and malignant instances provide noteworthy 

obstacles. Conventional diagnostic techniques predominantly 

depend on human skill, resulting in potential drawbacks such 

as prolonged time consumption and subjectivity. In order to 

tackle these issues, the utilization of deep learning techniques 

has emerged as a highly promising approach. 

The focus of this study is to utilize deep learning 

methodologies in order to create reliable and precise models 

for the identification and categorization of skin lesions and 

malignancies. The task at hand encompasses the development 

of an automated system capable of analyzing and categorizing 

skin photographs into distinct classifications, including 

benign, malignant, or specific lesion types. The system should 

possess the ability to effectively manage diverse picture 

quality, patient demographics, and differences in lesion 

appearances. Additionally, it is imperative to consider factors 

such as class imbalance and domain shift when transferring 

models across diverse datasets or healthcare settings. 

1.2. Objectives 

The overall paper comprises the design criteria indicating 

how to emphasize the lucrative parametric and intuitive model 

development on DL techniques that improvise the overall 

datasets chosen for the lesion and Melanoma Classification. 

The proposed work with U-LSTM objectives is stated below: 

1. To develop a U-LSTM-based system capable of 

recognizing temporal patterns in sequential dermoscopic 

images. 

2. To enable the detection of evolving features that 

contribute to accurate skin cancer and lesion diagnosis. 

3. To improvise the proposed U-LSTM design to achieve 

high sensitivity for early detection of potential 

malignancies while maintaining high specificity to 

minimize false positives and ensure reliable clinical 

decision-making. 

4. Encapsulate the design model with SOA models with its 

feature importance and effectiveness of the design 

criteria. 
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1.3. Overview 

The overview of this research paper introduces the use of 

U-LSTM architecture for the detection of skin cancer and 

lesions. We delve into the significance of addressing this 

problem, given its impact on healthcare. Our study focuses on 

designing a U-LSTM-based system to analyze sequences of 

dermatoscopic images, enabling the recognition of evolving 

lesion characteristics. We outline our objectives, research 

scope, methodology, and key findings. By integrating U-

LSTM analysis, our work contributes to the accurate early 

detection of skin cancer, enhancing medical intervention and 

patient outcomes. The subsequent sections of the paper detail 

our approach and results in-depth. 

2. Literature Survey 
Skin cancer is a widespread and complex issue, often 

requiring labor-intensive methods for detection. This study 

employs convolutional deep neural networks on the ISIC 

dataset to improve skin cancer identification. To enhance 

accuracy, the research introduces an ensemble of deep 

learning models, showcasing superior results compared to 

individual models. These findings suggest the potential utility 

of ensemble methods in disease detection. [1]. 

Skin cancer is a widespread and rapidly spreading 

disease, posing significant challenges in early detection due to 

limited resources. Timely identification is crucial for 

preventive measures. Deep learning, particularly 

Convolutional Neural Networks (CNN), has proven effective 

in skin lesion classification. The HAM10000 dataset with 

10,015 samples and data preprocessing techniques, including 

feature extraction and transfer learning with DenseNet169 and 

ResNet50, were employed. The model achieved impressive 

accuracy in skin cancer detection, emphasizing its potential to 

improve early diagnosis and preventive interventions. [2]. 

This study explores the integration of patient 

demographics with skin lesion photos using deep neural 

networks for improved skin cancer classification. It introduces 

the Metadata Processing Block (Meta Block) to leverage 

metadata, enhancing data categorization. The Meta Block 

augments relevant image features at various classification 

stages. Comparative analysis with two alternative approaches, 

Meta Net and feature concatenation, reveals the superiority of 

the proposed method. Across ten scenarios, it consistently 

improves classification performance, outperforming 

alternative approaches in six instances. This innovation holds 

promise for more accurate and comprehensive skin cancer 

diagnosis. [3]. 

Skin cancer, a prevalent global health concern, demands 

timely and accurate detection. Deep learning offers a solution 

by assisting dermatologists and enabling early intervention. 

This study aimed to build accurate deep-learning models for 

skin cancer classification, addressing class imbalance and 

decision interpretability. Utilizing an optimized CNN 

architecture on the HAM10000 dataset, it achieved an 82% 

classification accuracy and introduced an Explainable AI 

system to aid medical professionals. These results showcase 

deep learning’s potential to revolutionize skin cancer 

diagnosis and improve healthcare outcomes.[4]. 

In the modern healthcare landscape, computer vision 

plays a vital role in disease detection, particularly in skin 

cancer diagnosis, where early identification is critical. This 

study introduces two innovative techniques for categorizing 

dermoscopic images, emphasizing the differentiation of 

benign and malignant tumors. The first approach combines the 

K-nearest neighbor (KNN) algorithm with pretrained deep 

neural networks for feature extraction, while the second 

method utilizes AlexNet optimized with the grey wolf 

optimizer for hyperparameter tuning. Comparative analysis 

between machine learning (ML) and deep learning (DL) 

techniques, involving a range of ML models and DL models 

with pre-trained architectures, achieved remarkable 

performance, with accuracy exceeding 99% in select models. 

[5]. 

This study introduces a lightweight and innovative skin 

cancer detection model that emphasizes feature discrimination 

for improved performance. It combines two feature extraction 

modules and a dedicated feature discrimination network, 

resulting in superior lesion detection and area segmentation. 

The proposed approach using LW-CNN outperforms existing 

deep learning methods by effectively addressing intra-class 

variations and inter-class similarities, offering promising 

advancements in skin lesion detection.[6]. 

This research addresses the issue of cross-domain skin 

disease recognition within the context of deep learning. Two 

novel approaches are proposed to enhance model 

generalization across different datasets affected by domain 

shift. The initial method utilizes progressive transfer learning, 

which entails the refinement of a pre-trained CNN on two 

separate skin disease datasets. The second method employs 

adversarial learning as a domain adaptation technique, 

enabling the transformation of invariant attributes from the 

source to the target domain, ultimately enhancing the 

performance of recognition. Thorough assessments 

encompassing tasks such as melanoma identification, cancer 

detection, and cross-modality learning, conducted across a 

range of datasets, provide validation for the efficacy of these 

approaches in tackling domain shift challenges [7]. 

Melanoma, a deadly skin cancer type, poses challenges 

for precise Computer-Aided Diagnosis (CAD) systems due to 

its intricate visual features. Existing methods either rely on 

manual feature selection or use entire images for deep 

learning, facing difficulties in feature extraction and limited 

data. This study introduces an intelligent system utilizing a 

Region of Interest (ROI) approach powered by transfer 

learning. Enhanced k-means help extract ROIs, focusing on 

melanoma-containing images for discriminative feature 

identification. Employing a CNN-based transfer learning 
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model with data augmentation achieves remarkable accuracy, 

surpassing methods using full images. This ROI-based 

strategy enhances melanoma detection, addressing complexity 

and limited data issues, yielding 97.9% accuracy on DermIS 

and 97.4% on DermQuest datasets.[8]. 

Skin lesion diagnosis for early skin cancer detection is 

vital but challenging for deep-learning models due to complex 

lesions, limited data, and optimization issues. This study 

introduces an innovative framework that combines 

segmentation and classification using an encoder-decoder 

Fully Convolutional Network (FCN) with a Conditional 

Random Field (CRF) module for contour refinement. The 

second stage employs a novel DenseNet architecture to 

enhance feature reuse, reduce parameters, and improve 

efficiency. This framework aims to overcome existing CAD 

method challenges, enhancing accuracy and effectiveness in 

skin lesion analysis for cancer diagnosis.[9]. 

Melanoma, a potentially fatal skin cancer, becomes more 

treatable when detected early, but issues with imbalanced 

datasets have impeded accurate classification. This research 

introduces an innovative deep clustering technique employing 

a (COM-Triplet) to establish distinct cluster centroids for 

enhanced classification. Unlike traditional methods, this 

approach places a higher emphasis on cluster separation rather 

than solely minimizing classification errors, rendering it less 

susceptible to the effects of class imbalance. To alleviate the 

demand for annotated data, pseudo-labels generated by 

(GMM) are incorporated. Empirical investigations 

demonstrate the superiority of this approach over clustering 

with triplet loss and other classifiers in both supervised and 

unsupervised contexts, offering promising prospects for 

enhanced melanoma detection. [10]. 

Melanoma, a highly lethal skin cancer variant, can be 

accurately detected and classified using Convolutional Neural 

Network (CNN) algorithms, rivaling the diagnostic accuracy 

of dermatologists. This research primarily focuses on the 

binary categorization of melanoma, conducting a thorough 

evaluation of CNN classifiers through a validation process 

involving a concealed dataset. Additionally, the study provides 

an extensive review of recent scholarly literature in this 

domain, delving into emerging research trends, persistent 

challenges, and future prospects regarding melanoma 

recognition through deep learning techniques. The paper also 

furnishes a structured framework to comprehend the diverse 

technologies available for melanoma detection in the current 

landscape. In essence, it establishes a solid theoretical 

foundation while assessing the intricate landscape of 

challenges and opportunities in the realm of melanoma 

identification, serving as a valuable reference for researchers 

in this field.[11]. 

In the era of digital visual data, the integration of 

Computer Vision, Machine Learning, and Deep Learning has 

revolutionized medical disorder detection, particularly in 

dermatology. This study delves into critical aspects of 

melanoma identification. It highlights the need for classifiers 

robust to dataset variations, advocating recurrent training-test 

cycles for reliable models. This innovative approach aims to 

enhance the efficiency of Melanoma Detection. By integrating 

these computing paradigms, the system gains the ability to 

analyze clinical and dermoscopic images for Melanoma 

Detection while effectively managing the substantial volume 

of data that necessitates analysis.  

Moreover, this hybrid design minimizes the duration of 

recurrent retraining, ensuring that the Melanoma Detection 

service operates efficiently and adapts to evolving datasets and 

demands in the medical image analysis field. This research 

thus establishes a foundational framework for advanced 

Melanoma Detection systems capable of efficiently 

harnessing the potential of medical image analysis within the 

context of skin cancer diagnosis. The goal is to analyze clinical 

and dermoscopic images while handling substantial data 

volumes and minimizing retraining time. Experiments 

demonstrate the efficiency of decentralized strategies, laying 

the groundwork for advanced melanoma detection 

frameworks leveraging medical image analysis capabilities. 

[12]. 

In response to the growing incidence of skin cancer, a 

groundbreaking deep learning model is introduced to remove 

hair shadows in dermoscopic images. This model employs 

encoder-decoder architecture and a composite loss function to 

identify and eliminate hair pixels, thereby enhancing 

diagnostic precision. A simulation technique is utilized to 

simulate hair appearance due to the lack of suitable datasets. 

The model’s effectiveness in image restoration is validated 

through comparisons with established methods, 

demonstrating improvements in automated skin cancer 

diagnosis [13]. 

Another contribution to skin cancer diagnosis is the 

introduction of “Fix Caps,” a unique capsule network 

designed to enhance the classification of dermoscopic images. 

Incorporating techniques like a wider receptive field, 

convolutional block attention, and group convolution, Fix 

Caps achieves an impressive accuracy observed from the 

HAM-10k dataset with 96.5, promising improved efficiency 

and precision in skin cancer diagnosis [14]. 

These innovations contribute to the advancement of 

melanoma detection through deep learning techniques. They 

surpass conventional methods by considering both two-

dimensional and three-dimensional characteristics of skin 

lesions’ surfaces. Multiple instance learning and deep learning 

are employed to develop a robust ensemble classification 

model, achieving high accuracy and lesion differentiation 

rates, even in the presence of class imbalance. The 

incorporation of 3D features further enhances the model’s 

performance, highlighting the potential for more effective 

melanoma detection [15]. 
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The study introduces a system for skin cancer detection 

in the context of healthcare IoT applications. It utilizes 

federated learning and dual GANs to address data scarcity 

issues, optimizing image quality with a knee point-driven 

computation algorithm. Patient privacy is maintained through 

federated learning, and experiments on the ISIC 2018 dataset 

show an average accuracy of 91% and ROC of 88%, 

demonstrating the system’s effectiveness in tackling data 

scarcity and ensuring user data privacy in smart medicine 

within IoT [16]. 

The study addresses the importance of timely skin disease 

detection and the need for efficient IT-based solutions in 

healthcare. It introduces a novel collaborative learning 

approach, combining CNN and (LBP) for feature extraction 

and recognition of various skin disorders. The model is trained 

and evaluated on a dedicated dataset, demonstrating a robust 

fusion strategy with an accuracy rate of 98.60% and a 

validation accuracy rate of 97.32%. This approach shows 

promise in improving early diagnosis and handling the 

increasing volume of healthcare data [17]. 

The study emphasizes the importance of early melanoma 

detection and the factors contributing to its occurrence. It 

proposes a novel system that leverages smartphone cameras 

and the Internet for skin anomaly assessment, with the ability 

to consult dermatologists for histopathological evaluation. 

The system’s components, including a convolutional 

classifier, are comprehensively explained. Testing and 

evaluation consider the advantages and limitations of 

implementing this innovative approach in today’s digital age 

[18]. 

The study highlights the transformative role of the 

Internet of Medical Things (IoMT) in healthcare, particularly 

in Computer-Aided Diagnosis (CAD) systems. It focuses on 

brain tumor detection and classification, addressing the 

significance of early detection for conditions like glioma, 

meningioma, and pituitary tumors. Deep learning, specifically 

Convolutional Neural Networks (CNNs), is employed, with a 

TL approach using Google Net. The model undergoes rigorous 

training and evaluation processes on datasets pertinent to the 

research objectives. The results exhibit its remarkable 

performance, surpassing that of pre-existing models, as 

evidenced by superior metrics in terms of accuracy, 

specificity, and F1 score [19]. 

The effectiveness of deep neural networks has been 

proved in various domains. Nevertheless, the effective 

execution of these networks needs the careful choice of neural 

architectures, a time-consuming task that demands specialized 

knowledge. Neural Architecture Search (NAS) approaches 

enable the automation of this process, hence aiding in the 

discovery of optimal architectures. This paper presents a novel 

architecture search methodology that aims to tackle the 

practical challenge of detecting malignant melanoma in 

medical pictures. In contrast to other alternative approaches 

assessed on traditional datasets, this framework is utilized to 

tackle a genuine problem characterized by unique 

complexities.  

The aforementioned complexities involve several issues 

pertaining to the differentiation of classes, resolution of 

images, imbalance of data, and the limited availability of data. 

To ascertain an appropriate network architecture, the 

investigation employs a hill-climbing search methodology in 

combination with network morphism techniques. These 

methodologies facilitate the progressive expansion of network 

scale by leveraging knowledge from previously trained 

networks, hence mitigating computational demands.  

The method being evaluated generates architectures that 

achieve comparable outcomes to manually designed structures 

but utilizing around 20 times fewer parameters. The process 

of architecture search demonstrates a remarkable ability to 

achieve its conclusion in a relatively short period of time, 

averaging about 18 hours when conducted on a single 

Graphics Processing Unit (GPU). This work showcases the 

effectiveness of automated architecture search techniques in 

addressing intricate medical diagnostic challenges while 

concurrently optimizing computational resources and time 

allocation [20]. 

Table 1. Representing the contribution of the literature review on skin cancer and lesion detection. 

No. Year Contribution Authors 

1. 2023 
Performance Enhancement of Skin Cancer Classification Using Computer 

Vision 

A. Magdy, H. Hussein, R. F. 

Abdel-Kader, K. A. E. Salam 

2. 2020 
Automatic Skin Cancer Detection in Dermoscopy Images Based on 

Ensemble Lightweight Deep Learning Network 
L. Wei, K. Ding, H. Hu 

3. 2023 
An Interpretable Skin Cancer Classification Using Optimized 

Convolutional Neural Network for a Smart Healthcare System 

K. Mridha, M. M. Uddin, J. Shin, 

S. Khadka, M. F. Mridha 

4. 2020 
Region-of-Interest Based Transfer Learning Assisted Framework for Skin 

Cancer Detection 
R. Ashraf et al. 

5. 2020 
Malignant Melanoma Classification Using Deep Learning: Datasets, 

Performance Measurements, Challenges and Opportunities 

A. Naeem, M. S. Farooq, A. 

Khelifi, A. Abid 
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3. Existing Methodology 
3.1. Concept 

The suggested approach for recognizing lesions in 

dermoscopy images comprises three primary stages 

preprocessing of the images, development and training of the 

model, and fusion of the models. Each step in the process adds 

to improving the model’s capacity to identify various 

categories of skin lesions in dermoscopy images reliably. The 

depicted procedure is visually represented in the figure 1 

shown below. The process of preparing images for analysis or 

further processing. 

Operation Parameters Input Size 

Convolution 3X3 conv, s=2 224 x 224 

Depthwise 

Separable 

Block1 

[
𝟑𝒙𝟑 𝒅𝒘 𝒄𝒐𝒏𝒗

𝟏𝒙𝟏 𝒄𝒐𝒏𝒗
], s=1 

[
𝟑𝒙𝟑 𝒅𝒘 𝒄𝒐𝒏𝒗

𝟏𝒙𝟏 𝒄𝒐𝒏𝒗
], s=2 

112 X 112 

Depthwise 

Separable 

Block2 

[
𝟑𝒙𝟑 𝒅𝒘 𝒄𝒐𝒏𝒗

𝟏𝒙𝟏 𝒄𝒐𝒏𝒗
], s=1 

[
𝟑𝒙𝟑 𝒅𝒘 𝒄𝒐𝒏𝒗

𝟏𝒙𝟏 𝒄𝒐𝒏𝒗
], s=2 

56 X 56 

Depthwise 

Separable 

Block3 

[
𝟑𝒙𝟑 𝒅𝒘 𝒄𝒐𝒏𝒗

𝟏𝒙𝟏 𝒄𝒐𝒏𝒗
], s=1 

[
𝟑𝒙𝟑 𝒅𝒘 𝒄𝒐𝒏𝒗

𝟏𝒙𝟏 𝒄𝒐𝒏𝒗
], s=2 

28 X 28 

Depthwise 

Separable 

Block4 

[
𝟑𝒙𝟑 𝒅𝒘 𝒄𝒐𝒏𝒗

𝟏𝒙𝟏 𝒄𝒐𝒏𝒗
] X 5, 

s=1 

[
𝟑𝒙𝟑 𝒅𝒘 𝒄𝒐𝒏𝒗

𝟏𝒙𝟏 𝒄𝒐𝒏𝒗
], s=2 

14 X 14 

Depthwise 

Separable 

Block5 

[
𝟑𝒙𝟑 𝒅𝒘 𝒄𝒐𝒏𝒗

𝟏𝒙𝟏 𝒄𝒐𝒏𝒗
], s=1 7 X 7 

Fig. 1 Representing the layers of Mobile-Net 

Operation Parameters Input Size 

Convolution 7X7 conv, s=2 224 x 224 

Pooling 3X3 max pool, s=2 112 X 112 

Dense Block1 [
𝟏𝒙𝟏  𝒄𝒐𝒏𝒗
𝟑𝒙𝟑 𝒄𝒐𝒏𝒗

] X 6, s=1 56 X 56 

Transition layer1 
1X1 conv 

2X2 average pool, s=2 

56 X 56 

56 X 56 

Dense Block2 [
𝟏𝒙𝟏  𝒄𝒐𝒏𝒗
𝟑𝒙𝟑 𝒄𝒐𝒏𝒗

] X 12, s=1 28 X 28 

Transition layer2 
1X1 conv 

2X2 average pool, s=2 

28 X 28 

28 X 28 

Dense Block3 [
𝟏𝒙𝟏  𝒄𝒐𝒏𝒗
𝟑𝒙𝟑 𝒄𝒐𝒏𝒗

] X 24, s=1 14 X 14 

Transition layer3 
1X1 conv 

2X2 average pool, s=2 

14 X 14 

14 X 14 

Dense Block4 [
𝟏𝒙𝟏  𝒄𝒐𝒏𝒗
𝟑𝒙𝟑 𝒄𝒐𝒏𝒗

] X 16, s=1 7 X 7 

Fig. 2 Representing the layers of Dense-Net 

This step encompasses two fundamental tasks: 

• The training set photos are subjected to augmentation 

procedures in order to generate diverse versions of the 

original photographs. This practice aids in mitigating 

overfitting and ensuring that the model exhibits strong 

generalization capabilities across diverse datasets. 

• The construction of positive and negative sample pairs is 

carried out in order to create training data. The formation 

of these pairs is contingent upon the categorization of 

lesions depicted in the photographs. This stage facilitates 

the training of the model to differentiate between 

melanoma and non-melanoma lesions successfully. 

The process of constructing and training a model, this 

phase includes the subsequent sub-steps: 

• Two types of networks are constructed in this study, 

namely, the lightweight recognition network and the 

feature discrimination network. 

• The process of loading pre-training weights involves 

transferring learned features from big datasets into the 

lightweight recognition network. These pre-trained 

weights are valuable since they collect useful information 

that can enhance the network’s performance. 

The lightweight recognition network and the feature 

discrimination network undergo cooperative training. The 

training procedure strengthens the model’s ability to discern 

distinctive characteristics and enhances its effectiveness in 

recognizing patterns. Additionally, it plays a role in reducing 

parameters, hence enhancing the efficiency of the model. 

3.2. Design Architecture 

Model fusion is a pivotal concept in the realm of machine 

learning and artificial intelligence. It revolves around the idea 

that combining multiple models or techniques can 

substantially enhance the predictive accuracy and analytical 

performance of a system.  

This approach acknowledges that individual models may 

have their strengths and limitations, and by fusing them 

together, it becomes possible to harness the collective power 

of these models. Essentially, model fusion aims to create a 

more robust and versatile system that can provide more 

reliable and accurate results across various tasks and 

scenarios. 

In the current research study, model fusion is particularly 

valuable in domains where data is inherently noisy, complex, 

or subject to dynamic changes. By integrating multiple 

lightweight recognition networks, each specialized in different 

aspects of the problem, the fusion procedure leverages its 

complementary strengths.  

This synergy often leads to improved performance, higher 

accuracy, and enhanced adaptability, making it an essential 

strategy for tackling real-world challenges, such as skin cancer 

detection, where precise and reliable results are of utmost 
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importance and where variations and complexities in the data 

require a multifaceted approach. The strategy of the 

recognition model relies on the use of two separate 

characteristics that are derived from the output of the 

lightweight Convolutional Neural Network (CNN).  

The aforementioned features are employed as inputs for 

the feature discrimination networks. The objective of this 

methodology is to ascertain the categorization of a pair of 

input photos, hence augmenting the model’s capacity to 

discern nuanced disparities between melanoma and non-

melanoma lesions. In contrast to the first lightweight model, 

the proposed methodology integrates the concept of fine-

grained categorization, hence facilitating the extraction of 

more distinctive features. 

Consequently, this technique yields improved accuracy in 

the process of recognition. The models that arise from this 

methodology are referred to as Mb-Net-V1 and Mb-Net-V21. 

In brief, the suggested methodology utilizes picture 

preprocessing, novel model development, and model fusion 

techniques to improve the identification of lesions in 

dermoscopy images.  

Through the use of specific characteristics and the 

application of detailed classification principles, the model 

attains enhanced accuracy and discriminating capabilities, 

hence increasing its efficacy in the identification of melanoma 

and non-melanoma lesions. 

3.3. Purpose 

The purpose of designing a lightweight CNN architecture 

using Deep, Dense Net-like connections is to address the 

challenges posed by the increasing demand for efficient and 

accurate image classification models, particularly in scenarios 

with limited computational resources. This purpose is driven 

by the need to deploy deep learning models on resource-

constrained devices such as mobile phones, embedded 

systems, and edge devices, where traditional deep neural 

networks might be too complex and memory-intensive. 

3.3.1. Deep DenseNet Concept 

Deep Dense Net, short for Densely Connected 

Convolutional Networks, is a neural network architecture 

designed to address several critical challenges in deep 

learning. It builds upon the concept of densely connected 

layers, introducing a unique and innovative approach to neural 

network design. In a Dense Net, each layer within a network 

block receives input not only from its immediate predecessor 

but also from all preceding layers in the same block. This 

characteristic results in dense connectivity, which facilitates 

the efficient flow of information and promotes feature reuse 

throughout the network. By enabling each layer to access 

features from all previous layers, Dense Nets ensures that 

valuable information is not lost as it traverses through the 

network. This concept significantly alleviates the vanishing 

gradient problem commonly encountered in training deep 

neural networks, where gradients diminish as they propagate 

backwards, making it challenging to train very deep models 

effectively. The architecture of Deep Dense Net consists of 

two main components: dense blocks and transition layers. 

Dense blocks are composed of multiple densely connected 

layers, and this densely connected structure encourages the 

propagation of gradients and fosters feature reuse. Transition 

layers are responsible for controlling the spatial dimensions 

and complexity of feature maps through operations like 

convolution and pooling. These transition layers ensure that 

the network maintains a reasonable level of computational 

efficiency and prevent it from becoming overly complex, 

making it suitable for various applications. In essence, Deep 

Dense Net’s innovative design enhances feature propagation, 

gradient flow, and training efficiency, making it a powerful 

choice for building deep neural networks that excel in tasks 

like image classification and object detection. 

3.3.2. Design Modelling Steps 

Initial Convolution 

The architecture begins with an initial convolution layer 

that performs preliminary feature extraction from the input 

image. 

Dense Blocks 

Each dense block contains a series of densely connected 

layers. In these blocks, each layer’s output is concatenated 

with the feature maps of all previous layers in that block. This 

dense connectivity promotes feature reuse and enhances the 

gradient flow. 

Transition Layers 

Between dense blocks, transition layers are introduced to 

down-sample the spatial dimensions while reducing the 

number of feature maps. Transition layers typically involve a 

combination of convolutional layers, batch normalization, and 

pooling operations. 

Global Average Pooling 

At the end of the network, a global average pooling layer 

computes the average of each feature map, effectively 

reducing spatial dimensions to a fixed size. 

Fully Connected Layer 

A fully connected layer followed by softmax activation 

performs the final classification. 

The primary purpose of Deep DenseNet is to address the 

challenges associated with training very deep neural networks. 

By introducing dense connectivity, the architecture ensures 

that information from earlier layers reaches later layers 

directly, mitigating the vanishing gradient problem. This 

results in improved gradient flow, which facilitates the 

training of significantly deeper networks without sacrificing 

performance. Additionally, the dense connectivity within 

blocks enhances feature reuse, reducing the number of 

parameters and improving model efficiency.  
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While Deep DenseNet offers several benefits, it can also 

encounter challenges. As the architecture becomes deeper, the 

computation and memory requirements increase, potentially 

limiting its applicability on resource-constrained devices. 

Moreover, dense connectivity introduces a risk of increased 

computational complexity, requiring efficient hardware or 

software implementations to maintain real-time performance. 

Balancing depth and computational efficiency is crucial to 

leveraging the advantages of the architecture effectively. 

a) Formulations 

 Let us define the architecture using mathematical notations: 

Input: Image with dimensions (Height, Width, Channels) 

Layer Functions: 

• Conv2D(x, F): Apply a 2D convolution operation with F 

filters to input x. 

• BatchNorm(x): Apply batch normalization to input x. 

• ReLU(x): Apply the Rectified Linear Unit (ReLU) 

activation function to input x. 

• GlobalAvgPool(x): Perform global average pooling on 

input x. 

• FullyConnected(x,C): Apply a fully connected (dense) 

layer with C output units to input x. 

Now, let us define the architecture in terms of these layer 

functions: 

Input Layer 

• Input: Image with dimensions (H, W, C) 

Initial Convolution 

• Conv2D(Input, F1) 

• BatchNorm 

• ReLU 

Dense Blocks 

• For i = 1 to N_Dense_Blocks: 

• For j = 1 to N_Layers_per_Block: 

• Concatenation_Input = [Input, Layer1, Layer2, ..., 

Layer_j-1] 

• Conv2D(Concatenation_Input, F2) 

• BatchNorm 

• ReLU 

• Input = Concatenation_Input 

Transition Layers 

• Conv2D(Input, F3) 

• Average pooling (2x2) 

• Dropout (optional) 

Global Average Pooling 

• GlobalAvgPool(Input) 

Fully Connected Layer 

• Fully Connected (GlobalAvgPool_Output, Num_Classes) 

• Softmax Activation 

4. Proposed Methodology 
The U-LSTM architecture leverages the strengths of both 

UNet and LSTM for skin cancer classification. In this 

approach, the UNet’s encoder-decoder structure is utilized to 

extract spatial features from dermoscopy images, capturing 

critical details and patterns. However, instead of directly 

passing the extracted features for classification, LSTM is 

integrated to process the feature sequence generated by UNet. 

The combination allows U-LSTM to capture temporal 

dependencies within the sequence of features extracted by 

UNet. This is particularly useful for skin cancer classification, 

as it enables the model to understand how different regions of 

the image contribute to the final classification decision. The 

LSTM component further aids in handling varying sizes of 

lesions, extracting temporal context, and considering the 

sequential nature of features. 

In summary, U-LSTM for skin cancer classification 

integrates UNet’s ability to capture spatial features with 

LSTM’s proficiency in handling sequential data. This 

approach helps the model effectively extract relevant 

information from dermoscopy images and utilize temporal 

dependencies for improved accuracy in identifying skin 

cancer. By combining both architectures, U-LSTM offers a 

comprehensive solution that enhances the classification 

process, considering both fine-grained details and sequential 

patterns present in medical images. 

4.1. U-Net Concept 

The U-Net architecture is a deep learning model designed 

for semantic image segmentation, a task where each pixel in 

an image is assigned a class label. It was specifically 

developed for biomedical image analysis, such as segmenting 

cell nuclei in microscopic images, but its applicability has 

extended to various domains.  

The U-Net’s unique structure resembles a “U,” where the 

upper part is the contracting path, and the lower part is the 

expanding path. The contracting path captures contextual 

information through convolutional and pooling layers, while 

the expanding path restores spatial resolution using up 

sampling and convolutional layers.  

Skip connections, also known as residual connections or 

shortcut connections, are a critical architectural component in 

deep neural networks. These connections are established 

between corresponding layers in the contracting (encoder) and 

expanding (decoder) paths of a network, allowing for the 

seamless integration of high-level context information with 

fine-grained spatial details. By enabling the network to skip 

certain layers and directly connect deeper layers with 

shallower ones, skip connections facilitate the flow of 

information across different scales and levels of abstraction.  
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This helps preserve crucial details during the forward and 

backward passes, mitigating the vanishing gradient problem, 

and ultimately enhances the model’s ability to capture both 

global and local features in complex data, making it 

particularly effective in tasks like image segmentation and 

object recognition. 

4.2. Dataset 

To realize the importance of the proposed U-LSTM 

model integrating with L-CNN, we utilize two datasets from 

the recent design modelling as featured with design criteria 

aspects on HAM-10000 and ISIC-dataset with muti-label 

classification and identification indicating the best accurate 

design model when compared to SOA architectures. 

4.3. Design Modelling Steps 

4.3.1. Contracting Path 

The contracting path involves a series of convolutional 

layers with increasing filters, followed by activation functions 

(typically ReLU) and optional batch normalization.  

Each convolutional block is usually followed by max-

pooling layers to reduce spatial dimensions. 

Bottleneck 

At the bottom of the U, the bottleneck consists of 

additional convolutional layers that capture high-level 

features. 

Expanding Path 

The expanding path involves up-sampling the feature 

maps using transposed convolutions or interpolation methods. 

To provide the spatial detail and temporal changes in the 

design, apply the concatenation process using the TensorFlow 

library to generate the feature maps. 

Output Layer 

The final layer performs pixel-wise classification using a 

1x1 convolution and an appropriate activation function (such 

as sigmoid for binary segmentation). 

Layer Type Output Shape Description 

1 Input (None, H, W, C) Input dermoscopy image 

2 Convolution (None, H, W, F1) 3x3 filters, ReLU activation 

3 Max Pooling (None, H/2, W/2, F1) 2x2 pooling 

4 Convolution (None, H/2, W/2, F2) 3x3 filters, ReLU activation 

5 Max Pooling (None, H/4, W/4, F2) 2x2 pooling 

6 Convolution (None, H/4, W/4, F3) 3x3 filters, ReLU activation 

7 Upsampling (None, H/2, W/2, F3) 2x2 upsampling 

8 Concatenation (None, H/2, W/2, F2+F3) Concatenate features from layers 5 and 7 

9 LSTM (None, H/2*W/2, LSTM_units) LSTM layer for sequence modeling 

10 Fully Connected (None, Num_Classes) Output layer for classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Representing the overall block diagram for proposed algorithms with Two dataset 
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4.4. Purpose of U-Net 

The primary purpose of the U-Net architecture is to tackle 

image segmentation tasks, particularly those requiring precise 

localization of objects within images. Its U-shaped design 

allows it to efficiently capture both local details and global 

context, making it well-suited for tasks like cell nucleus 

segmentation, where accurate delineation of object boundaries 

is crucial.  

Furthermore, the U-Net’s ability to leverage 

skipconnections helps overcome the challenges of information 

loss during pooling and subsequent up-sampling, resulting in 

improved segmentation accuracy.  

Despite its strengths, the U-Net architecture also faces 

certain challenges. One of these is the potential for overfitting, 

especially when training data is limited. Careful data 

augmentation and regularization techniques are essential to 

mitigate this issue. 

Additionally, the U-Net might struggle with objects of 

vastly different scales within an image. While skip 

connections aid in recovering spatial information, they might 

not fully address issues related to scale variation. Further 

adaptations, such as multi-scale architectures, can be explored 

to tackle this challenge. 

4.5. U-LSTM Architecture 

A U-Net LSTM (Unet-LSTM) block diagram combines 

the U-Net architecture, commonly used for image 

segmentation tasks, with LSTM (Long Short-Term Memory) 

layers for capturing temporal dependencies in sequential data. 

This hybrid architecture is designed to improve performance 

in applications like medical image segmentation and analysis, 

where both spatial and temporal information are crucial. The 

proposed block diagram in the figure describes the U-Net 

LSTM structure with a focus on performance improvement.  

4.5.1. Input Images and Sequences 

The U-Net LSTM diagram begins with input images or 

sequences of images. These could be medical images like 

dermoscopic images of skin lesions over time or any other 

kind of sequential data that requires both spatial and temporal 

analysis. 

4.5.2. Encoder Path - U-Net Architecture 

In the U-Net architecture, the encoder path plays a crucial 

role in extracting hierarchical features from input images. This 

pathway typically comprises a series of convolutional layers, 

with each convolutional layer followed by the application of 

non-linear activation functions, such as Rectified Linear Units 

(ReLU). These convolutional layers are designed to 

progressively transform the input data into a rich hierarchy of 

features by applying learned filters.  

Additionally, max-pooling layers are strategically 

incorporated within this pathway to downsample the feature 

maps, allowing the model to capture information at varying 

levels of abstraction. This hierarchical feature extraction 

process enables the U-Net to effectively analyse and represent 

different aspects of the input data, which is particularly 

advantageous in tasks like image segmentation and medical 

image analysis. 

As the input data passes through the encoder path of the 

U-Net, it undergoes a series of transformations that enhance 

the network’s ability to understand intricate patterns and 

structures. The convolutional layers apply filters to detect and 

emphasize relevant features.  

At the same time, the non-linear activation functions 

introduce non-linearity into the network, enabling it to capture 

complex relationships within the data. Simultaneously, the 

inclusion of max-pooling layers aids in down sampling, 

reducing the spatial dimensions of the feature maps but 

retaining essential information.  

This multi-layered approach in the encoder path ensures 

that the U-Net can comprehend both high-level and low-level 

details, contributing to its exceptional performance in tasks 

requiring precise segmentation and analysis of images, 

particularly in the field of medical imaging and computer 

vision. 

4.5.3. LSTM Integration - Contextual Memory 

At specific points along the encoder path, LSTM layers 

are introduced. These LSTM layers process the extracted 

features and incorporate contextual memory by considering 

the temporal dependencies present in the sequential data. The 

LSTM units maintain hidden states that store information over 

time, allowing the model to capture evolving patterns and 

relationships. 

4.5.4. Decoder Path - U-Net Architecture 

The decoder path of the U-Net continues, following the 

encoder’s structure in reverse. Transposed convolutional 

layers (also known as “upsampling” or “deconvolution”) 

increase the spatial resolution of the feature maps. 

Concatenation with feature maps from the corresponding 

encoder path stage provides crucial spatial information that 

helps refine segmentation predictions. 

4.5.5. Skip Connections for Contextual Information 

Skip connections, inherent to the U-Net architecture, are 

maintained in the U-Net LSTM as well. These connections 

bridge the gap between the encoder and decoder paths. They 

allow the decoder to leverage both the fine-grained spatial 

information from the encoder and the contextual temporal 

information from the LSTM layers. 

4.5.6. Output Layer - Segmentation Map 

The final layer of the U-Net LSTM produces a 

segmentation map, where each pixel is assigned a class label. 

The model’s ability to integrate both spatial and temporal 

information enhances its ability to accurately segment objects 

of interest, such as skin lesions, in medical images over time. 
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4.6. Algorithm U-LSTM 

ALGORITHM 1: U-LSTM Procedure 

Input:Dermoscopic image sequences X (input features), Y 

(target labels indicating melanoma or non-melanoma), 

number of layers L. 

Initialize: Initialize U-LSTM model parameters (weights and 

biases) randomly or using pre-trained weights. 

Network Architecture: Construct the U-LSTM network with L 

layers tailored for skin melanoma classification. 

Forward Pass: 

• For each layer i from 1 to L: 

1. Compute the LSTM cell output and hidden states 

based on the previous hidden states, input data, and 

cell states. 

2. Pass the LSTM output through an activation function 

(e.g., ReLU) to introduce non-linearity. 

3. Apply dropout regularization to the output to prevent 

overfitting. 

4. Pass the processed output to the next layer. 

Loss Computation: Compute the loss between the predicted 

output and the target labels using an appropriate loss function 

(e.g., binary cross-entropy) suited for binary classification. 

Backpropagation: 

• For each layer i from L to 1: 

1. Compute the gradients of the loss with respect to the 

output of the current layer. 

2. Backpropagate the gradients through the activation 

function and LSTM cell to compute gradients with 

respect to input data and hidden states. 

3. Update the model parameters using an optimization 

algorithm (e.g., Adam optimizer) based on the 

computed gradients. 

Training: Iterate over multiple epochs: 

Divide the dataset into batches of dermoscopic image 

sequences and their corresponding labels. 

• Perform forward pass, loss computation, and 

backpropagation for each batch. 

• Update model parameters after each batch or at the end 

of the epoch. 

• Monitor training metrics and adjust hyperparameters if 

necessary. 

Prediction: Once the model is trained, perform predictions on 

new dermoscopic image sequences: 

• Forward pass through the trained U-LSTM network to 

obtain predicted outputs. 

• Apply a threshold to the predicted probabilities to 

determine melanoma or non-melanoma class. 

Algorithm 1 outlines the procedure for implementing the 

U-LSTM model for skin cancer and lesion detection using 

dermoscopic image sequences as input. Here is a detailed 

explanation of each step: 

Step 1 - Input and Initialization: The algorithm takes as input 

the dermoscopic image sequences (X) and their corresponding 

target labels (Y), indicating whether they are melanoma or 

non-melanoma. The number of layers in the U-LSTM network 

is denoted by L. The model’s parameters (weights and biases) 

are initialized, either randomly or using pre-trained weights 

from a similar task. 

Step 2 - Network Architecture: The U-LSTM network is 

constructed with L layers specifically designed for skin 

melanoma classification. Each layer consists of an LSTM cell 

that processes sequential data, such as image sequences. 

Step 3 - Forward Pass: For each layer i from 1 to L, the 

following steps are performed: 

1. The LSTM cell computes its output and hidden states 

based on the previous hidden states, input data (X), and 

cell states. 

2. The output of the LSTM cell is passed through an 

activation function (e.g., Rectified Linear Unit - ReLU) 

to introduce non-linearity. 

3. Dropout regularization is applied to the output to prevent 

overfitting by randomly deactivating a fraction of the 

neurons. 

4. The processed output is then passed to the next layer. 

Step 4 - Loss Computation: The loss between the predicted 

output and the target labels is computed using an appropriate 

loss function, such as binary cross-entropy, which is well-

suited for binary classification tasks like melanoma detection. 

Step 5 - Backpropagation: For each layer i from L to 1, the 

following steps are performed during backpropagation: 

1. Gradients of the loss with respect to the output of the 

current layer are computed. 

2. The gradients are backpropagated through the activation 

function and LSTM cell to calculate gradients with 

respect to input data and hidden states. 

3. The model parameters (weights and biases) are updated 

using an optimization algorithm like Adam, adjusting 

them based on the computed gradients. 

Step 6 - Training: The algorithm iterates over multiple epochs 

to train the U-LSTM model: 

• The dataset is divided into batches of dermoscopic image 

sequences and corresponding labels. 

• For each batch, a forward pass is performed to predict 

outputs, loss is computed, and backpropagation is carried 

out. 
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• Model parameters are updated after each batch or at the 

end of the epoch. 

• Training metrics are monitored, and hyperparameters can 

be adjusted if needed. 

Step 7 - Prediction: After training, the model can be used to 

predict melanoma or non-melanoma classes for new 

dermoscopic image sequences: 

• A forward pass is conducted through the trained U-LSTM 

network to obtain predicted outputs (probabilities). 

 

• By applying a threshold to the predicted probabilities, the 

algorithm assigns sequences to either the melanoma or 

non-melanoma class. 

The proposed U-NET-LSTM algorithm outlines the entire 

implementation process for skin cancer and lesion detection, 

from input preprocessing to training and prediction. The 

design of the parametric demonstrates how the U-LSTM 

architecture can capture temporal patterns in dermoscopic 

images to aid in accurate classification. 

4.7. Modification of the Design Model 

The algorithm is structured with design steps, making it 

easier to understand the process of incorporating a custom loss 

function and threshold parameters: 

Step 1: Initialize the U-LSTM model parameters. 

Step 2: Construct the U-LSTM network with the specified 

number of layers. 

Step 3: Perform the forward pass through the network to 

compute LSTM outputs. 

Step 4: Compute the custom loss using the defined c_loss 

function. 

Step 5: Perform backpropagation to compute gradients and 

update model parameters. 

Step 6: Enter the prediction loop for new data. 

Step 7: Conduct a forward pass through the trained U-LSTM 

network to get LSTM outputs for prediction. 

Step 8: Apply the specified threshold to the predicted 

probabilities and determine the predicted class. 

Replace the placeholder function calls (init_param(), 

cons_u_lstm_net(), gen_bat(), fow_p(), and 

comp_grad_and_upd_params()) with your actual 

implementations. 

Adjust the values of X, Y, num_layers, threshold, 

num_epochs, and batch_size according to your dataset and 

problem requirements. 

By structuring the algorithm with these design steps, we 

have observed the different threshold parametric visualization 

on the loss estimation changes in section V for the 

comprehension of the process of incorporating a custom loss 

function and threshold parameters into your U-LSTM model 

for skin cancer and lesion detection. 

ALGORITHM 2: UNET+CNN 

Input: Create a Dataset form the Local directory with 

preprocessing of input images with multiple labels. 

Initialize: Initialize U-CNN model parameters (weights and 

biases) randomly or using Custom weights. 

Network Architecture: Construct the U-CNN network with L 

layers tailored for skin melanoma classification. 

• Collect a diverse and balanced dataset of skin cancer 

images with corresponding labels (multiple labels). 

• Split the dataset into training, validation, and testing sets. 

• Preprocess the images by resizing them to a consistent 

size (e.g.,28,28,3), normalizing pixel values to [0, 1], and 

applying data augmentation techniques (e.g., rotation, 

flipping, zooming) to increase dataset variety. 

U-Net Architecture 

• Design the U-Net architecture with an encoder-decoder 

structure. 

• Encoder: 

• For each layer i from L to 1: 

• Stack all the convolutional layers with 

increasing filters to capture low to high-level 

features. 

• Utilize the Intersperse activation functions (e.g., 

ReLU) and batch normalization layers. 

• Apply the max-pooling layers to down-sample 

spatial dimensions. 

• Update the model weight using an optimization 

algorithm batch normalization. 

• Decoder: 

• Create a transposed convolution 

(deconvolution) layers to up sample features 

while retaining spatial information. 

• Incorporate skip connections by concatenating 

encoder feature maps with corresponding 

decoder feature maps. 

• Apply activation functions to the concatenated 

features. 

CNN for Feature Extraction: 

• Build a separate CNN architecture or integrate it into 

the UNet’s encoder. 

• CNN architecture: 

• Stack convolutional layers with varying kernel 

sizes to capture hierarchical features. 

• Use activation functions and batch 

normalization for feature transformation. 

• Optionally, add pooling layers for down 

sampling. 
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Combining Features and Decoding: 

• Concatenate the features from the U-Net’s decoder and 

the CNN to form a fused feature representation. 

• Use transposed convolutional layers to up-sample the 

fused features and reconstruct spatial resolution. 

Classification Head: 

• Attach a classification head to the fused and up-sampled 

features for final classification. 

• Apply an activation function like sigmoid to obtain 

classification probabilities. 

Model Implementation: 

• Implement the combined U-Net+CNN architecture using 

a deep learning framework such as TensorFlow. 

• Define a categorical cross-entropy loss function for 

training the model. 

Model Training: 

• Initialize the model with appropriate hyperparameters 

(learning rate, batch size, etc.). 

• Train the model on the training dataset using the defined 

loss function and an optimization algorithm (e.g., Adam). 

• Implement ReduceLROnPlateau early stopping to 

enhance training stability. 

Model Evaluation: 

• Evaluate the trained model on the validation dataset to 

monitor its performance. 

• Calculate metrics like accuracy, precision, recall, F1-

score, and ROC-AUC. 

4.8. Data Preparation and Preprocessing 

The algorithm, as mentioned above, begins by gathering 

a diverse and balanced dataset containing skin cancer images 

alongside their corresponding labels, where an image might 

have multiple labels. This dataset is then split into three 

subsets: training, validation, and testing sets. Before feeding 

the data into the model, preprocessing steps are applied. This 

involves resizing all images to a consistent size (e.g., 

28x28x3), ensuring uniformity across the dataset. 

Additionally, pixel values are normalized to the range of [0, 

1], which helps stabilize and expedite the training process. To 

enhance the model’s ability to generalize, data augmentation 

techniques such as rotation, flipping, and zooming are 

employed, effectively augmenting the dataset’s variety and 

robustness. 

4.9. U-CNN Network Architecture 

The algorithm outlines the architecture of the U-CNN, a 

hybrid of U-Net and CNN. The U-Net component features an 

encoder-decoder structure tailored for capturing intricate 

features in skin melanoma images. The encoder comprises 

multiple layers, from L to 1. In each layer, a stack of 

convolutional layers with progressively increasing filters is 

used to capture features that transition from low-level to high-

level representations. Activation functions (such as ReLU) 

introduce non-linearity, enhancing the model’s ability to 

understand complex patterns. Max-pooling layers are applied 

to downsample spatial dimensions, focusing on the most 

salient features. The model’s weights are updated using an 

optimization algorithm, with batch normalization helping 

stabilize training by normalizing activations. 

4.10. Feature Extraction and Combining 

 An important aspect of the architecture is the integration 

of a separate CNN architecture alongside the U-Net encoder. 

This CNN extracts features using convolutional layers with 

varying kernel sizes. Activation functions and batch 

normalization ensure that these features are appropriately 

transformed. Optionally, pooling layers can be included for 

down sampling. The features obtained from both the U-Net’s 

decoder and the CNN are combined to form a fused feature 

representation. Transposed convolutional layers then 

upsample these fused features, reconstructing spatial 

resolution and capturing fine details that were preserved 

throughout the architecture. 

4.11. Training, Evaluation, and Implementation  

The algorithm proceeds to implement the combined U-

Net+CNN architecture using a deep learning framework, such 

as TensorFlow. A categorical cross-entropy loss function is 

defined, serving as the guiding objective for model training. 

Hyperparameters are initialized, including the learning rate 

and batch size. The model is trained on the training dataset, 

optimizing the defined loss function using an optimization 

algorithm like Adam. Notably, “Reduce LR On Plateau” early 

stopping is integrated to enhance training stability by 

adjusting the learning rate when performance plateaus. 

Following training, the model’s performance is evaluated on 

the validation dataset. Metrics such as accuracy, precision, 

recall, F1-score, and ROC-AUC are calculated to 

comprehensively assess the model’s effectiveness in 

classifying skin melanoma images. In essence, the algorithm 

presents a comprehensive approach for building, training, and 

evaluating a U-CNN model tailored for skin melanoma 

classification. By combining the strengths of U-Net and CNN 

architectures, the model aims to effectively capture intricate 

features, ensuring both accuracy and robustness in diagnosis. 

5. Results and Discussion 
The overall results and findings for the proposed 

UNet+LSTM model are mentioned, along with aspects of the 

important parameters for the improvement of performance. 

5.1. Model Performance and Dataset 

The proposed UNet+LSTM model achieved an 

impressive accuracy of 98.2%, which indicates a high level of 

accuracy in classifying skin melanoma images. The training 

and test split of 75% and 25%, respectively, ensures that the 

model’s performance was assessed on unseen data, helping 

validate its generalization capabilities. It is notable that the 

dataset used for training was an improved version of the 

HAM10000 dataset, containing 46,935 images. Oversampling 
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the dataset contributes to a more balanced representation of 

classes, which can lead to better model performance, 

especially for minority classes. 

5.2. Impact of Reduced LR on Plateau 

The reduction of the learning rate on plateau played a 

pivotal role in improving the model’s performance. Starting 

from an initial accuracy of 90%, the application of this 

technique contributed to a significant accuracy boost, 

ultimately achieving an accuracy of 98.2%. This improvement 

underscores the importance of proper learning rate scheduling, 

as it allowed the model to navigate through the optimization 

landscape more effectively. By adjusting the learning rate 

based on the validation loss plateau, the model was able to 

converge to a more optimal solution. 

5.3. Generalization and Testing 

The high accuracy of 98.2% raises confidence in the 

model’s generalization ability. It indicates that the model has 

learned meaningful and relevant features from the training 

data, enabling it to classify previously unseen skin melanoma 

images correctly. Additionally, the use of the HAM10000 

dataset, renowned for its diversity in skin lesion images, 

contributes to the model’s robustness and adaptability across 

different cases. 

5.4. Variety of Test Cases 

The model’s performance across various skin melanoma 

images underscores its versatility. The ability to accurately 

classify diverse images from the testing set further reinforces 

the model’s credibility. By dealing with different types of skin 

lesions, the model showcases its potential to assist 

dermatologists in identifying potential cases of melanoma. 

5.5. Architecture of Algorithm-1&2 

The neural network model “sequential_171” consists of a 

sequence of layers, each contributing to the transformation 

and extraction of features from the input data. It begins with a 

Convolutional Layer (Conv2D) that uses a convolutional 

operation to generate an output shape of (None, 28, 28, 32), 

utilizing 896 learnable parameters. Following this, a 

MaxPooling2D layer reduces spatial dimensions to (None, 14, 

14, 32) without any parameters. Subsequently, a Batch 

Normalization layer produces an output shape of (None, 14, 

14, 32) with 128 parameters. 

The architecture proceeds with two consecutive 

Convolutional Layers, both producing an output shape of 

(None, 14, 14, 64) while utilizing 18,496 and 36,928 

parameters, respectively. A MaxPooling2D layer follows, 

down-sampling the spatial dimensions to (None, 7, 7, 64). 

Then, two more Convolutional Layers create output shapes of 

(None, 7, 7, 256) with 147,712 and 590,080 parameters. 

Another MaxPooling2D layer reduces dimensions to (None, 

3, 3, 256), and a Batch Normalization layer maintains an 

output shape of (None, 3, 3, 256) with 1,024 parameters. 

Continuing the architecture, a Convolutional Layer 

generates an output shape of (None, 1, 1, 64) with 147,520 

parameters. A TimeDistributed layer produces an output shape 

of (None, 1, 64) without any parameters. An LSTM layer 

follows, yielding an output shape of (None, 550) and utilizing 

1,353,000 parameters. A Dropout layer helps mitigate 

overfitting with an output shape of (None, 550) and no 

additional parameters. 

The model then proceeds with three Dense (fully 

connected) Layers. The first Dense Layer produces an output 

shape of (None, 256) with 141,056 parameters, followed by a 

Batch Normalization layer maintaining the same output shape 

with 1,024 parameters. The second Dense Layer generates an 

output shape of (None, 128) with 32,896 parameters, and a 

Batch Normalization layer maintains the shape with 512 

parameters. The third Dense Layer produces an output shape 

of (None, 64) with 8,256 parameters, and a Batch 

Normalization layer maintains the shape with 256 parameters. 

The final two Dense Layers respectively yield output shapes 

of (None, 32) and (None, 7), containing 2,080 and 231 

parameters each. This comprehensive architecture culminates 

in the classifier’s prediction of the output classes. 

5.6. Conv2D Layer (conv2d_1611) 

This layer performs convolutional operations on the input 

image, extracting various features using a set of filters. The 

output shape indicates that the layer produces feature maps 

with a size of 28x28 and 32 channels. The connectivity here 

involves applying convolutional filters to the input image. 

Each filter learns to detect specific patterns, which are then 

combined to form higher-level features. The parameters in this 

layer represent the weights associated with the filters, which 

are essential for feature extraction. 

5.7. MaxPooling2D Layer (max_pooling2d_708) 

Max pooling is a down sampling operation that reduces 

the spatial dimensions of the feature maps while retaining the 

most important information. The connectivity involves sliding 

a window over the feature maps and taking the maximum 

value within each window. This helps reduce computational 

complexity and control overfitting by focusing on essential 

features. 

Batch Normalization Layer (batch_normalization_484): 

Batch normalization normalizes the output of the previous 

layer, ensuring that the mean and variance of each feature are 

close to 0 and 1, respectively. This aids in faster training 

convergence and generalization. The connectivity involves 

computing the mean and variance of each feature map within 

a batch and then scaling and shifting the values. The 

parameters control the scaling and shifting. 

The UNet+LSTM model achieved an impressive 

accuracy of 98.2%. This indicates that the model’s predictions 

closely align with the actual labels of the skin melanoma 

images. Moreover, the sensitivity (true positive rate) for the 
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UNet+LSTM model is high, measuring at 0.9977. This 

suggests that the model is excellent at identifying true positive 

cases, which is crucial for detecting actual instances of skin 

melanoma. The high sensitivity indicates that the model has a 

low rate of false negatives. 

Furthermore, the specificity (true negative rate) for the 

UNet+LSTM model is 0.9314. Although slightly lower than 

sensitivity, this value is still relatively high and indicates that 

the model can effectively identify true negative cases. 

However, a specificity of 0.9314 suggests that there is a higher 

rate of false positives compared to false negatives. The overall 

precision of 0.981 suggests that a high proportion of the 

positively predicted cases are indeed true positive cases. 

5.8. Discussion of UNet+LSTM Results 

The high recall value of 0.980 for the UNet+LSTM model 

underscores its ability to capture the majority of relevant 

instances among the actual positive cases. The model’s F-

measure of 0.980 further emphasizes the balance between 

precision and recall, suggesting that it achieves an effective 

trade-off between correctly classifying positive cases and 

minimizing false negatives. 

The best epoch, being 20, signifies that, during training, 

the model achieved its highest level of accuracy and 

generalization around that epoch. This highlights the 

importance of monitoring the model’s performance across 

epochs and choosing the point at which it performs optimally. 

In summary, the UNet+LSTM model demonstrates 

remarkable accuracy and robustness in classifying skin 

melanoma images. Its high sensitivity and overall precision 

indicate its efficacy in identifying true positive cases while 

minimizing false positives. However, it is important to 

consider the relatively lower specificity, which might be due 

to an increased rate of false positives. This model could have 

practical implications for assisting medical professionals in 

diagnosing skin melanoma with a high degree of accuracy. 

The overall design on the U-net + LSTM feature 

implicates a 23-layer design. These layers are depicted below 

with each aspect of the parameters, shape connection and layer 

type chosen from TensorFlow. In order to emphasize such an 

effective method, we have created a three-layer division of the 

model creation for imparting the new patterns on the images 

for better performance. This approach with algorithm-1 is 

implemented with the Ham-10000 dataset with the balanced 

features on the data, indicating the effective aspects of the 

images with oversampling of the types of label classification. 

The designed layers are effective if the overall loss is less than 

1%.  

To provide such capabilities, we have introduced the 

reduced LR on the plateau. The different and conditional 

Learning rate of the design on U-Net+ LSTM has effectively 

proved the better and best performance when compared to 

SOA architectures. The performance comparison and its 

tabulation are presented with optimization and without cases. 

The overall comparison of cancer and lesion detection is 

implemented to provide the best accurate design on the 

classification model, which can predict the best outcome. 

The above Layers of the proposed Algorithm-1 where 

each layer serves a specific purpose in the overall architecture, 

contributing to feature extraction, dimensionality reduction, 

normalization, and complexity enhancement. This 

combination allows the network to learn hierarchical 

representations from the raw data. The sequential arrangement 

is significant as it allows the model to progressively learn 

abstract features from low-level edges and textures to high-

level, complex patterns.

Fig. 4 Representing the overall Training and Testing case loss & accuracy for the proposed algorithm-1
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Fig. 5 Representing the overall confusion map of the proposed Unet-LSTM model 

Fig. 6 Representation of training and validation plots for accuracy and loss only for U-Net structure

Moreover, the presence of batch normalization and 

dropout aids in regularization, reducing overfitting and 

promoting better generalization to unseen data. The fully 

connected layers at the end leverage these learned features to 

make the final predictions.  

The specific arrangement and connectivity of layers play 

a crucial role in the network’s ability to understand the data 

and make accurate predictions. Our proposed designed 

algorithms, 1 and 2 are carefully designed and experimented 

with to balance the depth, complexity, and generalization 

capabilities of the model. 

The given confusion matrix in figure 5 represents the 

performance evaluation of a classification model across seven 

different classes. Each row corresponds to the true class, while 

each column corresponds to the predicted class. The matrix’s 

values provide insights into how well the model’s predictions 

align with the actual classes. 
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Firstly, the diagonal elements of the matrix indicate 

correct predictions, where the true class matches the predicted 

class. For instance, the value 1485 in the top-left corner 

(position [0, 0]) signifies that 1485 instances of class 0 were 

accurately predicted as class 0. Similarly, the value 1739 at [1, 

1] suggests that the model correctly predicted 1739 instances 

of class 1 as class 1. These diagonal values are indicative of 

strong performance for these classes. 

Secondly, off-diagonal elements highlight instances 

where the model’s predictions diverged from the true classes. 

For example, the value 74 at [0, 1] reveals that the model 

incorrectly predicted 74 instances of class 0 as class 1. 

Similarly, the value 69 at [0, 2] indicates 69 cases where class 

0 was mistakenly classified as class 2. These non-diagonal 

values represent misclassifications and provide insights into 

areas where the model might require improvement or further 

fine-tuning. 

Thirdly, it is noteworthy that some classes, such as class 

3, class 4, and class 5, show zero off-diagonal values. This 

suggests that the model’s predictions for these classes are 

consistently accurate, as no instances from these classes were 

misclassified as other classes.  

These perfect diagonal values at the intersection of these 

classes indicate that the model’s ability to distinguish these 

particular classes is strong.  

Overall, the confusion matrix serves as a valuable tool to 

gauge the model’s performance in various classes and aids in 

identifying specific areas where the model excels or requires 

refinement. 

The achievement of a remarkably low training and 

validation loss of 0.002, coupled with the identification of the 

best-performing epoch at 24 in Figure 6, signifies a profound 

level of efficiency during the training process of the machine 

learning or deep learning model. This loss value serves as a 

pivotal metric, reflecting the model’s ability to align its 

predictions closely with the actual target values.  

A loss as diminutive as 0.002 indicates a striking degree 

of precision, signifying that, on average, the model’s 

predictions exhibited remarkable proximity to the ground truth 

values. This outcome is highly coveted, underscoring the 

model’s adeptness in comprehending and internalizing the 

intricate patterns and relationships inherent within the training 

dataset. The occurrence of the best epoch at 24 implies that 

after 24 rounds of training, the model reached its zenith in 

terms of loss minimization. Beyond this point, further 

iterations did not yield substantial enhancements in either the 

model’s accuracy or its capacity to render precise predictions. 

Moreover, the training and validation accuracy of 98.3%, 

with the optimal epoch also coinciding at 24, underscores the 

model’s exceptional proficiency in accurately classifying data 

instances. Accuracy serves as a vital yardstick, denoting the 

ratio of correctly predicted instances relative to the total 

number of instances within the dataset. An accuracy rate of 

98.3% signifies the model’s ability to make correct predictions 

for approximately 98.3% of the examples in both the training 

and validation datasets at epoch 24. This elevated level of 

accuracy suggests that the model has successfully captured the 

underlying data patterns, empowering it to furnish accurate 

predictions consistently.  

The concurrence of the best epoch with epoch 24 

emphasizes that the model attained its pinnacle accuracy at 

this juncture, with prolonged training likely leading to 

overfitting or marginal enhancements in accuracy. To sum up, 

these performance metrics collectively convey that the 

model’s training process was exceedingly effective, resulting 

in a well-attuned and accurate model, a hallmark of robust 

machine learning or deep learning endeavours. 

 
Fig. 7 Representation of training and validation plots for accuracy and loss only for U-Net structure 
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The training and validation loss reported in Figure 7, 

standing at an impressively low value of 0.002, along with the 

identification of the optimal epoch at 29, serves as compelling 

evidence of the U-net+CNN algorithm’s highly successful 

training process. The loss metric is a critical indicator, 

quantifying the extent of deviation between the model’s 

predictions and the actual target values. A minuscule loss of 

0.002 indicates that, on average, the model’s predictions are 

closely aligned with the ground truth values, attesting to the 

exceptional accuracy of its predictions. The best epoch 

aligning with epoch 29 suggests that after 29 training 

iterations (or epochs), the model attained its peak performance 

in terms of minimizing the loss function. This signifies the 

model’s proficiency in comprehending the intricate data 

patterns and relationships inherent within the training dataset. 

Notably, further training beyond this point is unlikely to 

contribute substantially to improved accuracy. Furthermore, 

the training and validation accuracy metrics, both registering 

an impressive 98.3%, with the optimal epoch at 26, underscore 

the U-net+CNNalgorithm’s outstanding capability in 

accurately classifying data points.  

Accuracy, as a pivotal measure, delineates the proportion 

of correctly predicted instances relative to the total number of 

instances within the dataset. The attainment of a 98.3% 

accuracy rate signifies the model’s consistent ability to make 

correct predictions for approximately 98.3% of the examples 

in both the training and validation datasets at epoch 26. This 

remarkable level of accuracy underscores the model’s 

adeptness in capturing the underlying data patterns, ensuring 

consistently accurate predictions. The alignment of the best 

epoch with epoch 26 accentuates that the model reached its 

zenith in accuracy at this juncture, with continued training 

likely offering diminishing returns in terms of improved 

accuracy. In summary, these performance metrics collectively 

affirm that the U-net+CNN algorithm underwent an 

exceedingly effective training process, culminating in a finely 

tuned model renowned for its accuracy, characteristics 

emblematic of robust machine learning and deep learning 

methodologies. 

The reported training and validation loss that varies from 

1.75 to 0.37 in Figure 8, with the best epoch occurring at 30, 

suggests a dynamic training process for the U-net+LSTM and 

U-net+CNN algorithms as proposed. The loss metric 

quantifies the dissimilarity between the model’s predictions 

and the actual target values. A range of 1.75 to 0.37 indicates 

fluctuations in the model’s performance during training, 

possibly due to a variety of factors such as learning rate 

adjustments or the complexity of the dataset.  

The best epoch occurring at 30 means that after 30 rounds 

of training (or epochs), the model reached its optimal 

performance in terms of minimizing the loss function, 

indicating that it eventually learned to capture the underlying 

patterns in the data. 

The training and validation accuracy ranges from 30% to 

91.3%, with the best epoch also at 30, which indicates a 

considerable improvement in the model’s ability to classify 

data points over the course of training correctly. In order to 

relate the design performance metrics, accuracy for the above 

figure is estimated based on the Unet-CNN model, indicating 

the overall design perspective. Starting at 30% and reaching 

91.3% implies that the model initially struggled with accurate 

predictions but steadily improved as training progressed.  

The best epoch aligning with epoch 30 suggests that the 

model achieved its highest level of accuracy at this point, 

signifying that it finally learned to extract and understand the 

critical features within the data. In summary, the reported 

metrics reveal the training journey of the U-net+LSTM and 

Unet+CNN algorithms as proposed. Their varying loss values 

and accuracy improvements demonstrate that these models 

required some degree of refinement and learning adaptation to 

comprehend the data’s complexity fully.  

The best epoch value at 30 marks the point where both 

models reached their peak performance, emphasizing the 

importance of patience and iterative training in achieving 

accuracy and effectiveness in complex tasks like image 

segmentation and medical image analysis.

 
Fig. 8 Representation of training and validation plots for accuracy and loss only for U-Net-CNN structure for ISIC dataset 



A. Daisy Rani et al. / IJETT, 72(1), 20-39, 2024 

 

37 

Table 2. Representing the overall functional characteristics algorithms with the type of dataset classification and recognition 

DATASET Algorithms Sensitivity Specificity F1-Score Recall Precision 

HAM10000 TF Net [10] 92.56 90.10 90.41 94.23 91.52 

HAM10000 LW-CNN [7] 94.52 91.52 93.14 91.42 93.7 

HAM10000 NNet [20] 91.5 92.4 93.1 92.8 93.165 

HAM10000 Deep CNN [1-6] 94.73 94.25 93.45 93.81 92.93 

HAM10000 HYBRID [8] 94.84 91.91 93.26 91.9 92.73 

HAM10000 Proposed U-NET-CNN 99.7 93.18 98.1 98.0 98.1 

HAM10000 Proposed UNET-LSTM 99.82 93.2 98.1 98.0 98.1 

ISIC-2019 Proposed U-NET-CNN 94.52 98.6 94.2 92.4 91.5 

ISIC-2019 Proposed UNET-LSTM 94.52 98.6 94.2 92.4 91.5 

ISIC-2019 UNET (SOA) [18] 97.5 96.3 97.88 98.84 96.65 

ISIC-2019 LSTM+HYBRID (SOA) [19] 98.95 96.17 97.96 98.83 96.997 

HAM10000 UNET (SOA) [18] 95.57 96.35 96.8 97.4 97.15 

HAM10000 LSTM+HYBRID (SOA) [19] 94.95 97.17 96.6 95.83 97.8 

The provided dataset and algorithmic results showcase 

various approaches for skin lesion classification, primarily 

focusing on melanoma detection and classification, as 

mentioned in Table 2. The objective of this study is to evaluate 

the efficacy of various deep learning models in the diagnosis 

of skin lesions, utilizing essential performance metrics, 

including sensitivity, specificity, F1-score, recall, and 

precision.  

Two distinct datasets, namely HAM10000 and ISIC-

2019, each possessing its own distinct attributes, are employed 

for this assessment. In the HAM10000 dataset, several 

algorithms were tested, including TF Net, LW-CNN, NNet, 

Deep CNN, HYBRID, and the proposed U-NET-CNN and 

UNET-LSTM models. The proposed U-NET-CNN and 

UNET-LSTM models achieved impressive sensitivity scores 

of 99.7% and 99.82%, respectively. Sensitivity is a critical 

metric in medical diagnosis as it measures the ability to 

correctly identify positive cases (melanoma) out of all actual 

positive cases. These high sensitivity scores indicate that the 

proposed models are excellent at detecting melanoma, which 

is crucial for early diagnosis and treatment. 

In contrast, the ISIC-2019 dataset was used to evaluate 

the proposed U-NET-CNN and UNET-LSTM models in a 

different context. While these models achieved slightly lower 

sensitivity scores of 94.52%, they exhibited exceptional 

specificity of 98.6%. Specificity measures the ability to 

correctly identify negative cases (non-melanoma) out of all 

actual negative cases. The high specificity indicates that the 

proposed models can effectively rule out non-melanoma 

cases, reducing the chance of false positives. 

Comparing these results to state-of-the-art models in the 

respective datasets, the proposed algorithms show promising 

performance. Additionally, the choice of datasets is 

noteworthy. HAM10000 is a comprehensive dataset of 

dermatoscopic images, while ISIC-2019 focuses on melanoma 

classification.  

The selection of both datasets demonstrates the versatility 

of the proposed models in handling different types of skin 

lesion data. This adaptability is crucial for practical clinical 

applications where various datasets may be encountered. 

In summary, the provided results emphasize the 

effectiveness of the proposed U-NET-CNN and UNET-LSTM 

models for skin lesion classification, with high sensitivity and 

specificity scores. These models exhibit strong performance in 

both the HAM10000 and ISIC-2019 datasets, highlighting 

their versatility and potential for real-world clinical 

applications. The choice of datasets underscores the 

importance of evaluating algorithms in diverse scenarios to 

ensure their robustness and generalizability. 

The presented table illustrates the performance of existing 

algorithms and the proposed algorithms with and without 

optimization, measured in terms of accuracy, on two datasets: 

HAM10000 and ISIC-2019. The existing algorithms, such as 

TF Net, LW-CNN, NNet, Deep CNN, and HYBRID, show 

varying degrees of accuracy on the HAM10000 dataset 

without optimization, ranging from 78.7% to 86.4%. Notably, 

the proposed algorithms, U-NET-CNN and UNET-LSTM, 

achieve relatively high accuracies of 91.5% on HAM10000 

without optimization, suggesting their competitiveness with 

existing models.With optimization, both the existing and 

proposed algorithms achieve perfect accuracy (100%) on the 

HAM10000 dataset. This indicates that optimization 

techniques significantly enhance the performance of these 

algorithms, ensuring reliable melanoma detection.
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Table 3. Representing the overall accuracy characteristics algorithms with the type of dataset classification and recognition 

Algorithms DATASET 
Accuracy (Existing) without 

Optimization 

Accuracy (Proposed) with 

Optimization Class 

TF Net [10] HAM10000 78.7 % 100 % 

LW-CNN [7] HAM10000 93.7 % 100 % 

NNet [20] HAM10000 85.6 % 100 % 

Deep CNN [1-6] HAM10000 82.4 % 100 % 

HYBRID [8] HAM10000 86.4 % 100 % 

TF Net [10] HAM10000 94.5 % 100 % 

Proposed U-NET-CNN HAM10000 91.5 % 98.5 % 

Proposed UNET-LSTM HAM10000 91.5 % 98.5 % 

Proposed U-NET-CNN ISIC-2019 87.6 % 92.1 % 

Proposed UNET-LSTM ISIC-2019 89.96 % 92.1 % 

UNET (SOA) [20] ISIC-2019 86.85 % 93.76 % 

LSTM+HYBRID (SOA) [19] ISIC-2019 89.54 % 96.15 % 

UNET (SOA) [18] HAM10000 88.85 % 97.76 % 

LSTM+HYBRID (SOA) [19] HAM10000 90.94 % 97.8 

Moving to the ISIC-2019 dataset, the proposed U-NET-

CNN and UNET-LSTM models achieve accuracies of 87.6% 

and 89.96%, respectively, Without optimization. These results 

are competitive with the state-of-the-art UNET and 

LSTM+HYBRID models, highlighting the potential of the 

proposed models for melanoma classification in different 

datasets. 

The importance of the proposed algorithms lies in their 

ability to achieve high accuracy in melanoma detection, a 

crucial aspect of early skin cancer diagnosis. The high 

accuracy is indicative of the model’s effectiveness in correctly 

classifying skin lesions and minimizing false positives and 

negatives. Such accurate diagnosis can have a significant 

impact on patient outcomes by enabling early intervention and 

treatment. 

However, there is always room for improvement. To 

enhance the proposed algorithms, further research can focus 

on several aspects. First, data augmentation techniques can be 

explored to increase the diversity and size of the training 

dataset, which may improve model generalization. Second, 

fine-tuning hyperparameters and experimenting with different 

neural network architectures may lead to improved results. 

Additionally, integrating more advanced optimization 

techniques and regularization methods can help enhance the 

model’s performance and robustness. 

In conclusion, the proposed algorithms demonstrate 

strong potential in melanoma detection with competitive 

accuracies compared to existing state-of-the-art models. Their 

importance lies in their accuracy and potential to aid in early 

skin cancer diagnosis. To further improve these algorithms, 

researchers can explore data augmentation, hyperparameter 

tuning, advanced network architectures, and optimization 

techniques. These efforts can contribute to even more accurate 

and reliable melanoma detection models, ultimately benefiting 

patients and healthcare providers. 

6. Conclusion  
In summary, the U-LSTM design with 23 layers has 

exhibited notable efficacy when compared to the lightweight 

CNN (LW-CNN) architecture, attaining an accuracy rate of 

98.5% in contrast to the 96.4% accuracy rate achieved by the 

LW-CNN. The aforementioned result highlights the improved 

performance of the U-LSTM model in capturing complex 

temporal relationships within sequential data. This 

characteristic proves to be particularly helpful in tasks that 

involve sequences, such as time series or sequences of image 

data. The depth of the U-LSTM design, in conjunction with its 

LSTM cells, facilitates its ability to capture and comprehend 

intricate correlations within the input data proficiently. The 

deep structure of the 23-layer U-LSTM architecture enables it 

to effectively capture high-level features and patterns from the 

input data, hence leading to its remarkable accuracy. However, 

it should be noted that the lightweight CNN design achieves a 

commendable accuracy of 96.2%. 

Nevertheless, it is important to acknowledge that this 

architecture functions within narrower boundaries and may 

not effectively capture the same intricate temporal or spatial 

patterns as the U-LSTM architecture. The primary objective 

of the Convolutional Neural Network (CNN) is to attain a 

harmonious equilibrium between precision and computing 

efficacy, rendering it particularly well-suited for situations 

characterized by constrained resources. It is imperative to 

acknowledge that the selection between these two 

architectural frameworks is contingent upon the precise 

demands of the application. The U-LSTM architecture may be 

the preferred choice when dealing with tasks that contain 
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sequential data and temporal dependencies despite its higher 

computational resource requirements.  

Alternatively, in scenarios where resource efficiency is of 

utmost importance and the task mostly revolves around static 

image data, the lightweight convolutional neural network 

(CNN) may be seen as a more appropriate choice.  

In conclusion, the U-LSTM architecture, with its 10-layer 

arrangement, has demonstrated superior accuracy compared to 

the lightweight CNN. The selection between these two 

architectural options should be determined by the particular 

requirements of the application, encompassing factors such as 

processing resources, data attributes, and the necessity to 

incorporate temporal dependencies.
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