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Abstract - In numerous practical applications, such as data form entry, postal code sorting, and bank check account processing, 

handwritten digit recognition is one of the crucial and difficult tasks.  Because each person writes in a distinct way with varying 

sizes, widths, and slopes, it can be challenging to recognise digits. Various artificial neural network-based models have been 

used in the past for pattern matching. While conducting the experiment, significant differences in the use of fonts by various 

authors were observed using the MNIST (Modified National Institute of Standards and Technology database) dataset as a 

benchmark. In this study, we evaluated machine learning algorithms on the MNIST dataset, including Naive Bayes, K-Nearest 

Neighbor, Support Vector Machine, Decision Tree, Random Forest, Artificial Neural Network, Convolution Neural Network, 

and Long Short-Term Memory. The purpose of this research is to evaluate and contrast the effectiveness of deep learning and 

machine learning models over handwritten letters and digits datasets. It was noted that CNN has outperformed, and the accuracy 

obtained is 99.9% over the MNIST dataset and 88% over the EMNIST dataset. Every identification approach faces the crucial 

challenge of extracting key features, and deep learning has been used to solve this problem with results that have been evaluated. 

Keywords - Handwritten digits, MNIST, SVM, Deep learning, CNN,  LSTM. 

1. Introduction  
Since 1980, image processing has actively pursued the 

research of handwritten digit recognition; nevertheless, it only 

gained widespread attention in 1998 after a comparison and 

investigation of numerous handwritten digit identification 

systems. This is in response to the MNIST handwritten 

numerical dataset's publishing. The variety in people's writing 

styles is the main obstacle to accurately identifying 

handwritten numerals [1]. Machine learning and deep learning 

have made significant progress since 2011 in a variety of 

research fields, which include handwritten digit recognition, 

disease detection, traffic prediction, face expression 

identification, image categorization sentiment analysis, etc. 

Deep learning and machine learning methods can be used to 

recognize handwritten digits [2].The efficacy of the digit 

recognizer must be improved through feature extraction. In the 

field of computer vision, Handwritten Digit Recognition 

(HDR) is a classic problem that has plenty of applications, 

including processing bank check amounts, identifying zip 

codes for mail sorting, online handwriting recognition using 

tablets, and numeric entries in forms filled out by hand. The 

digits written by hand are not always of the same size, 

thickness/width, slope, or position relative to the margins [3] 

[4].  

The aim of this work is to compare the performance of 

deep learning and machine learning techniques and to present 

the most accurate Handwritten Digit and Letter Recognition 

(HDaLR) system that can automatically extract the key 

features.The MNIST dataset of images was used in the current 

study to test the implementation of pattern recognition for 

handwritten digits (0-9).  

The identification of 9 & 8, 8 & 3, 5 & 6, 1 & 7, etc., was 

the main problem with Optical Digital Recognition (ODR). 

Another serious issue is that various people have different 

ways of writing the same digit. For example, 9 is written by 

different individuals as ‘9’, ‘Ꝯ’, ‘٩’ etc. It has been observed 

that a person's distinctiveness and variety of handwriting 

affect the way their digits seem and shape. Humans are able to 

see, notice, and visualize their surroundings by using their 

eyes and minds [5]. 

The foundation of computer vision is giving computers 

the ability to view and analyse images, similarly to how 

humans do. The purpose of this study is to assess and compare 

the performance of deep learning and machine learning 

models.  

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Fig. 1 Distribution of the MNIST data set class labels 

The MNIST dataset served as the testing ground for a 

variety of machine learning algorithms in this study, including 

Naive Bayes, K-Nearest Neighbor (k-NN), Support Vector 

Machine (SVM), Decision Tree, Random Forest, Artificial 

Neural Network (ANN), Convolution Neural Network 

(CNN), and Long Short-Term Memory (LSTM) [6] [7].   

2. Related Work  
In this section, a brief overview of earlier research on 

handwritten digit recognition is discussed. 

2.1. Machine Learning Models 

Previous works are centered on creating new 

classification models based on a specific numerical dataset. 

The traditional machine learning methods used for 

handwritten digit and letter recognition are examined in this 

section. Among the techniques addressed are SVM, k-NN, 

Random Forests (RF), Decision Trees, and Naive Bayes 

Classifiers, which are not based on neural networks [8]. 

2.2. Deep Learning Models 

The subject of pattern recognition, particularly the 

recognition of handwritten characters, has been transformed 

by deep learning models. The deep learning architectures 

covered in this section include CNN, RNN and LSTM. 

Convolutional neural networks are used to represent deep 

learning models in the area of handwritten digit recognition. 

Bhattacharya and Chaudhuri [9] presented a multi-level 

recognition of mixed numbers in order to recognize 

handwritten numbers in Bangla, English and Devanagari.  In 

recent years, many authors have used the deep learning model 

for handwritten recognition in different languages [10] [11].  

3. Methods  
3.1. Dataset 

A thriving research community exists for digits 

recognition. Due to autonomous feature extraction, deep 

learning approaches are currently being used by computer 

vision researchers. The classification of handwritten numbers 

uses the MNIST dataset, which is accessible on KAGGLE 

[12]. The counts for the labels (Labels) in the MNIST dataset 

are shown in Fig 1. 

Extended MNIST (EMNIST), obtained from NIST 

Special Database 19, is then transformed into a 28 x 28-pixel 

image format dataset whose structure perfectly matches that 

of the MNIST dataset of handwritten character digits [13]. 

 

3.2. Naïve Bayes Classifier 

The Naive Bayes algorithm is a method of probabilistic 

machine learning used for classification tasks. The Bayes 

theorem serves as the basis for the algorithm. The key concept 

is that the likelihood of an unseen sample falling into each 

class is determined using the method in Equation 1. The class 

with the highest likelihood is then used to forecast the label 

instance based on the estimated probability. Next, depending 

on the determined likelihood, the label instance is predicted 

using the class with the highest probability.The predictions in 

this machine learning algorithm are presumed to be 

independent. The performance of the predictive model is 

compromised since many of the traits of real-life instances do 

not conflict. 

The dataset utilized is the MNIST dataset, which has 

70000 grayscale images with digits ranging from 0 to 9. 

10,000 images are used for testing, and 60,000 images are 

included in the training set. P(c | image) must be calculated in 

order to apply Naive Bayes to find the digit as referred to by 

Equation 1. 

𝑃(𝐶 | 𝑖𝑚𝑎𝑔𝑒) =  
𝑃(𝑖𝑚𝑎𝑔𝑒 | 𝐶)∗𝑃(𝐶)

𝑃(𝑖𝑚𝑎𝑔𝑒)
                  (1) 

It ignores P(image), which is constant for all digit images 

and has no impact on the outcome. Then, calculate the 

probabilities for each class, ranging from 0 to 9, in order to 

identify the class of an image. The class for which the image 

was predicted with the highest probability is the predicted 

class, as given by Equation 2. 
 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑙𝑎𝑏𝑒𝑙 = arg max
𝐶𝑖𝜖 𝑀

𝑃(image| 𝐶𝑖) ∗  𝑃(𝐶𝑖)           (2) 

Where M represents the total number of classes and C is 

the category or class.  

Class prior probability P(C) is computed by Equation 3, 

𝑃(𝐶) =  
𝑐𝑜𝑢𝑛𝑡(𝑖𝑚𝑎𝑔𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑙𝑎𝑠𝑠)

𝑐𝑜𝑢𝑛𝑡(𝐴𝑙𝑙 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒𝑠)
                     (3) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑙𝑎𝑏𝑒𝑙=argmaxCiϵMProbabilityX1,X2,…Xn𝐶𝑖)𝑃𝑟
𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐶𝑖) 

P(image | Ci) is calculated using each image's 28 by 28 

pixels, which have a colour range of 0 to 255. Additionally, 

each image has 255*784 possible outcomes if we map the 

probability distribution, which is quite time-consuming 

computationally.  
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Fig. 2 Decision tree model 

 

Fig. 3 Structure of ANN 

In order to make the computations simpler, it was decided 

to use a gaussian distribution. The naive presumption is that 

each pixel in an image exists separately from every other 

image. In addition, each covariance is represented by using 

simply the variance of 784 pixels, which decreases the 

complexity of the problem from a matrix of size 784 * 784 to 

784 alone. Equation 4 computes P(image | Ci).  

𝑃(𝑖𝑚𝑎𝑔𝑒 |𝑐) =  
𝑑𝑦

𝑑𝑥
∏

1

√2𝜋𝜎𝑖
2

 exp (−
𝑥𝑖− 𝜇𝑖

2∗ 𝜎𝑖
2 )784

𝑖=1                (4) 

Where, 𝜇𝑖 is the mean value of each ith image pixel of a 

class, and 𝜎𝑖
2 is the variance of each ith image pixel of a class. 

3.3. Decision Tree 

 The links between features and possible outcomes are 

modelled using decision trees, which have a flowchart-like 

appearance. Figure 2 illustrates a decision tree with the root 

node at the top and decision nodes as internal nodes. It learns 

to divide data into branches based on the value of the attribute 
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and displays potential decision outcomes. The best attribute is 

chosen for splitting the data based on Gain Ratio, Information 

Gain, and Gini Index. Make that attribute a decision node and 

break the dataset up into smaller subsets. As shown in Figure 

2, a decision tree is created by repeatedly repeating this 

process until all records belong to the same attribute value, 

there are no more instances or attributes, or there are no more 

attributes. It is simple to understand and possible to identify 

handwritten numerals using this tree-like structure. 

 

3.4. Random Forest                                                                                                       

The assembling technique-based supervised machine 

learning method known as random forest is particularly well-

liked and frequently applied to classification issues. A 

decision tree is constructed using several subsets of data, and 

the categorization result is then decided by a majority vote. 

This technique produces an effective classifier from vast 

datasets and is resistant to outliers.  

3.5. KNN  

 KNN determines the distance between the query and all 

of the dataset's accessible tuples. K closest tuples are chosen 

based on the computed Euclidean distance, and the label is 

predicted based on the labels that are used the most frequently 

choose the K closest tuples. 

3.6. SVM 

SVM is used for classification tasks with the aim of 

identifying a maximal margin hyperplane (decision border) in 

n-dimensional space (n-number of characteristics) that clearly 

categorises data points. For classification in SVM, the decision 

boundary is used. The Lagrangian formula, which provides a 

stable and predictable performance on untested examples of 

data, is a solid mathematical foundation for the margin 

maximisation principle. SVM has additionally proven to 

operate at the cutting edge in a variety of real-world 

applications. Kernel functions (linear, nonlinear, polynomial, 

gaussian, rbf, sigmoid) transform data points from the original 

nonlinear input space to a high-dimensional feature space 

where they are completely or almost linearly separable. The 

scalar product between two locations in a common feature 

dimension is what these kernel functions essentially return. 

3.7. Artificial Neural Network 

ANN creates a model to help computers learn similarly to 

how human brains do. The three layers of connected neurons 

that make up an ANN are the input layer, output layer, and 

hidden layer, as mentioned in Figure 3. The input layer directs 

data into the system for processing, the hidden layer uses a set 

of weighted inputs to compute an outcome through an 

activation function, and the output layer forecasts the 

program's outcome. Input nodes are weighted based on the 

significance of the attributes. Artificial neurons spread 

incoming data throughout the network according to the 

activation function used. Artificial neural networks come in a 

variety of forms. 

3.8. CNN 

The classification and recognition of objects can be done 

using CNN [14]. With the use of CNN, it is also able to 

identify faces, people, cancers, road signs, and objects [15]. 

CNN was employed for Arabic handwritten digit images 

(MADBase database) with the use of LeNet-5 [16]. 

Convolutional layers are the main constituents of CNN. After 

every convolution layer, there are learnable filters (kernels). 

Each filter computes the dot product to build a 2D feature map 

of that filter during the forward pass by being convolved over 

the width and height of the input images. The filter map is then 

given to the pooling layer. Convolution and pooling layers are 

alternated in the construction of the model before the fully 

connected layer (FC). The FC layer classifies images based on 

information collected from the preceding layers (convolution 

and pooling), as shown in Figure 4. 

 
Fig. 4 CNN Structure [17]  
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Fig. 5 LSTM Architecture [18]

3.9. LSTM 

Due to its recurrent nature, which has numerous 

applications across many areas, Recurrent Neural Networks 

(RNN) provide a significant memory advantage. However, 

Vanilla recurrent neural networks cannot be used in real-world 

applications because of the vanishing gradient and inflating 

gradient issues. Any neural network's priority is to learn, but 

vanishing and exploding gradients prevent this from 

happening. Backpropagation gradients build up and explode 

or lessen and disappear, preventing weight adjustments and 

learning. The shortcomings of RNNs are resolved by LSTM 

networks [18]. A backpropagation-trained LSTM network has 

three gates: forget, input, and output. Figure 5 depicts the 

LSTM's structure. 

4. Results and Discussion  
Modern machine learning methods like Decision Tree, 

Random Forest, and KNN algorithm were used in this study 

to classify the MNIST dataset. Testing accuracy for decision 

trees was 85.2%; for random forests, it was 94.1, and for KNN, 

it was 96.9%. 
 

 
Fig. 6 Confusion matrix over MNIST using Naive Bayes 

Table 1. Individual accuracy of each digit (class) obtained by Naive 

Bayes model 

Label Accuracy % 

0 91.45 

1 96.66 

2 87.01 

3 77.98 

4 66.70 

5 68.64 

6 91.72 

7 83.14 

8 75.44 

9 87.90 

On MNIST, the digits were classified using the Naive 

Bayes technique. In order to examine the model, overall 

accuracy was computed, and the overall accuracy obtained 

was 80.6%.  The accuracy obtained by individual classes is 

shown in  Table 1. Confusion Matrix of the Naïve Bayes 

classifier is plotted as portrayed in Fig. 6. It is noticed that, 

with the exception of classes 4 and 5, the other classes 

produced better outcomes. Naive Bayes model's overall 

accuracy is 80.6 percent. 

The SVM model was developed for digits classification 0 

– 9 on the MNIST dataset. Both linear and nonlinear SVM 

were built, and the grid search technique was used for tuning 

the hyperparameters. The SVM model was then adjusted to 

produce the ideal values of C and gamma for the RBF kernel. 

There was a 5-fold cross-validation. A testing accuracy of 91.3 

percent was provided by linear SVM. 

The accuracy of the nonlinear RBF kernel testing with 

default parameter values was 93.4 percent. With the help of 

the grid search technique, it was discovered that gamma =.001 

and C = 15 achieved the maximum testing accuracy of 94.4 

percent while preventing the overfitting scenario and the 

confusion matrix is depicted in Fig. 7. 
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accuracy 0.9438888888888889 

[ [1163 0 4 1 1 2 8 6 3 0]  

 [0 1389 4 2 4 0 1 9 4 0]  

 [1 4 1184 14 5 1 9 30 7 5]  

 [0 3 15 1263 0 14 2 23 8 3]  

 [1 2 20 3 1149 0 10 10 2 21]  

 [2 8 3 30 4 1064 15 9 11 3]  

 [8 1 3 0 3 13 1167 23 1 0]  

 [4 9 10 8 12 0 0 1255 2 30]  

 [5 18 17 23 8 20 5 13 1098 10]  

 [5 3 2 27 21 1 1 51 3 1161] ] 
Fig. 7 Confusion Matrix using SVM (Nonlinear RBF) on MNIST

In this study, we further developed the CNN model and 

attempted to identify and categorize various handwritten 

numbers. For this, the MNIST digit recognizer dataset was 

used. The required libraries were imported, and a dataframe 

object of pandas was created after reading the dataset. The 

dataset was split, and 80% was used for training, while 20% 

was used for testing. The images are grayscale; therefore, the 

pixel values fall between 0 and 255. 

In contrast to 0 to 255, CNN converges more quickly on 

values between 0 and 1. Consequently, normalization of the 

input data is carried out (Divide by 255). Then, a (28,28,1) 

matrix is created by reshaping the array of pixel values. The 

labels were encoded using just one hot encoding. To validate 

the model's accuracy and generalizability, 10% of the data 

from the training dataset were employed. 

This will allow for cross-validation. The validation loss 

during model training will show underfitting and overfitting. 

The choice of the optimizer is an important part of Neural 

network training. The literature revealed that RMSProp 

converges more quickly and is more efficient; hence, 

RMSProp was used. It was seen during the experiment that a 

learning rate of 0.01 produced good effects. 

To generate more images Before fitting the model, 

operations including flip, rotation, zoom, and crop were 

utilised. By extracting more images from the training dataset, 

data was enhanced. The model was trained using Google 

Colab.  

The model was examined for a number of factors, 

including loss, accuracy, and confusion matrix. With a batch 

size of 112 tests and 30 epochs, accuracy was 99.98%. Fig. 7 

shows the plotted confusion matrix for the MNIST 

classification. 

Data augmentation was carried out to lessen the variance. 

Dropout regularisation and L2 regularisation were used to 

reduce variance further. More layers were added to the 

developed model to address bias-related problems.  

The CNN model on MNIST is implemented as given below: 

from tensorflow.keras import layers   

from tensorflow.keras import models 

modelmc = models.Sequential()  

modelmc.add(layers.Conv2D(64,(3,3),activation='relu', 

input_shape=(28,28,1))) 

modelmc.add(layers.MaxPooling2D((2,2))) 

modelmc.add(layers.Conv2D(128,(3,3), activation='relu')) 

modelmc.add(layers.MaxPooling2D((2,2))) 

modelmc.add(layers.Conv2D(128,(3,3), activation='relu')) 

modelmc.add(layers.Flatten()) 

modelmc.add(layers.Dense(128, activation='relu')) 

modelmc.add(layers.Dense(47, activation='softmax')) 

modelmc.summary() 

optimizer = tf.keras.optimizers.RMSprop(lr=0.001, rho=0.9, 

epsilon=1e-08, decay=0.0) 

 

Total trainable parameters are 3,75,727 

epochs    - 30 

loss    - 0.0016 

training accuracy   - 99.98% 

validation_loss   - 0.0412 

validation_accuracy  - 99.05% 

 
Fig. 8 Confusion matrix using CNN on MNIST 
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CNN model was very efficient in MNIST dataset 

classification, so it was decided to extend the model further on 

the EMNIST dataset for letters and digits classification. The 

model implemented on EMNIST is as follows: 

from tensorflow.keras import layers   

from tensorflow.keras import models 

from tensorflow.keras import optimizers 

modele = models.Sequential() 

modele.add(layers.Conv2D(32, (3, 3), activation='relu', 

input_shape=(28,28,1), padding="same")) 

modele.add(layers.MaxPooling2D((2, 2))) 

modele.add(layers.Conv2D(64, (3, 3), activation='relu', 

padding="same")) 

modele.add(layers.MaxPooling2D((2, 2))) 

modele.add(layers.Conv2D(128, (3, 3), activation='relu', 

padding="same")) 

modele.add(layers.MaxPooling2D((2, 2))) 

modele.add(layers.Conv2D(128, (3, 3), activation='relu', 

padding="same")) 

modele.add(layers.MaxPooling2D((2, 2))) 

modele.add(layers.Flatten()) 

modele.add(layers.Dropout(0.5)) 

modele.add(layers.Dense(512, activation='relu')) 

modele.add(layers.Dense(47, activation='softmax')) 

modele.compile(loss='categorical_crossentropy', 

optimizer = optimizers.Adam(learning_rate=1e-4), metrics= 

['accuracy']) 

modele.fit(train_images,train_labels, epochs=20, batch_size 

= 20, validation_data = (test_images, test_labels)) 

Training and validation accuracy obtained by the above 

CNN model was 88% and 88.1%, respectively, on EMNIST 

dataset classification. It was ensured that the model was not 

overfitting, as depicted in Figure 9. The training loss and 

validation loss vs epochs of the developed CNN model are 

depicted in Figure 10.  

 
Fig. 9 Accuracy vs Epochs on EMNIST dataset by CNN Model 

In this work, the LSTM model was also built for the 

classification of digits on the MNIST dataset.  

modelL= Sequential() 

modelL.add(LSTM(128, input_shape=(x_train.shape[1:]), 

activation='relu', return_sequences=True)) 

modelL.add(Dropout(0.2)) 

modelL.add(LSTM(128, activation='relu')) 

modelL.add(Dropout(0.2)) 

modelL.add(Dense(32, activation='relu')) 

modelL.add(Dropout(0.2)) 

modelL.add(Dense(10, activation='softmax')) 

opt = tf.keras.optimizers.Adam(lr=1e-3, decay=1e-5) 

modelL.compile(loss='sparse_categorical_crossentropy', 

optimizer=opt, metrics=['accuracy']) 

modelL.fit(x_train, y_train, epochs=3, 

validation_data=(x_test, y_test)) 

Training accuracy using the above LSTM model is 94%, 

and validation accuracy was 97.6% on MNIST. The LSTM 

model was not extended for EMNIST letter classifications as 

the accuracy obtained by the CNN model has outperformed 

the accuracy obtained by LSTM on MNIST. A performance 

comparison of all the mentioned algorithms on the MNIST 

dataset is depicted in Table 2. 
 

Table 2. Performance comparison of algorithms 

S. No. Algorithm Dataset 
Accuracy  

(%) 

1 Decision Tree MNIST 85.2 

2 Random Forest MNIST 94.1 

3 KNN MNIST 96.9 

4 Naïve Bayes MNIST 80.6 

5 SVM (Linear) MNIST 91.3 

5 SVM (Nonlinear- RBF) MNIST 94.4 

7 CNN MNIST 99.9 

8 CNN EMNIST 88 

9 LSTM MNIST 94 

 

 
Fig. 10 Loss vs Epochs on EMNIST dataset by CNN Model 
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5. Conclusion  
Presently, deep neural nets are widely used for image 

analysis and computer vision projects. Raw pixel data of the 

image is the input to deep neural networks, which 

automatically extracts the features after the training phase. 

Well-known machine learning algorithms like KNN, Naïve 

Bayes, SVM- linear and SVM – nonlinear RBF, Decision tree, 

and Random forest were employed over the MNIST dataset, 

and the accuracy obtained was compared. The finding has 

shown that the accuracy was enhanced using noise reduction, 

resizing, and cropping in the preprocessing stage.  

We have developed the HDaLR system, which can 

recognize handwritten digits and was extended for the 

recognition of handwritten characters. During the experiment 

it has been observed that CNN has outperformed traditional 

machine learning algorithms.  

The work can be extended by implementing letter 

recognition on real-time handwritten datasets. The models in 

this work will be validated on the Hindi and Marathi datasets 

in the future study.
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