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Abstract - In the past few years, the prediction of concentration in groundwater has received top emphasis in research on 

water resource management and pollution control. Therefore, the objective of the current research is to employ data mining 

techniques like the Random Forest (RF) methodology to determine the susceptibility zones of coastal districts in eastern 

India. Utilizing multi-collinearity analysis, fifteen conditioning parameters have been determined, and the association rule 

mining approach was used to determine the relative importance in order to create a groundwater concentration susceptibility 

map. To prepare the inventory dataset and related modeling purposes, the four K-Fold Cross Validation (CV) technique’s 

resampling approach was applied. For assessing the effectiveness of all utilized models, seven statistical methodologies 

comprising receiver operating characteristics-area under curve (ROC-AUC) were employed. The study’s findings indicated 

that boosting is the methodology that performs best for defining groundwater concentration susceptibility maps (GNCSMs) 

at the regional level. The results guarantee that the RF model is more effective compared to the boosting and bagging 

approach. 
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1. Introduction 
One of the most widely available sources of pure water 

in the globe is groundwater. It can be used for a variety of 

domestic tasks, including drinking, manufacturing, 

irrigation, and other functions, but lately, overuse and 

limited water supplies have made it scarce. It is a reality that 

a significant portion of the global population, at least one-

third of them, depends on groundwater for their daily needs 

in addition to drinking water. Groundwater availability has 

dramatically declined over the past few decades in tandem 

with population growth, and eventually, human activity has 

also contributed to declining water quality (Tyagi et al., 

2013). According to a study, 780 million people worldwide 

do not have access to clean drinking water. However, 

groundwater contamination is now a significant barrier to 

regional sustainability and ecological stability (Güler et al., 

2013; Wen et al., 2019). Due to agronomic practices, coastal 

groundwater is currently extremely vulnerable to metal 

pollution, nitrate contamination, salt intrusion, 

overexploitation, and contamination (A. R. Md. T. Islam et 

al., 2021). As the most oxidized chemical form of nitrogen 

in the nitrogen cycle, nitrate is a global problem due to 

groundwater pollution (Burow et al., 2010; Re et al., 2017). 

Nitrate is also a component of the nitrogen cycle. Due to its 

frequent occurrence in various countries across the world, 

including Africa (Talma and A, 2006), America (Power and 

Schepers, 1989), Europe (Strebel et al., 1989), Australia 

(Thorburn et al., 2003), and several developing Asian 

countries, this phenomenon has recently attracted a lot of 

attention (Chica-Olmo et al., 2014). Through rainwater 

infiltration, applied irrigation, excessive use of nitrogen 

fertilizer minerals in farming, and diffusion of poor-quality 

groundwater in several regions, this contaminant moves 

towards the groundwater zone. It poses an immediate risk to 

human health (Katsoulos et al., 2015). The United States 

Geological Survey (USGS, 2000) states that contamination 

resulting from water and land use can either be confined 

(point source) or widespread (non-point source). In addition 

to agricultural practices, other factors contributing to 

groundwater nitrate concentration include animal dung, 

industrial effluent, and ineffective sewage systems (Hansen 

et al., 2017). The “cumulative effect” of animal leftovers 

used as fertilizer, which significantly seep towards subsoil 

through irrigation or rainfall and contaminate the shallow 

aquifer groundwater, is discussed by Baker (1992) and Liu 

et al. (2005). Because coastal locations are closer to sea level 

than central areas, which are at mid- and high altitudes, the 

groundwater level there is shallower (Chang, 2014; 

Hagedorn et al., 2011). Thus, in coastal India, nitrate 
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contamination has been steadily rising daily, and this is the 

only supply of drinking water in the area (Khan et al., 2021; 

Mondal et al., 2008; Saranya et al., 2011). As per the 

findings of Townsend et al. (2003), nitrate has been 

identified as the predominant contaminant in groundwater 

since 1970. The EU Council Directive (91/676/EEC) 

safeguards waters against pollution caused by agricultural 

nitrate. The WHO (2017) recommended that the tolerable 

threshold value of nitrate in groundwater be fixed at 50 mg/l. 

If this value is exceeded, there are several negative effects 

on human health, including methemoglobinemia, which is 

commonly known as “blue baby syndrome” in infants. 

 

Furthermore, it is a known fact that a nitrate 

concentration of less than 10 mg/l is deemed acceptable for 

human consumption. For this reason, measuring the nitrate 

content of underground drinkable water is essential for both 

supply and sustainable water management (Hansen et al., 

2017; Voutchkova et al., 2021). According to Lawson 

(2011), one can raise their standard of living by enhancing 

the availability of safe water and the quality of their drinking 

water. 

 

Groundwater is generally one of the significant sources 

of the populations’ daily water requirements; however, it is 

contaminated by pollutants, including such nitrate, that 

penetrate through into the soil with water. Groundwater 

vulnerabilities and contaminants are serious concerns, 

particularly in densely populated regions, and necessitate 

careful consideration. In addition, to provide suggestions for 

agricultural systems movements, essential variables 

abstracted from remotely sensed Normalized Difference 

Vegetation Index time series (NDVI) have always been 

added to the database as an embedded technique, the feature 

significance acquired from RF, as well as CART, was 

implemented [1]. 

 

Whereas measuring the uncertainty of algorithms 

employed to estimate nitrate pollution from groundwater 

seems critical in groundwater conservation, it has primarily 

remained unrecognized. This problem prompts this research 

to investigate the prediction uncertainty of Machine 

Learning (ML) methods in this domain of investigation 

employing two alternative residual uncertainty approaches: 

Quantile Regression (QR) as well as uncertainty estimation 

relying on local errors as well as clustering. Artificial Neural 

Networks (ANN) and Support Vector Machines 

(SVM) were examined for their usefulness in forecasting 

contamination concentrations. The performance of the 

models is measured using a variety of indicators, both 

sensitive and insensitive to accuracy. Finally, the research 

assesses the relevance of the features by employing Shapley 

values to continuously rank features and provide model 

interpretability [2]. 

 

Assessing the uncertainty of ML approaches deployed 

to spatially simulate groundwater-nitrate pollution allows 

managers to make better risk-based decisions, increasing the 

reliability as well as the credibility of groundwater-nitrate 

predictions [3]. For modeling and validation, 109 nitrate 

concentration data points were employed. The efficacy of 

the four techniques was quantified using the ROC-AUC 

Curve. The results also demonstrate that integrating eight 

new components to the DRASTIC (Depth to water, net 

Recharge, Aquifer media, Soil media, Topography, Impact 

of vadose zone and Hydraulic Conductivity) improved the 

predictability of the Weights-of-Evidence (WOE) model, as 

the AUC value improved to 0.91. Gross replenishment is the 

utmost powerful influencing factor to groundwater 

vulnerability in the research area [4]. The aims and 

objectives are to (1) analyze the effectiveness of two 

Artificial Intelligence (AI) methodologies, notably ANN 

and SVM, in nitrate concentration modeling in groundwater 

using sparse data and (2) examine the consequence of data 

clustering as the pre-modeling strategy on the effectiveness 

of the advanced configurations [5]. 

 

The nitrate contamination map was developed using 

data of nitrate concentration from prior research. To assess 

the likelihood of groundwater contamination, three Machine 

Learning (ML) approaches have been utilized: SVM, MDA 

as well as Boosted Regression Trees (BRT). Furthermore, 

employing the ensemble modeling methodology, 

groundwater contamination probability maps have been 

generated. The models were validated and calibrated 

employing the AUC approach, with a minimal AUC 

threshold of around 80% attained. The algorithms’ accuracy 

has been estimated to be in the 0.83-0.87 level [6]. 

 

Due to the scarcity of hydrogeological data, researchers 

are applying mathematical methodologies to increase the 

robustness of current techniques for evaluating the 

quantitative susceptibility of groundwater. The hybrid PSO-

GA approach is a successful optimization algorithm that 

combines the benefits of Particle Swarm Optimization 

(PSO) as well as Genetic Algorithm (GA) while minimizing 

their drawbacks. The PSO-GA optimization technique is 

used to optimize the DRASTIC weighting system [7]. 

 

However, the instability of this measure is due to 

intrinsic flaws such as weight and rating assignment bias. 

The Stepwise Weight Assessment Ratio Analysis has been 

suggested as a novel DRASTIC adjustment utilizing a 

newly established Multi-Criteria Decision-Making 

(MCDM) strategy to modify the rating range; additionally, 

the Entropy, as well as GA methods, were used to change 

the relative weights of DRASTIC parameters [6, 8, 9]. 

Outputs from formerly physical-relied Central Valley 

models were used as predictor variables in the novel 

technique. According to three-dimensional visualization, 

nitrate forecasts are dependent on the likelihood of anoxic 

circumstances and other parameters, and nitrate estimates 

typically diminish with increased groundwater age [21-25]. 

 

The DRASTIC approach was used to develop a 

groundwater vulnerability map. The nitrate contamination 

map had been developed using nitrate concentration data 

from a prior investigation. To assess the likelihood of 

groundwater contamination, three Machine Learning (ML) 

models were used: SVM, MDA and BRT. Additionally, 
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using the ensemble modeling methodology, groundwater 

contamination probability maps were created. The models’ 

accuracy was determined to being at the level of 0.82-0.87 

[10, 26-29]. 

The contribution of the paper includes using the 

associative rule mining algorithm with the RF classification 

approach for nitrate level prediction in groundwater. The 

paper is organized as follows: Section 2 explains the related 

survey, Section 3 shows the proposed methodology, Section 

4 shows the outcomes and discussions, and the paper 

concludes in Section 5. 

 

2. Related Works 
To create data sets for the validation of the RF model, 

several environmental parameters were compiled using 

remote sensing and Geographic Information System (GIS) 

approaches. The model performance was assessed using 

various parameters. These measurements show that the RF 

model for predicting groundwater was successful. The 

elevation of the water level was found to have the greatest 

relative influence on groundwater, according to the model’s 

calculations of the relative importance of the predictor 

variables. He et al.’s [11] methodology offers a method for 

integrating many environmental elements into groundwater 

quality studies, which is important for long-term 

groundwater management in the Yinchuan Region. The 

development of an ANN model for the prediction of content 

in groundwater has been attempted by Wagh et al. [12]. The 

research region is located between latitude 19°55’:20°25’N 

and longitude 73°55:74°15’E. One of the Godavari’s 

tributaries, the river Kadava, rises in the Sahyadri Hills and 

flows from the northwest to the southeast. According to 

physicochemical findings, in both seasons, 67.50% and 75% 

of groundwater samples had 𝑁𝑂3 concentrations that were 

higher than the Bureau of Indian Standards (BIS) permitted 

limit (>45 mg/L). To model groundwater contamination, 

Alkindi et al. [13] used Bayesian approaches like the 

Bayesian generalized linear model (BGLM). Predictive 

modelling has used eleven conditioning factors as input 

parameters. The findings demonstrated that all of the 

Bayesian models utilized in this investigation were capable 

of simulating groundwater, with the BART model having 

the highest efficiency (R2 = 0.83). 

 

To create the first maps of groundwater pollution, 

Javidan et al. [14] investigated three multilayer Markov 

random-fields models. As a starting point model, RF was 

also applied. The performance characteristics of the models 

were evaluated using a number of cut-off-independent and 

cut-off-dependent evaluation criteria. In terms of producing 

maps of groundwater contamination, validation findings 

demonstrate that the conditional mixed MRF performed 

better than the other models. The main cause of 

contamination of groundwater is now agricultural 

operations. El Amri et al. [15] analyze the nitrate 

concentrations in a shallow aquifer, pinpoint the causes that 

can be attributed to them, and forecast future levels using 

Autoregressive Integrated Moving Averages (ARIMA) and 

ANN models. The findings revealed that levels in the 

pumping well are located throughout the plain, ranging 

from17 𝑡𝑜 521 𝑚𝑔 𝐿−1. 67% of the monitoring sites in total 

are significantly over the 50 mg L−1 as per the standard 

guideline threshold. Positive correlations exist between 

groundwater concentration and the major significant natural 

parameters, including land, soil texture, fertilizer 

application rates, groundwater table and livestock waste 

disposal. The ANN model demonstrated a good fitting 

among measured and simulated outcomes. 

 

In order to estimate the content in the distribution 

system, Jamei et al. [16] created an accurate hybrid Boruta 

RF- Whale Optimization Algorithm (WOA) combined with 

an ANN. In order to assess the robustness of the WOA-ANN 

model for pattern prediction, kernel functions and multiple 

training strategies are applied as standalone validation 

models in combination with Support Vector Regression 

(SVR) and ANN techniques. The technique makes use of 11 

variables that were taken from the experimental 

investigation and organized optimally as combinations of 5 

input variables using regression and BRF Feature Selection 

analyses. The WOA-ANN model can be best optimized 

using the BRF-FS, according to the statistical and diagnostic 

assessments. With the best metrics (𝑅 = 0.962, 𝑅𝑀𝑆𝐸 =
0.029 𝑚𝑔/𝐿, 𝑀𝐴𝐸 = 0.024, 𝑎𝑛𝑑 𝑈 = 0.056) and a 30% 

increase in accuracy over the ANN, the suggested method 

was successful. 

 

According to Di Nunno et al. [17], Nonlinear 

Autoregressive Neural Networks with exogenous inputs can 

produce precise models to forecast + nitrite concentrations 

in rivers. The Raccoon River and the Susquehanna River in 

the United States were used as case studies. Exogenous 

inputs included water temperature, water discharge, and 

specific conductance and dissolved oxygen. It was also 

determined how sensitive the forecasting was to variations 

in the time series length and exogenous input parameters. In 

order to assess the vulnerability in contamination of 

groundwater at a -contaminated area, Elzain et al. [18] 

compare the three ANFIS (the adaptive neuro-fuzzy 

inference system) with methodologies for evolutionary 

heuristics optimization like differential evolution algorithm 

(DE), GA, and PSO.  

 

The South Korean city of Miryang was chosen for the 

study because it had both rural and urban functions and had 

a high level of contamination. To provide a sustainable and 

hospitable green environment, Hmoud et al. [19] devised an 

effective operation for monitoring drinking water. In this 

paper, the Water Quality Index (WQI) was predicted using 

the ANFIS algorithm. Feed Forward Neural Networks 

(FFNN) and K-nearest neighbours were used to categorize 

water quality. Although the dataset contains eight important 

parameters, only seven were found to have significant 

values. These statistical factors were used to build the 

suggested methodology. According to prediction findings, 

the ANFIS model was superior for predicting WQI values. 

However, for classifying water quality, the FFNN algorithm 

had the best accuracy (100%) (WQC). 
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Additionally, the FFNN model demonstrated higher 

resilience in classifying the WQC, whereas the ANFIS 

model correctly predicted WQI. In Andalusia, Spain, 

Cardenas-Martinez et al. [20] examined the effectiveness of 

the RF ML algorithm in conjunction with pollution 

prediction Feature Selection (FS) methods in Nitrate 

Vulnerable Zone (NVZ) groundwater sources over time and 

using updated environmental features. In an effort to make 

this methodology transferable to other places, a set of forty-

four variables that are not intrinsic to groundwater bodies 

are to serve as the forecasters of the surroundings. The 

analysis of seasonal and inter-annual fluctuations in 

pollution also included additional dynamic variables arising 

from weather and livestock effluents. The predictive 

modelling evaluated changes in the likelihood that 

groundwater content would exceed 50 mg/L. 

 

Subodh Chandra Pal et al. Numerous factors, such as 

wastewater, human activity, agriculture, and complex geo-

hydrological parameters, contribute to the concentration of 

nitrate in subsurface water. Nitrate is also widely present in 

the shallow aquifer in coastal locations. For this reason, 

GNCSM is a useful strategy for managing the groundwater 

supply in coastal areas. In this work, forecast the nitrate 

concentration in groundwater in coastal locations using 

potential data-mining algorithms, such as boosting, bagging, 

and RF. 

 

K.M. Ransom et al. In many places in the United States, 

groundwater is a significant supply of drinking water, and 

nitrate contamination is a cause for concern. Extreme 

gradient boosting, or XGB, is a three-dimensional machine 

learning model that was used to forecast nitrate 

concentrations for home and public supply zones throughout 

the continental United States (CONUS). Each zone has a 

different depth. The model correctly reproduces the 

distribution of low (≤1 mg/L) and high values (>10 mg/L) 

for hydrogeologic regions and predicts nitrate 

concentrations at the national scale (training R2 was 0.83 

and hold-out R2 was 0.49). High nitrate concentrations 

affect only a small percentage (~1%) of the CONUS overall, 

with exceedances primarily seen in the Interior. 

Furthermore, high nitrate concentrations in the Interior 

Permian Secondary Hydrogeologic Region are identified by 

the model, which was not seen in earlier national studies. 

This work demonstrates that XGB is a valuable instrument 

for mapping groundwater quality at both regional and 

continental dimensions. 

 

The drivers of anticipated nitrate concentrations at 

national and regional sizes were identified using the recently 

established SHAP technique (Lundberg and Lee, 2017). 

Nationally, well depth, climate, soils, and hydrology are the 

main factors influencing nitrate concentrations, which are 

often less than 1 mg/L. Nominal sources of nitrogen, other 

from land use proxy, were included in the top ten. The 

Piedmont and Blue Ridge carbonate-rock (PBRC) Principal 

Aquifer’s high nitrate grid cells were subjected to SHAP 

study at the regional level. The main causes in the PBRC 

where the expected nitrate is expected to be higher than 10 

mg/L were agricultural sources of nitrogen and elements 

that facilitate nitrogen transport. Analysis of SHAP data 

shows that black-box machine learning models are not 

necessary. 

 

Aayush Bhattarai et al. Nine distinct machine learning 

algorithms were tested for their ability to predict nitrate and 

total phosphorus concentration for various types of 

watersheds: LR, F-SVM, M-SVM, kNN, RF, ANN, RT-

BO, ensemble-BO, and GPR-BO. To begin with, the C-Q 

relationship for each watershed was examined in order to 

see how the kind of watershed affected the nutrient 

concentration prediction. In the urban Cuyahoga watershed, 

the nitrate concentration rose as stream flow increased, 

whereas in the rural and woodland watersheds, it diluted. 

Similarly, regardless of the type of watershed, the overall 

phosphorus concentration rose with stream flow. 

 

The land-use distribution had an impact on the model 

performance for all strategies when it came to nitrate 

concentration prediction. Because nitrate concentrations in 

urban watersheds are regular and predictable, stream flow 

and month of the year are used as independent variables in 

more accurate modelling. Similarly, compared to the 

forested Grand watershed, ML models were more accurate 

in predicting the nitrate concentration in the agricultural 

watershed (Maumee, Raisin, and Sandusky). When it came 

to the 𝑅2 for the agricultural and urban watersheds, the ANN 

fared better than other ML models. Conversely, RT-BO 

performed better than other ML models for the wooded 

Grand watershed. 

 

Similarly, for every kind of watershed, the Bayesian 

optimized RT, ensemble, and GPR continuously produced 

good results. Increasing stream flow in agricultural and 

wooded watersheds may cause more soil erosion, which in 

turn may raise the concentration of particulate phosphorus 

in the water column. Thus, with stream flow, total 

suspended solids, and month of the year as independent 

variables, the model predictability was higher for 

agricultural and forested watersheds in predicting 

phosphorus concentration. On the other hand, point sources 

like wastewater treatment facilities are the primary source 

of phosphorus inputs in an urban watershed. As a result, the 

model’s predictability of phosphorus content was somewhat 

compromised. In terms of the 𝑅2 for the test data, the ANN 

seems to perform better than other ML models for the urban 

Cuyahoga watershed, while the produced ML models 

underfitted the training dataset. In contrast, when it came to 

forecasting the total phosphorus concentration for the 

agricultural and wooded watershed, ensemble-BO and M-

SVM fared better than other ML models. 

 

2.1. Review Literature 

The solution to food production in the early 20th 

century to meet the demands of the world’s rapidly 

expanding population had already been shown to be a 

significant threat to water resources by the late 20th century. 

The intense use of fertilizers in agriculture is mostly to 

blame for the paradoxical truth that, in order to meet the 

https://sciprofiles.com/profile/1770280
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demand for food, we are severely stressing groundwater—

the most important and valuable drinking water resource—

in the process. Global agricultural output increased 

dramatically as a result of the Haber-Bosch process’s 

discovery, which made it easier to produce fertilizer 

industrially (Erisman et al., 2008). Interference with the 

nitrogen cycle can have detrimental effects on human health 

as well as extensive negative environmental effects, 

including water pollution (Erisman et al., 2013; van 

Grinsven et al., 2006; Vitousek et al., 1997). The EU Water 

Framework Directive 2000/60/EC was put into effect as a 

result of several water-related directives being passed in the 

middle of the 1970s when water contamination started to 

become a public concern (Kallis and Butler, 2001). In order 

to provide integrated protection and preserve or return water 

systems to their “good status,” the Water Framework 

Directive was developed. The Nitrates Directive 

91/676/EEC, which is a crucial component of the Water 

Framework Directive, serves as a safeguard for water bodies 

against the demands of agriculture. Effective mitigation 

strategies are needed to lower nitrogen inputs to surface and 

groundwater in order to fulfill the high requirements set by 

the Water Framework Directive (WHO’s maximum 

contamination level: 50 mg NO -/l or 10 mg NO -N/l in 

drinking water). 

 

3. Proposed Methodology 
3.1. Machine Learning Algorithms 

The standard technique for estimating the 

concentrations of phosphorus and nitrate in all watersheds 

is Linear Regression (LR). 

 
3.1.1. Linear Regression (LR) 

LR uses a linear equation, or a first-order polynomial 

equation, to fit the data. In the case of data with linear 

relations, this approach is helpful. Mathematically, the 

standard linear regression model looks like this: 

�̂�=∑ (aX+b)             (1) 

Where the input and output variables are denoted, 

respectively, by 𝑋 and �̂�.Using the actual and anticipated 

data, the least-squares approach is used to fit the model 

coefficients (𝑎 and 𝑏). 

 

3.1.2. k Nearest Neighbors (kNN) 

kNN Models rely on the proximity of data points 

wherein characteristics and training patterns are used to 

classify a new object. In this case, the average or the 

designated number of nearby values is the output or the 

predicted value. The value k is used to characterize the given 

number. The formula for kNN is: 

• Initialize k; 

• Determine the query example’s Euclidean distance 

from the labeled examples. 

d(𝑥,𝑥′) = √((𝑥1-𝑥1′)2 +(𝑥2-𝑥2′)2  + ………..+ (𝑥n-𝑥n′)2)   

(2) 

Where, (𝑥,𝑥′) is the sample point; 

• Sort the labeled instances in order of smallest to largest 

• Use cross-validation to determine the ideal number k of 

nearest neighbors based on RMSE 

• Use kNN to compute an inverse weighted average. 

 

3.1.3. Regression Tree (RT) 

Recursive partitioning is the foundation of an RT 

method for nonlinear regression. The practice of dividing 

the data into more manageable segments and then dividing 

each partition into even smaller sub-divisions is known as 

recursive partitioning. Recursive partitioning is represented 

by RT as a tree, where each terminal node is a partition cell. 

Although RT is easy to model and see, ensembles were 

created because a single-tree model was unstable. 

3.1.4. Ensemble 

To create a more accurate RT model, ensemble 

approaches integrate a number of weak RT models. The 

ensemble uses distinct samples from the original data set 

and combines their results to produce numerous diverse 

regression models. In this work, two different Ensemble 

methods are used: bagging and least-squares boosting or 

LSBoost. 

Bagging uses random sampling with replacement to 

produce a large number of training sets. Every data set is 

subjected to the RT method, and the models’ average is then 

calculated to determine the predictions for the data that have 

not yet been observed. 

In Boosting, records with poor prediction in earlier 

models are the focus of successive model pieces of training, 

which produces a more accurate model. After completion, a 

weighted majority vote combines all of the predictors. The 

difference between the observed response and the total 

prediction of all learners that the ensemble has previously 

grown in LSBoost is used to fit a new learner. 

3.1.5. Random Forest (RF) 

An RF is another kind of ensemble that was used in this 

research. By using a majority vote, RF creates several 

decision trees that are then used to categorize fresh 

instances. Every decision tree node uses a portion of the 

original set of randomly chosen attributes. Likewise, every 

tree, including bagging, uses a distinct bootstrap sample 

data. There is a possibility that RF will generate hundreds or 

maybe thousands of trees. Ten trees are chosen for this 

assignment in order to create a forest. 

3.1.6. Artificial Neural Network (ANN) 

An ANN solves a difficult problem by utilizing 

connected units between the input and output layers. In the 

current work, MLP is one of the ANN topologies used. It 

differs greatly from polynomial regression in that the output 

layer employs an activation unit, and the connected unit is 

typically a simple linear equation. Similar to a logical 

switch, the activation unit is only turned on when certain 

threshold values are reached. Typical categories of 

activation functions include Sigmoid and ReLu. This study 

uses ReLu activation.  
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Typical MLP with a hidden layer can be 

mathematically modeled as follows: 

yi =∑j
n wi,jxj + b                    (3) 

Where x is the input, w is the weight, and b is the bias 

in the hidden layer. 

3.1.7. Support Vector Machine (SVM) 

Complex relations, which are difficult for lower-order 

polynomial equations to adequately express, can be 

modeled with the help of SVM-based regression models. 

Pattern recognition, classification, regression, and 

prediction issues are all addressed by SVM, a potent 

supervised learning technique with outstanding 

generalization capabilities. The equation is used to 

determine the expected value: 

�̂�=∑n
i=1K(Xi  , X0)( 𝛼i-𝛼i

*)                    (4) 

Where 𝛼𝑖 and 𝛼∗𝑖* are the kernel function, and (𝑋𝑖, 
𝑋0) are the support vectors. To apply its regression learner, 

the SVM function can be combined with several kernel 

functions (KF). The Gaussian Kernel Function (GKF), 

which is defined as follows, is frequently applied to SVM 

classification and regression. 

K(Xi   , X0)=exp( (-||xi- xj||2) /(2 ) )                  (5) 

Both medium and fine Gaussian SVMs (F- and M-

SVMs) are employed in this work. The definition of medium 

and fine Gaussian depends on how thin the Gaussian 

function being applied is. 

 

The objective of the current research is to employ data 

mining techniques like the Random Forest (RF) 

methodology to determine the susceptibility zones of coastal 

districts in eastern India. The fifteen conditioning 

parameters have been determined, and the association rule 

mining approach was used to determine the relative 

importance in order to create a groundwater concentration 

susceptibility map. The workflow is shown in Fig.1 

 
Fig. 1 Workflow of the proposed method 

3.2. Spatial Association Rule Mining  

Applying association rule mining (ARM) to spatial 

datasets is known as spatial association rule mining. A 

geographic association rule is in the manner of 𝑃1 ∧  𝑃2 ∧
 . . .∧  𝑃𝑚 →  𝑄1 ∧  𝑄2 ∧ . . .∧  𝑄𝑛 (sup% and con%). It 

indicates a relationship of association between a group of 

predicates 𝑃𝑎 (𝑎 =  1, . . . , 𝑚) and 𝑄𝑗 (𝑗 =  1, . . . , 𝑛), each 

of which contains at least one spatial predicate. Indicating a 

spatial orientation or representing topological relationships 

between spatial objects (such as intersecting or containing) 

are two examples of spatial predicates (e.g., north, left). The 

number of transactions that involve both the consequent and 

the antecedent of the rule is measured by the support of the 

rule (sup%). The number of transactions that satisfy the 

consequent and the antecedent of the rule are indicated by 

the confidence of the rule (con%). 

 
Fig. 2 Steps in associative rule mining 

 

1. Fix “items” as well as “transactions” for spatial 

datasets.  

2. Describe all the itemsets that meet the minimal support 

criterion in the frequent item set generating step. 

3. Create rules from often occurring itemsets that meet the 

minimal confidence requirement. 

 

In Subtasks 2 and 3, apriori-style association mining 

techniques are frequently employed. Objects must be 

described by categorical qualities in order for these 

algorithms to function. Continuous characteristics must be 

discretized in Subtask spatial space as a result. It uses the 

same transaction model in our work. The enormous number 

of created patterns presents a difficult challenge for spatial 

ARM, particularly in real-world uses. Many relationships 

are either explicitly reflected in geographic databases or 

already have established geographic dependencies. For 

instance, it is a well-known and uninteresting relationship 

that petrol stations are typically located. 

 

3.3. Data Collection and Data Pre-processing  

The Texas Water Development Board, the state 

organization in charge of statewide water planning, 

maintains the Texas Ground Water Database (GWDB), 

from which the datasets used in this study were taken. Over 
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the past 30 years, the GWDB has tracked and examined 

Nitrate content. In extremely high concentrations, it is toxic. 

Even at low levels, prolonged exposure to Nitrate can raise 

the risk of developing cancer. Nitrate comes from both 

natural and artificial sources, including mine drainage, 

hydrothermal leaching of Nitrate-containing minerals or 

rocks, mine tailings, insecticides, and biocides. The World 

Health Organization has identified Nitrate as one of the 

major criteria for assessing the quality and safety of drinking 

water in the United States, Mexico, Thailand, Hungary, 

India, Chile, Ghana, Bangladesh, China, and Argentina. 

Datasets must be cleaned in order to address issues like 

inconsistent data, missing values, and duplicate entries due 

to changes in GWDB’s data collection and management 

standards and practices over time. For each water well, the 

resulting Nitrate spatial dataset contains class labels (CL), 

nonspatial characteristics (A), and spatial attributes (S). 

Some spatial information, including the zone, river basin, 

longitude, and latitude, are taken straight from the database. 

The intersection model is used to estimate implicit spatial 

features, like the separation between rivers and wells. With 

the help of subject matter specialists, nonspatial parameters, 

such as well depth, fluoride, and other chemical metal 

element concentrations, like iron, Vanadium, selenium, and 

molybdenum, are chosen. Molybdenum and Vanadium have 

comparable geochemical behaviour, and the attributes iron, 

selenium and fluoride may point to the ultimate source of 

Nitrate. Among these features, well depth is employed for 

studies on mobilizing mechanisms. Water wells are divided 

into two categories: safe and harmful. According to the 

Environmental Protection Agency’s regulation for drinking 

water, a well is unsafe if its Nitrate concentration is greater 

than 10 g/l.  

 

After data preparation, 11,922 records were chosen 

from the GWDB. The support for the Nitrate class attribute 

was enhanced by this discretization technique, making it 

easier to identify supervised association rules using Nitrate. 

As a result, the technique can successfully identify the 

supervised association rules for the various classes of 

Nitrate. It has been demonstrated that the strategy, which 

results in mismatched bin sizes, yields better outcomes in 

data mining tasks. Table 2 contains a list of each continuous 

attribute’s splitting points. Table 1 contains a list of the 

nonspatial features used in the Nitrate dataset. One of two 

techniques—supervised discretization with class 

information or unsupervised discretization without class 

information—is frequently used to discretize continuous 

attributes.  

Table. 1 List of the nonspatial features used in the nitrate dataset 

Total No. of 

wells 
11,022   

Nonspatial 

Attributes 
Mean STD 

Splitting 

Points 

1. well depth 567.945 633.902 214.9 

2. (𝑚𝑔/𝑙) 11.289 29.037 

0.083, 

0.387, 

15.9, 27.4 

 

3.4. Regional Association Rule Mining  

For each of the detected regions, frequent itemsets are 

generated using the Supervised Apriori Gen technique. For 

the experiments, we set minimum support and confidence 

limits of 10% and 70%, respectively.  

A = {𝑎1, 𝑎2, … … 𝑎𝑛 } is a set of nonspatial 

attributes, CL = {𝑐𝑙1, 𝑐𝑙2, … … 𝑐𝑙𝑛} is a set of class labels, 

and let D be a spatial dataset. S = {𝑠1, 𝑠2, … … 𝑠𝑙} is a set of 

spatial attributes. 

𝐼 = 𝑆 ∪ 𝐴 ∪ 𝐶𝐿    (6) 

𝐼 ={𝑠1, 𝑠2, … … 𝑠𝑙,𝑎1, 𝑎2, … … 𝑎𝑛 , 𝑐𝑙1, 𝑐𝑙2, … … 𝑐𝑙𝑛}             

            (7) 

Nominal attributes are created from continuous 

attributes. Let T represent the set of all transactions, with t 

= {𝑡1, 𝑡2, … … 𝑡𝑁}. A relational table with N tuples that 

adhere to schema I (which has l + m + n number of items) 

can be used to depict T. As a result, an item i ∈ I is a binary 

variable, and its value is 0 otherwise and 1 if the item is 

present in 𝑡𝑖 (𝑖 =  1, . . . , 𝑁). As a result, the given class 

structure CL is used to classify the set of transactions T. 

A supervised association rule r is of the form P → Q, 

where P ⊆ I, Q ⊆ I, and (P∪Q)∩ CL= Ø. 

With confidence con, and support sup, the rule r is upheld in 

the D. 

sup(𝑃 → 𝑄) =
𝜎(𝑃∪𝑄)

𝑁
   (8) 

con(𝑃 → 𝑄) =
𝜎(𝑃∪𝑄)

𝜎(𝑃)
                (9) 

The support count is defined as σ(α) = |{ti|α ⊆ti, ti ∈ T}|. 

If a supervised association rule meets user-specified 

thresholds for minimum confidence (min_ confidence) and 

minimum support (min_ support), it is considered strong. 

 

The objects that are part of a region R are indicated by 

the extension of R, or EXT(R). A region needs to be 

contiguous, meaning that there should always be a path 

connecting any two objects that are part of the same region. 

Our region discovery algorithm uses a reward-based 

evaluation scheme to assess the quality of the generated sub-

regions. Given a global region R, a dataset D, where D = 

EXT(R), and an underlying class structure CL, the 

algorithm finds the best region. The sum of the rewards from 

each sub-region Ri(i = 1..m) defines the fitness function, 

which assesses the quality of the generated sub-regions.  𝑅𝑋 

= {𝑅1, … . 𝑅𝑚 }. 

𝑞( 𝑅𝑋) = ∑ 𝑟𝑒𝑤𝑎𝑟𝑑(𝑅𝑖)
𝑚
𝑖=1   = ∑ (𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡(𝑅𝑖) ×𝑚

𝑖=1

( 𝑅𝑖)
𝛽 , 𝑤ℎ𝑒𝑟𝑒 𝛽 > 1.                                           (10) 

Subregions 𝑅1, … . 𝑅𝑚 are located so that: 

1. The subregions are not connected: i = j, EXT(𝑅𝑖) 

∩EXT(𝑅𝑗) = Ø. 

2. 𝑞( 𝑅𝑋) is maximized by 𝑅𝑋 = {𝑅1, … . 𝑅𝑚 }. 

3. The generated subregions, that is, EXT(𝑅1) ∥ 
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EXT(𝑅𝑚) ⊆ EXT(R) does not have to be 

exhaustive with respect to R. 

4. The rewards that each region receives determine 

how 𝑅1, … . 𝑅𝑚 are ranked. Subregions that yield 

little or no reward are often eliminated. 

 

3.5. Multi-Collinearity Analysis  

The relationship between two or more other multiple 

conditioning parameters together in a linear regression is 

known as multi-collinearity. This data-related issue has a 

negative impact on the study, and identifying it is crucial for 

all researchers since it may limit the model’s potential to be 

generalized. The absence of multi-collinearity problems in 

this study should be ensured, and this can be quantified 

using a variety of methods, including the conditional index, 

variance decomposition proportions and tolerances (TOL). 

To minimize potential mistakes among the components 

taken into consideration in this concentration investigation, 

the statistical methods VIF and TOL have been used. The 

values of VIF and TOL have an inverse connection when 

these values are below 10 and above 0.1, respectively. 

Calculating TOL and VIF requires the use of the following 

equations: 

TOL = 1-𝑅2                    (11) 

VIF=1/TOL                            (12) 

3.6. Random Forest (RF) 

RF is a well-liked ensemble data mining approach that 

works with a lot of decision trees for classification and 

regression. As a non-parametric supervised ML technique, 

it generates numerous sets of samples through sampling and 

performs multiple regression tree training stages; as a result, 

it estimates the classification of the data based on the voting 

results of various classifiers. Regression trees have severe 

issues with the outfitting of the datasets in training, which 

results in inadequate functioning by providing an unclear 

dataset. The RF is known to be the best solution to address 

these issues.  

 

4. Results and Discussion 
4.1. Performance Measures 

A research project must include accuracy assessment 

and model validation measures. The produced outcome has 

no impact in actuality without validation. In order to validate 

the proposed models, seven statistical methodologies were 

used, including the specificity (SPE), sensitivity (SEN), 

accuracy (ACC), precession (PRE), Kappa index, F-score 

and AUC- ROC statistical method. To characterize the 

outcome result’s quality, four index considerations, true 

positive (TP), false positive (FP), true negative (TN), and 

false negative (FN), were implemented. The ratio of true 

positives to all positives, which is a measure of precision, 

varies from 0 to 1; if the attributes seem to be significantly 

greater, the models produce accurate outcomes; the kappa 

index, which ranges from 1 (undependable) to +1 

(dependable), whenever the value is 0, illustrates a poor 

correlation among estimation as well as observation in the 

framework. The framework categorizes kappa values into 

five classifications, including slight and very slight (0.1 to 

1.0). AUC-ROC, which could accurately discriminate 

among occurrence and non-occurrence phenomena with 

values varying between 0 (inaccuracy) and 1, was an 

additional validation methodology employed in this work 

(consistent). Meanwhile, the lesser (0.5) and greater (1) 

values represent, respectively, poor and phenomenal 

performance. Therefore, the X and Y axes, respectively, 

show their effectiveness metrics. 
 

Accuracy  = 
(TP+TN)

(TP+TN+FP+FN)
   (13) 

Precision = 
TP

(TP+FP)
   (14) 

Specificity = 
TN

(TN+FP)
   (15) 

Recall  = 
TP

(TP+FN)
   (16) 

Sensitivity = 
TP

(TP+FN)
   (17) 

F1 Score  = 2*
Precision∗Recall

(Precision+Recall)
  (18) 

Kappa    =
𝑃𝑎−𝑃𝑒𝑥𝑝

1− 𝑃𝑒𝑥𝑝
                               (19) 

Pa                        =
TP+TN

TP+TN+FP+FN
                                (20) 

Pexp =   
(TP+FN)(TP+FP)+(FP+TN)(FN+TN)

√(TP+TN+FP+FN)
                 (21) 

AUC  =
(∑ 𝑇𝑃+∑ 𝑇𝑁)

(P+N)
   (22) 

The corresponding overall and randomized accuracy 

is expressed by 𝑃𝑎 and 𝑃𝑒𝑥𝑝. 
 

4.2. Discussion of Results 

In the aforementioned investigation, multi-collinearity 

analyses were conducted out in four folds to establish 

whether the variables were collinear before additional 

models were established. Following a positive multi-

collinearity evaluation, fifteen nitrate conditioning 

parameters were identified. According to Table 2’s multi-

collinearity statistics, there existed a considerable multi-

collinearity concern with folds 2, 3, 4, and 3. The tuning 

parameter, commonly referred to as the tuning hyper-

parameter, is frequently employed for ensemble model 

evaluation. This methodology of hyper-parameter 

adjustment aids in the resolving of optimal learning 

classification issues. The best training dataset is employed 

for accurate assessment of learning ensemble strategies. 
 

In this work, adjust characteristics of Bagging, 

Boosting as well as RF approaches were illustrated utilizing 

boosting repetitions and Root Mean Square Error (RMSE) 

assuming Max Tree Depth (MTD) are displayed in Fig.3, 4 

& 5. The association between boosting iterations and RMSE 

was determined using the mean, median, and optimal value 

from boosting, relying on the three assumptions indicated 

above. 
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Fig. 3  Considering the MTD and model analysis with tuning values employing boosting  

 

 
Fig. 4 Considering the MTD and analysis of designs employing bagging to tune the variables 

 

 
Fig. 5 Considering the MTD and analyzing the RF model with tuning variables 
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Table. 2 Variable importance value of conditioning factors 

Factors Fold 1 Fold 2 Fold 3 Fold 4 

PO₄ ‾ 0.754 0.689 0.764 0.889 

Depth 0.714 0.695 0.689 0.739 

Temp 0.532 0.562 0.579 0.574 

SO₄2- 0.421 0.446 0.516 0.452 

K+ 0.252 0.276 0.328 0.315 

Ca2+ 0.232 0.255 0.251 0.258 

Na+ 0.213 0.239 0.232 0.237 

EC 0.165 0.214 0.184 0.171 

HCO3- 0.154 0.173 0.156 0.164 

Cl‾ 0.144 0.154 0.143 0.148 

Mg2+ 0.054 0.089 0.096 0.110 

Salinity 0.113 0.124 0.135 0.124 

pH 0.029 0.059 0.049 0.069 

AS 0.009 0.019 0.019 0.039 

F- 0.953 0.854 0.863 0.965 

The model evaluation outcomes of the overall six 

statistical measurements employed in this investigation 

which have been established by employing either training 

as well as testing datasets for overall K-Folds and 

evaluating three strategies. All indicators having larger 

values indicate the optimal performance of every algorithm. 

All of the outcomes in this study show nearly identical 

outcomes in the training as well as testing datasets for 

overall folds. With the exception of fold 1 in the training 

dataset, boosting outperforms bagging as well as RF in 

GNCSM delineation. It is understood that improving data 

mining models reduces time and aids in reducing 

extraneous information, whereas RF usually requires a 

more extensive dataset and a considerable amount of effort.  

According to non- and high-dimensional difficulties, 

the other two algorithms, bagging and RF, produced greater 

appropriate outcomes in all four folds than boosting. The 

observations indicate that numerous areas of the research 

region are grievously impacted by nitrate concentration, 

with the very excessive concentration zone exhibiting the 

most vulnerability, accompanied by the higher, lower, and 

intermediate categories.  

The RF ensemble methodology was implemented in the 

investigation to identify and prioritize the aforementioned 

fifteen nitrate causal elements (Table.2), and their respective 

relative relevance is illustrated in Fig.6. 

 
Fig. 6 Graphical presentation of relative importance value for Fold 1 to Fold 4. 
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Employing the four K-fold CV approach, the 

distributions of each susceptibility class’s surface area. 

These are the relatively important values of three 

requirements and are ranked from 1 through 15 within this 

sequence, such as 𝐹− , 𝑃𝑂4
3− and depth, dependent on 

whichever factors possess the most influence on nitrate 

concentration, ranked first, second, and third, respectively.  

 

According to the Nitrate study literature, the first five 

rules that we offer for the regions examined are all 

significant and meaningful. In regions with large 

concentrations of Nitrate, mining regional rules reveal 

characteristics; in regions with low concentrations, it reveals 

characteristics.  

 

(𝑋, 𝑊𝑒𝑙𝑙)  ∧   (𝑋, 0 −  0.085)  →
 𝑁𝑖𝑡𝑟𝑎𝑡𝑒 𝑙𝑒𝑣𝑒𝑙(𝑋, 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠) (100%). 

 

The rule asserts with absolute certainty that Region 3 

wells with concentrations less than 0.085 𝑚𝑔/𝑙 contain 

harmful levels of Nitrate. Hudak’s study in environmental 

geology confirms the substantial correlation of high Nitrate 

content.  

 

(𝑋, 𝑊 𝑒𝑙𝑙)  ∧  𝑣𝑎𝑛𝑎𝑑𝑖𝑢𝑚(𝑋, 20.05 −  37.95)  
∧  𝑠𝑒𝑙𝑒𝑛𝑖𝑢𝑚(𝑋, 74.55 −  ∞)  
→  𝑁𝑖𝑡𝑟𝑎𝑡𝑒 𝑙𝑒𝑣𝑒𝑙(𝑋, 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠) (100%). 

 

The rule specifies with absolute certainty that wells in 

Region 1 that have selenium concentrations greater than 

74.55 𝑔/𝑙 and vanadium concentrations between 20.05 and 

37.95 𝑔/𝑙 have unsafe Nitrate concentrations. Our 

experimental findings also reveal a few fresh rules that 

haven’t been discussed in Nitrate analytical literature.  

(𝑋, 𝑊 𝑒𝑙𝑙)  ∧  𝑑𝑒𝑝𝑡ℎ(𝑋, 0 −  215.5)  ∧  𝑖𝑟𝑜𝑛(𝑋, 19.65 
−  20.05)  →  𝑁𝑖𝑡𝑟𝑎𝑡𝑒 𝑙𝑒𝑣𝑒𝑙(𝑋, 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠) (100%). 

According to the rule, shallow wells with iron 

concentrations in a particular range have higher Nitrate 

concentrations. We anticipate that the findings of our study 

will assist subject-matter specialists in choosing intriguing 

theories for additional scientific investigation. Additionally, 

it would be interesting to know if there are regional 

variations in the laws. The rule sets produced for Regions 1 

and 3 (hot areas), as well as Regions 2 and 4, were compared 

(cold spots). The geographic risk patterns linked with 

Nitrate vary by region due to the studied area’s varied 

topography and agricultural activity.  

(𝑋, 𝑊 𝑒𝑙𝑙)  ∧  (𝑋, 28.085 −  ∞)  ∧  𝑓𝑙𝑢𝑜𝑟𝑖𝑑𝑒(𝑋, 4.605 −
 ∞)  →  𝑁𝑖𝑡𝑟𝑎𝑡𝑒 𝑙𝑒𝑣𝑒𝑙(𝑋, 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠) (100%). 

In contrast, the nitrate contribution or otherwise 

prediction modeling technique is less affected by pH as well 

as salinity. As a result, the modeling of nitrate concentration 

takes into account these fifteen parameters in various 

degrees. For illustration, in the investigation for GNCSM, 

all fifteen characteristics have been included. 

The model assessments across most selected statistical 

measures are represented in Tables 3 and 4. Fig. 7 illustrates 

the spatial variation of GNCSM throughout the proposed 

investigation area through the wetter period. These 

outcomes have been generated employing training as well 

as testing datasets across those K-Folds as well as three 

scenarios. The optimal effectiveness of every modeling is 

characterized by all measures with greater values. All of the 

outcomes in this study show nearly identical results in the 

testing as well as training datasets for all folds. 

 

Table. 3 Models’ tendency for prediction utilizing a nitrate training dataset 

Stage CV Fold Model Accuracy 

Training stage Fold 4 

RF 0.946 

Bagging 0.965 

Boosting 0.973 

 

 
Fig. 7 Employing the prediction utilizing a nitrate training dataset 
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Table. 4 Models’ capability for prediction with a nitrate test dataset 

Stage CV Fold Model Accuracy 

Validation stage Fold 4 

RF 0.942 

Bagging 0.955 

Boosting 0.957 

 
Fig. 8 Employing the prediction utilizing a nitrate validation dataset 

 
Fig. 9  Evaluation of models through Statistical Indices 

 
Fig. 1 0  Model evaluation through statistical indices 
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Fig. 1 1  ROC curve comparison for each model 

 

The ROC curve is utilized to assess the separate 

modelling performances of GNCSM in eastern India’s 

coastal regions. The outcomes demonstrate that Boosting 

produces dependable performance results later. Figure. 11 

demonstrates the RF as well as bagging models. Boosting 

generates the most dependable results of the three 

methodologies tested, and it is the highest-performing 

model in both the training and testing datasets. 

 

5. Conclusion 
Nitrate concentrations in groundwater sources were 

generated from a variety of sources, comprising wastewater, 

human impacts, agricultural operations, and complex geo-

hydrological characteristics, and nitrate is also plentiful in 

coastal shallow aquifers. Thus, the proposed investigation 

attempts to determine nitrate susceptibility zones in coastal 

districts of eastern India by employing three data mining 

strategies: RF, boosting, and bagging. The results guarantee 

that the RF approach is significantly effective. Because the 

farmers and residents rely on groundwater for both drinking 

and cultivation purposes, nitrate pollution exposes a large 

population to health risks. As a result, mitigation and 

continuous checking of the quality of the groundwater are 

critical over time.  
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