
International Journal of Engineering Trends and Technology Volume 72 Issue 1, 48-55, January 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I1P105 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Impact of Machine Learning and Deep Learning Models

on Handwritten Digits and Letters Recognition (HDaLR)

Ratna Nitin Patil1, Yogita Deepak Sinkar2, Shitalkumar Adhar Rawandale3 , Varsha D. Jadhav4

1,4Department of AI & DS, Vishwakarma Institute of Information Technology, Pune, Maharashtra, India.
2Department of Computer Engineering, SVPM’s College of Engineering, Baramati, Pune, Maharashtra, India.

3Department of Mechanical Engineering, Pimpri Chinchwad College of Engineering and Technology, Maharashtra, India.

1Corresponding Author : ratna.nitin.patil@gmail.com

Received: 20 September 2023 Revised: 05 December 2023 Accepted: 12 December 2023 Published: 07 January 2024

Abstract - In numerous practical applications, such as data form entry, postal code sorting, and bank check account processing,

handwritten digit recognition is one of the crucial and difficult tasks. Because each person writes in a distinct way with varying

sizes, widths, and slopes, it can be challenging to recognise digits. Various artificial neural network-based models have been

used in the past for pattern matching. While conducting the experiment, significant differences in the use of fonts by various

authors were observed using the MNIST (Modified National Institute of Standards and Technology database) dataset as a

benchmark. In this study, we evaluated machine learning algorithms on the MNIST dataset, including Naive Bayes, K-Nearest

Neighbor, Support Vector Machine, Decision Tree, Random Forest, Artificial Neural Network, Convolution Neural Network,

and Long Short-Term Memory. The purpose of this research is to evaluate and contrast the effectiveness of deep learning and

machine learning models over handwritten letters and digits datasets. It was noted that CNN has outperformed, and the accuracy

obtained is 99.9% over the MNIST dataset and 88% over the EMNIST dataset. Every identification approach faces the crucial

challenge of extracting key features, and deep learning has been used to solve this problem with results that have been evaluated.

Keywords - Handwritten digits, MNIST, SVM, Deep learning, CNN, LSTM.

1. Introduction
Since 1980, image processing has actively pursued the

research of handwritten digit recognition; nevertheless, it only

gained widespread attention in 1998 after a comparison and

investigation of numerous handwritten digit identification

systems. This is in response to the MNIST handwritten

numerical dataset's publishing. The variety in people's writing

styles is the main obstacle to accurately identifying

handwritten numerals [1]. Machine learning and deep learning

have made significant progress since 2011 in a variety of

research fields, which include handwritten digit recognition,

disease detection, traffic prediction, face expression

identification, image categorization sentiment analysis, etc.

Deep learning and machine learning methods can be used to

recognize handwritten digits [2].The efficacy of the digit

recognizer must be improved through feature extraction. In the

field of computer vision, Handwritten Digit Recognition

(HDR) is a classic problem that has plenty of applications,

including processing bank check amounts, identifying zip

codes for mail sorting, online handwriting recognition using

tablets, and numeric entries in forms filled out by hand. The

digits written by hand are not always of the same size,

thickness/width, slope, or position relative to the margins [3]

[4].

The aim of this work is to compare the performance of

deep learning and machine learning techniques and to present

the most accurate Handwritten Digit and Letter Recognition

(HDaLR) system that can automatically extract the key

features.The MNIST dataset of images was used in the current

study to test the implementation of pattern recognition for

handwritten digits (0-9).

The identification of 9 & 8, 8 & 3, 5 & 6, 1 & 7, etc., was

the main problem with Optical Digital Recognition (ODR).

Another serious issue is that various people have different

ways of writing the same digit. For example, 9 is written by

different individuals as ‘9’, ‘Ꝯ’, ‘٩’ etc. It has been observed

that a person's distinctiveness and variety of handwriting

affect the way their digits seem and shape. Humans are able to

see, notice, and visualize their surroundings by using their

eyes and minds [5].

The foundation of computer vision is giving computers

the ability to view and analyse images, similarly to how

humans do. The purpose of this study is to assess and compare

the performance of deep learning and machine learning

models.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Ratna Nitin Patil et al. / IJETT, 72(1), 48-55, 2024

49

Fig. 1 Distribution of the MNIST data set class labels

The MNIST dataset served as the testing ground for a

variety of machine learning algorithms in this study, including

Naive Bayes, K-Nearest Neighbor (k-NN), Support Vector

Machine (SVM), Decision Tree, Random Forest, Artificial

Neural Network (ANN), Convolution Neural Network

(CNN), and Long Short-Term Memory (LSTM) [6] [7].

2. Related Work
In this section, a brief overview of earlier research on

handwritten digit recognition is discussed.

2.1. Machine Learning Models

Previous works are centered on creating new

classification models based on a specific numerical dataset.

The traditional machine learning methods used for

handwritten digit and letter recognition are examined in this

section. Among the techniques addressed are SVM, k-NN,

Random Forests (RF), Decision Trees, and Naive Bayes

Classifiers, which are not based on neural networks [8].

2.2. Deep Learning Models

The subject of pattern recognition, particularly the

recognition of handwritten characters, has been transformed

by deep learning models. The deep learning architectures

covered in this section include CNN, RNN and LSTM.

Convolutional neural networks are used to represent deep

learning models in the area of handwritten digit recognition.

Bhattacharya and Chaudhuri [9] presented a multi-level

recognition of mixed numbers in order to recognize

handwritten numbers in Bangla, English and Devanagari. In

recent years, many authors have used the deep learning model

for handwritten recognition in different languages [10] [11].

3. Methods
3.1. Dataset

A thriving research community exists for digits

recognition. Due to autonomous feature extraction, deep

learning approaches are currently being used by computer

vision researchers. The classification of handwritten numbers

uses the MNIST dataset, which is accessible on KAGGLE

[12]. The counts for the labels (Labels) in the MNIST dataset

are shown in Fig 1.

Extended MNIST (EMNIST), obtained from NIST

Special Database 19, is then transformed into a 28 x 28-pixel

image format dataset whose structure perfectly matches that

of the MNIST dataset of handwritten character digits [13].

3.2. Naïve Bayes Classifier

The Naive Bayes algorithm is a method of probabilistic

machine learning used for classification tasks. The Bayes

theorem serves as the basis for the algorithm. The key concept

is that the likelihood of an unseen sample falling into each

class is determined using the method in Equation 1. The class

with the highest likelihood is then used to forecast the label

instance based on the estimated probability. Next, depending

on the determined likelihood, the label instance is predicted

using the class with the highest probability.The predictions in

this machine learning algorithm are presumed to be

independent. The performance of the predictive model is

compromised since many of the traits of real-life instances do

not conflict.

The dataset utilized is the MNIST dataset, which has

70000 grayscale images with digits ranging from 0 to 9.

10,000 images are used for testing, and 60,000 images are

included in the training set. P(c | image) must be calculated in

order to apply Naive Bayes to find the digit as referred to by

Equation 1.

𝑃(𝐶 | 𝑖𝑚𝑎𝑔𝑒) =
𝑃(𝑖𝑚𝑎𝑔𝑒 | 𝐶)∗𝑃(𝐶)

𝑃(𝑖𝑚𝑎𝑔𝑒)
 (1)

It ignores P(image), which is constant for all digit images

and has no impact on the outcome. Then, calculate the

probabilities for each class, ranging from 0 to 9, in order to

identify the class of an image. The class for which the image

was predicted with the highest probability is the predicted

class, as given by Equation 2.

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 = arg max
𝐶𝑖𝜖 𝑀

𝑃(image| 𝐶𝑖) ∗ 𝑃(𝐶𝑖) (2)

Where M represents the total number of classes and C is

the category or class.

Class prior probability P(C) is computed by Equation 3,

𝑃(𝐶) =
𝑐𝑜𝑢𝑛𝑡(𝑖𝑚𝑎𝑔𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠)

𝑐𝑜𝑢𝑛𝑡(𝐴𝑙𝑙 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒𝑠)
 (3)

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑙𝑎𝑏𝑒𝑙=argmaxCiϵMProbabilityX1,X2,…Xn𝐶𝑖)𝑃𝑟
𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐶𝑖)

P(image | Ci) is calculated using each image's 28 by 28

pixels, which have a colour range of 0 to 255. Additionally,

each image has 255*784 possible outcomes if we map the

probability distribution, which is quite time-consuming

computationally.

Ratna Nitin Patil et al. / IJETT, 72(1), 48-55, 2024

50

Fig. 2 Decision tree model

Fig. 3 Structure of ANN

In order to make the computations simpler, it was decided

to use a gaussian distribution. The naive presumption is that

each pixel in an image exists separately from every other

image. In addition, each covariance is represented by using

simply the variance of 784 pixels, which decreases the

complexity of the problem from a matrix of size 784 * 784 to

784 alone. Equation 4 computes P(image | Ci).

𝑃(𝑖𝑚𝑎𝑔𝑒 |𝑐) =
𝑑𝑦

𝑑𝑥
∏

1

√2𝜋𝜎𝑖
2

 exp (−
𝑥𝑖− 𝜇𝑖

2∗ 𝜎𝑖
2)784

𝑖=1 (4)

Where, 𝜇𝑖 is the mean value of each ith image pixel of a

class, and 𝜎𝑖
2 is the variance of each ith image pixel of a class.

3.3. Decision Tree

 The links between features and possible outcomes are

modelled using decision trees, which have a flowchart-like

appearance. Figure 2 illustrates a decision tree with the root

node at the top and decision nodes as internal nodes. It learns

to divide data into branches based on the value of the attribute

Ratna Nitin Patil et al. / IJETT, 72(1), 48-55, 2024

51

and displays potential decision outcomes. The best attribute is

chosen for splitting the data based on Gain Ratio, Information

Gain, and Gini Index. Make that attribute a decision node and

break the dataset up into smaller subsets. As shown in Figure

2, a decision tree is created by repeatedly repeating this

process until all records belong to the same attribute value,

there are no more instances or attributes, or there are no more

attributes. It is simple to understand and possible to identify

handwritten numerals using this tree-like structure.

3.4. Random Forest

The assembling technique-based supervised machine

learning method known as random forest is particularly well-

liked and frequently applied to classification issues. A

decision tree is constructed using several subsets of data, and

the categorization result is then decided by a majority vote.

This technique produces an effective classifier from vast

datasets and is resistant to outliers.

3.5. KNN

 KNN determines the distance between the query and all

of the dataset's accessible tuples. K closest tuples are chosen

based on the computed Euclidean distance, and the label is

predicted based on the labels that are used the most frequently

choose the K closest tuples.

3.6. SVM

SVM is used for classification tasks with the aim of

identifying a maximal margin hyperplane (decision border) in

n-dimensional space (n-number of characteristics) that clearly

categorises data points. For classification in SVM, the decision

boundary is used. The Lagrangian formula, which provides a

stable and predictable performance on untested examples of

data, is a solid mathematical foundation for the margin

maximisation principle. SVM has additionally proven to

operate at the cutting edge in a variety of real-world

applications. Kernel functions (linear, nonlinear, polynomial,

gaussian, rbf, sigmoid) transform data points from the original

nonlinear input space to a high-dimensional feature space

where they are completely or almost linearly separable. The

scalar product between two locations in a common feature

dimension is what these kernel functions essentially return.

3.7. Artificial Neural Network

ANN creates a model to help computers learn similarly to

how human brains do. The three layers of connected neurons

that make up an ANN are the input layer, output layer, and

hidden layer, as mentioned in Figure 3. The input layer directs

data into the system for processing, the hidden layer uses a set

of weighted inputs to compute an outcome through an

activation function, and the output layer forecasts the

program's outcome. Input nodes are weighted based on the

significance of the attributes. Artificial neurons spread

incoming data throughout the network according to the

activation function used. Artificial neural networks come in a

variety of forms.

3.8. CNN

The classification and recognition of objects can be done

using CNN [14]. With the use of CNN, it is also able to

identify faces, people, cancers, road signs, and objects [15].

CNN was employed for Arabic handwritten digit images

(MADBase database) with the use of LeNet-5 [16].

Convolutional layers are the main constituents of CNN. After

every convolution layer, there are learnable filters (kernels).

Each filter computes the dot product to build a 2D feature map

of that filter during the forward pass by being convolved over

the width and height of the input images. The filter map is then

given to the pooling layer. Convolution and pooling layers are

alternated in the construction of the model before the fully

connected layer (FC). The FC layer classifies images based on

information collected from the preceding layers (convolution

and pooling), as shown in Figure 4.

Fig. 4 CNN Structure [17]

Ratna Nitin Patil et al. / IJETT, 72(1), 48-55, 2024

52

Fig. 5 LSTM Architecture [18]

3.9. LSTM

Due to its recurrent nature, which has numerous

applications across many areas, Recurrent Neural Networks

(RNN) provide a significant memory advantage. However,

Vanilla recurrent neural networks cannot be used in real-world

applications because of the vanishing gradient and inflating

gradient issues. Any neural network's priority is to learn, but

vanishing and exploding gradients prevent this from

happening. Backpropagation gradients build up and explode

or lessen and disappear, preventing weight adjustments and

learning. The shortcomings of RNNs are resolved by LSTM

networks [18]. A backpropagation-trained LSTM network has

three gates: forget, input, and output. Figure 5 depicts the

LSTM's structure.

4. Results and Discussion
Modern machine learning methods like Decision Tree,

Random Forest, and KNN algorithm were used in this study

to classify the MNIST dataset. Testing accuracy for decision

trees was 85.2%; for random forests, it was 94.1, and for KNN,

it was 96.9%.

Fig. 6 Confusion matrix over MNIST using Naive Bayes

Table 1. Individual accuracy of each digit (class) obtained by Naive

Bayes model

Label Accuracy %

0 91.45

1 96.66

2 87.01

3 77.98

4 66.70

5 68.64

6 91.72

7 83.14

8 75.44

9 87.90

On MNIST, the digits were classified using the Naive

Bayes technique. In order to examine the model, overall

accuracy was computed, and the overall accuracy obtained

was 80.6%. The accuracy obtained by individual classes is

shown in Table 1. Confusion Matrix of the Naïve Bayes

classifier is plotted as portrayed in Fig. 6. It is noticed that,

with the exception of classes 4 and 5, the other classes

produced better outcomes. Naive Bayes model's overall

accuracy is 80.6 percent.

The SVM model was developed for digits classification 0

– 9 on the MNIST dataset. Both linear and nonlinear SVM

were built, and the grid search technique was used for tuning

the hyperparameters. The SVM model was then adjusted to

produce the ideal values of C and gamma for the RBF kernel.

There was a 5-fold cross-validation. A testing accuracy of 91.3

percent was provided by linear SVM.

The accuracy of the nonlinear RBF kernel testing with

default parameter values was 93.4 percent. With the help of

the grid search technique, it was discovered that gamma =.001

and C = 15 achieved the maximum testing accuracy of 94.4

percent while preventing the overfitting scenario and the

confusion matrix is depicted in Fig. 7.

σ σ tanh

σ

tanh
x

+ x

x

ft
it

Ct

ht

ht
ot

Ĉt

ht-1

Ct-1

Ratna Nitin Patil et al. / IJETT, 72(1), 48-55, 2024

53

accuracy 0.9438888888888889

[[1163 0 4 1 1 2 8 6 3 0]

 [0 1389 4 2 4 0 1 9 4 0]

 [1 4 1184 14 5 1 9 30 7 5]

 [0 3 15 1263 0 14 2 23 8 3]

 [1 2 20 3 1149 0 10 10 2 21]

 [2 8 3 30 4 1064 15 9 11 3]

 [8 1 3 0 3 13 1167 23 1 0]

 [4 9 10 8 12 0 0 1255 2 30]

 [5 18 17 23 8 20 5 13 1098 10]

 [5 3 2 27 21 1 1 51 3 1161]]
Fig. 7 Confusion Matrix using SVM (Nonlinear RBF) on MNIST

In this study, we further developed the CNN model and

attempted to identify and categorize various handwritten

numbers. For this, the MNIST digit recognizer dataset was

used. The required libraries were imported, and a dataframe

object of pandas was created after reading the dataset. The

dataset was split, and 80% was used for training, while 20%

was used for testing. The images are grayscale; therefore, the

pixel values fall between 0 and 255.

In contrast to 0 to 255, CNN converges more quickly on

values between 0 and 1. Consequently, normalization of the

input data is carried out (Divide by 255). Then, a (28,28,1)

matrix is created by reshaping the array of pixel values. The

labels were encoded using just one hot encoding. To validate

the model's accuracy and generalizability, 10% of the data

from the training dataset were employed.

This will allow for cross-validation. The validation loss

during model training will show underfitting and overfitting.

The choice of the optimizer is an important part of Neural

network training. The literature revealed that RMSProp

converges more quickly and is more efficient; hence,

RMSProp was used. It was seen during the experiment that a

learning rate of 0.01 produced good effects.

To generate more images Before fitting the model,

operations including flip, rotation, zoom, and crop were

utilised. By extracting more images from the training dataset,

data was enhanced. The model was trained using Google

Colab.

The model was examined for a number of factors,

including loss, accuracy, and confusion matrix. With a batch

size of 112 tests and 30 epochs, accuracy was 99.98%. Fig. 7

shows the plotted confusion matrix for the MNIST

classification.

Data augmentation was carried out to lessen the variance.

Dropout regularisation and L2 regularisation were used to

reduce variance further. More layers were added to the

developed model to address bias-related problems.

The CNN model on MNIST is implemented as given below:

from tensorflow.keras import layers

from tensorflow.keras import models

modelmc = models.Sequential()

modelmc.add(layers.Conv2D(64,(3,3),activation='relu',

input_shape=(28,28,1)))

modelmc.add(layers.MaxPooling2D((2,2)))

modelmc.add(layers.Conv2D(128,(3,3), activation='relu'))

modelmc.add(layers.MaxPooling2D((2,2)))

modelmc.add(layers.Conv2D(128,(3,3), activation='relu'))

modelmc.add(layers.Flatten())

modelmc.add(layers.Dense(128, activation='relu'))

modelmc.add(layers.Dense(47, activation='softmax'))

modelmc.summary()

optimizer = tf.keras.optimizers.RMSprop(lr=0.001, rho=0.9,

epsilon=1e-08, decay=0.0)

Total trainable parameters are 3,75,727

epochs - 30

loss - 0.0016

training accuracy - 99.98%

validation_loss - 0.0412

validation_accuracy - 99.05%

Fig. 8 Confusion matrix using CNN on MNIST

Ratna Nitin Patil et al. / IJETT, 72(1), 48-55, 2024

54

CNN model was very efficient in MNIST dataset

classification, so it was decided to extend the model further on

the EMNIST dataset for letters and digits classification. The

model implemented on EMNIST is as follows:

from tensorflow.keras import layers

from tensorflow.keras import models

from tensorflow.keras import optimizers

modele = models.Sequential()

modele.add(layers.Conv2D(32, (3, 3), activation='relu',

input_shape=(28,28,1), padding="same"))

modele.add(layers.MaxPooling2D((2, 2)))

modele.add(layers.Conv2D(64, (3, 3), activation='relu',

padding="same"))

modele.add(layers.MaxPooling2D((2, 2)))

modele.add(layers.Conv2D(128, (3, 3), activation='relu',

padding="same"))

modele.add(layers.MaxPooling2D((2, 2)))

modele.add(layers.Conv2D(128, (3, 3), activation='relu',

padding="same"))

modele.add(layers.MaxPooling2D((2, 2)))

modele.add(layers.Flatten())

modele.add(layers.Dropout(0.5))

modele.add(layers.Dense(512, activation='relu'))

modele.add(layers.Dense(47, activation='softmax'))

modele.compile(loss='categorical_crossentropy',

optimizer = optimizers.Adam(learning_rate=1e-4), metrics=

['accuracy'])

modele.fit(train_images,train_labels, epochs=20, batch_size

= 20, validation_data = (test_images, test_labels))

Training and validation accuracy obtained by the above

CNN model was 88% and 88.1%, respectively, on EMNIST

dataset classification. It was ensured that the model was not

overfitting, as depicted in Figure 9. The training loss and

validation loss vs epochs of the developed CNN model are

depicted in Figure 10.

Fig. 9 Accuracy vs Epochs on EMNIST dataset by CNN Model

In this work, the LSTM model was also built for the

classification of digits on the MNIST dataset.

modelL= Sequential()

modelL.add(LSTM(128, input_shape=(x_train.shape[1:]),

activation='relu', return_sequences=True))

modelL.add(Dropout(0.2))

modelL.add(LSTM(128, activation='relu'))

modelL.add(Dropout(0.2))

modelL.add(Dense(32, activation='relu'))

modelL.add(Dropout(0.2))

modelL.add(Dense(10, activation='softmax'))

opt = tf.keras.optimizers.Adam(lr=1e-3, decay=1e-5)

modelL.compile(loss='sparse_categorical_crossentropy',

optimizer=opt, metrics=['accuracy'])

modelL.fit(x_train, y_train, epochs=3,

validation_data=(x_test, y_test))

Training accuracy using the above LSTM model is 94%,

and validation accuracy was 97.6% on MNIST. The LSTM

model was not extended for EMNIST letter classifications as

the accuracy obtained by the CNN model has outperformed

the accuracy obtained by LSTM on MNIST. A performance

comparison of all the mentioned algorithms on the MNIST

dataset is depicted in Table 2.

Table 2. Performance comparison of algorithms

S. No. Algorithm Dataset
Accuracy

(%)

1 Decision Tree MNIST 85.2

2 Random Forest MNIST 94.1

3 KNN MNIST 96.9

4 Naïve Bayes MNIST 80.6

5 SVM (Linear) MNIST 91.3

5 SVM (Nonlinear- RBF) MNIST 94.4

7 CNN MNIST 99.9

8 CNN EMNIST 88

9 LSTM MNIST 94

Fig. 10 Loss vs Epochs on EMNIST dataset by CNN Model

Ratna Nitin Patil et al. / IJETT, 72(1), 48-55, 2024

55

5. Conclusion
Presently, deep neural nets are widely used for image

analysis and computer vision projects. Raw pixel data of the

image is the input to deep neural networks, which

automatically extracts the features after the training phase.

Well-known machine learning algorithms like KNN, Naïve

Bayes, SVM- linear and SVM – nonlinear RBF, Decision tree,

and Random forest were employed over the MNIST dataset,

and the accuracy obtained was compared. The finding has

shown that the accuracy was enhanced using noise reduction,

resizing, and cropping in the preprocessing stage.

We have developed the HDaLR system, which can

recognize handwritten digits and was extended for the

recognition of handwritten characters. During the experiment

it has been observed that CNN has outperformed traditional

machine learning algorithms.

The work can be extended by implementing letter

recognition on real-time handwritten datasets. The models in

this work will be validated on the Hindi and Marathi datasets

in the future study.

References
[1] Farah Essam et al., “MLHandwritten Recognition: Handwritten Digit Recognition Using Machine Learning Algorithms,” Journal of

Computing and Communication, vol. 2, no. 1, pp. 9-19, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[2] Alejandro Baldominos, Yago Saez, and Pedro Isasi, “A Survey of Handwritten Character Recognition with MNIST and EMNIST,”

Applied Sciences, vol. 9, no. 15, pp. 1-16, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[3] Sardar Hasen Ali, and Maiwan Bahjat Abdulrazzaq, “A Comprehensive Overview of Handwritten Recognition Techniques: A Survey,”

Journal of Computer Science, vol. 19, no. 5, pp. 569-587, 2023. [CrossRef] [Publisher Link]

[4] Kartik Dutta et al., “Improving CNN-RNN Hybrid Networks for Handwriting Recognition,” 16th International Conference on Frontiers

in Handwriting Recognition, pp. 80-85, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[5] Oleksandr Voloshchenko, and Małgorzata Plechawska-Wójcik, “Comparison of Classical Machine Learning Algorithms in the Task of

Handwritten Digits Classification,” Journal of Computer Sciences Institute, pp. 279-286, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[6] A.C. Faul, A Concise Introduction to Machine Learning, CRC Press, 2019. [Google Scholar] [Publisher Link]

[7] Owais Mujtaba Khanday, and Samad Dadvandipour, “Analysis of Machine Learning Algorithms for Character Recognition: A Case Study

on Handwritten Digit Recognition,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 21, no. 1, pp. 574-581,

2021. [CrossRef] [Google Scholar] [Publisher Link]

[8] Birjit Gope et al., “Handwritten Digits Identification Using Mnist Database via Machine Learning Models,” IOP Conference Series:

Materials Science and Engineering, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[9] Ujjwal Bhattacharya, and Bidyut Baran Chaudhuri, “Handwritten Numeral Databases of Indian Scripts and Multistage Recognition of

Mixed Numerals,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 3, pp. 444-457, 2009. [CrossRef]

[Google Scholar] [Publisher Link]

[10] Md Zahangir Alom et al., “Handwritten Bangla Character Recognition Using the State-of-the-Art Deep Convolutional Neural Networks,”

Computational Intelligence and Neuroscience, vol. 2018, pp. 1-13, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[11] Md Shopon, Nabeel Mohammed, and Md Anowarul Abedin, “Bangla Handwritten Digit Recognition using Autoencoder and Deep

Convolutional Neural Network,” International Workshop on Computational Intelligence(IWCI), Dhaka, Bangladesh, pp. 64-68, 2016.

[CrossRef] [Google Scholar] [Publisher Link]

[12] Yann LeCun, Corinna Cortes, and J.B. Christopher, MNIST Dataset. [Online]. Available: https://www.kaggle.com/datasets/hojjatk/mnist-

dataset

[13] Gregory Cohen, Saeed Afshar, Onathan Tapson, and S.V. Andre, EMNIST. [Online]. Available:

https://www.kaggle.com/datasets/crawford/emnist

[14] Rohit Rastogi et al., “Knowledge Extraction in Digit Recognition using MNIST Dataset: Dataset: Evolution in Handwriting Analysis,”

International Journal of Knowledge Management, vol. 17, no. 4, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Savita Ahlawat et al., “Improved Handwritten Digit Recognition using Convolutional Neural Networks(CNN),” Sensors, vol. 20, no. 12,

pp. 1-18, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[16] Ahmed El-Sawy, Hazem EL-Bakry, and Mohamed Loey, “CNN for Handwritten Arabic Digits Recognition based on LeNet-5,”

Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, pp. 566-575, 2016. [CrossRef] [Google

Scholar] [Publisher Link]

[17] Krut Patel, MNIST Handwritten Digits Classification using a Convolutional Neural Network (CNN), Towards Data Science, 2023.

[Online]. Available: https://towardsdatascience.com/mnist-handwritten-digits-classification-using-a-convolutional-neural-network-cnn-

af5fafbc35e9

[18] C. Olah, Understanding LSTM Networks, 2015. [Online]. Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://doi.org/10.21608/jocc.2023.282076
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MLHandwritten+Recognition%3A+Handwritten+Digit+Recognition+using+Machine+Learning+Algorithms&btnG=
https://journals.ekb.eg/article_282076.html
https://doi.org/10.3390/app9153169
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Handwritten+Character+Recognition+with+MNIST+and+EMNIST&btnG=
https://www.mdpi.com/2076-3417/9/15/3169
https://doi.org/10.3844/jcssp.2023.569.587
https://thescipub.com/abstract/jcssp.2023.569.587
https://doi.org/10.1109/ICFHR-2018.2018.00023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+CNN-RNN+Hybrid+Networks+for+Handwriting+Recognition&btnG=
https://www.mdpi.com/2076-3417/9/15/3169
https://doi.org/10.35784/jcsi.2723
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparison+of+Classical+Machine+Learning+Algorithms+in+the+Task+of+Handwritten+Digits+Classification&btnG=
https://ph.pollub.pl/index.php/jcsi/article/view/2723
https://ph.pollub.pl/index.php/jcsi/article/view/2723
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Concise+Introduction+to+Machine+Learning&btnG=
https://www.google.co.in/books/edition/A_Concise_Introduction_to_Machine_Learni/BuGsDwAAQBAJ?hl=en&gbpv=0
https://doi.org/10.11591/ijeecs.v21.i1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Analysis+of+machine+learning+algorithms+for+character+recognition%3A+a+case+study+on+handwritten+digit+recognition&btnG=
https://pdfs.semanticscholar.org/9ca2/f4025577cd90f3818deecbd94ba6fadd08b4.pdf
https://doi.org/10.1088/1757-899X/1022/1/012108
https://scholar.google.com/scholar?q=Handwritten+Digits+Identification+Using+Mnist+Database+Via+Machine+Learning+Models&hl=en&as_sdt=0,5
https://iopscience.iop.org/article/10.1088/1757-899X/1022/1/012108/meta
https://doi.org/10.1109/TPAMI.2008.88
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Handwritten+Numeral+Databases+of+Indian+Scripts+and+Multistage+Recognition+of+Mixed+Numerals&btnG=
https://ieeexplore.ieee.org/abstract/document/4492784
https://doi.org/10.1155/2018/6747098
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Handwritten+Bangla+Character+Recognition+Using+the+State-of-the-Art+Deep+Convolutional+Neural+Networks&btnG=
https://www.hindawi.com/journals/cin/2018/6747098/
https://doi.org/10.1109/IWCI.2016.7860340
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bangla+Handwritten+Digit+Recognition+Using+Autoencoder+and+Deep+Convolutional+Neural+Network&btnG=
https://ieeexplore.ieee.org/abstract/document/7860340
https://doi.org/10.4018/IJKM.2021100103
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Knowledge+Extraction+in+Digit+Recognition+Using+MNIST+Dataset%3A+Dataset%3A+Evolution+in+Handwriting+Analysis&btnG=
https://www.igi-global.com/article/knowledge-extraction-in-digit-recognition-using-mnist-dataset/288321
https://doi.org/10.3390/s20123344
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+Handwritten+Digit+Recognition+Using+Convolutional+Neural+Networks%28CNN%29&btnG=
https://www.mdpi.com/1424-8220/20/12/3344
https://doi.org/10.1007/978-3-319-48308-5_54
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CNN+for+Handwritten+Arabic+Digits+RecognitionBased+on+LeNet-5&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=CNN+for+Handwritten+Arabic+Digits+RecognitionBased+on+LeNet-5&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-48308-5_54

