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Abstract - Accurate identification of plants and weeds is essential for precision farming since it allows for focused treatments, 

effective use of resources, and reduced environmental impact. In order to improve its architecture for crop and weed detection 

tasks, this research proposed a YOLO-NAS, an effective object detection model that makes use of Neural Architecture Search 

(NAS). With the use of cutting-edge methods like selective quantization, mixed precision training, and knowledge distillation, 

YOLO-NAS may be deployed seamlessly across a range of computing resources. A large dataset of agricultural images was used 

to assess the performance of the model while considering evaluation parameters, including mean Average Precision (mAP), 

recall, and precision. The results of the experiments show that YOLO-NAS works better than most object detection models, with 

a mAP of 86.11% and a balance between weed misdetection minimization and crop identification accuracy. With its high 

accuracy, real-time functionality, and easy deployment, the suggested model is a viable option for automated crop and weed 

identification that helps in precision agriculture. 
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1. Introduction  
Precision agriculture has emerged as a crucial approach 

to address the growing global demand for food while 

minimizing environmental impact and optimizing resource 

utilization. The capacity to recognize and discriminate 

between weeds and crops in agricultural areas with accuracy 

is one of the significant components of precision agriculture. 

The manual identification of crops and weeds used in 

traditional weed management methods can be tedious, costly, 

and time-consuming [1]. For a number of reasons, accurate 

crop and weed identification is essential to precision 

agriculture. One of the most important factors is targeted weed 

control, which calls for precision herbicide application or 

manual removal of weeds based on their correct identification 

and localization. This strategy optimizes resource efficiency 

while minimizing the use of herbicides and their adverse 

impacts on the environment. Accurately identifying and 

differentiating crop plants from weeds allows farmers to 

monitor crop development, evaluate crop health, and increase 

yield estimates [2]. Accurate crop and weed detection is 

essential for the development of robotic and autonomous 

systems for tasks like weeding and harvesting. Accurate 

identification and precise location of these plants allow 

autonomous systems to function effectively and efficiently in 

farming. Making decisions based on data is made easier by 

accurate crop and weed identification. It produces useful data 

that decision support systems and platforms for precision 

agriculture can incorporate. With the help of this data-driven 

strategy, farmers may increase production and profitability by 

making well-informed decisions based on current field 

conditions [3]. Recent advancements in deep learning, a 

subfield of artificial intelligence, have opened exciting 

possibilities for automated crop and weed detection. Deep 

learning algorithms can learn complex patterns from large 

datasets of images that enable them to recognize objects with 

remarkable accuracy. In deep learning, object detection 

techniques are proven to excel at identifying and locating 

specific objects within an image. These methods, which 

include SSD (Single Shot MultiBox Detector), YOLO (You 

Only Look Once), and Faster RCNN (Convolutional Neural 

Networks), have shown excellent performance across a range 

of applications [4]. However, when applied to the agricultural 

domain, current object detection models face difficulties. 

These challenges include issues with real-time performance, 

flexibility in deployment, and the capacity to identify weeds 

from crops in a variety of field circumstances. This study 

suggests a novel YOLO-NAS object detection model for 

precise and effective real-time crop and weed identification in 
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order to overcome these issues. YOLO-NAS leverages Neural 

Architecture Search (NAS) techniques to optimize its 

architecture. YOLO with NAS integration enables superior 

performance and adaptability to the complex requirements of 

agricultural object detection [5]. The proposed YOLO-NAS 

achieves high accuracy and efficiency in identifying and 

localizing both crops and weeds. With the use of advanced 

training methods, YOLO-NAS may be deployed with ease on 

a variety of computing platforms like robust workstations, 

resource-constrained edge devices, etc. The proposed YOLO-

NAS model represents a significant advancement in the field 

of detecting crops and weeds and offering a robust and 

efficient solution to enhance precision agriculture practices.  

The major research contributions of this paper are given 

below; 

• Proposing YOLO-NAS, a competent and accurate object 

detection model for crop and weed detection tasks, 

leveraging Neural Architecture Search (NAS) to optimize 

its building blocks. 

• Demonstrating YOLO-NAS performance compared to 

state-of-the-art object detection models, achieving a mAP 

of 86.11% and a prominent balance between accurately 

identifying crops and minimizing weed misdetection. 

• Presenting a quantization-friendly and deployment-

flexible solution that can be seamlessly integrated into 

various agricultural operations. 

• Providing a detailed architecture and implementation 

guide for YOLO-NAS, facilitating further research in the 

area of automated crop and weed detection for precision 

agriculture. 

2. Related Work 
Ye. Mu et al. (2022) present a model that is based on 

Faster R-CNN for identifying weed seedlings in agricultural 

fields. The model achieves high accuracy (95.61%), recall 

(87.26%), F1-score (91.24%), and mean intersection over 

union (93.7%) in detecting various weed species, including 

charlock, maize, scentless mayweed, fat hen, common wheat, 

sugar beet, and shepherd's purse [6]. The proposed model 

outperforms the standard Faster R-CNN. The authors 

highlight the potential of their approach for improving the 

management of weeds and reducing the use of herbicides. 

N.Y. Murad et al. (2023) presented a systematic literature 

review on weed detection using deep learning, revealing 

varying performance levels across algorithms, with some 

demonstrating high accuracy [7]. M. H. Saleem et al. (2022) 

focus on enhancing weed detection using a Faster RCNN 

ResNet-101 model with an optimized approach for anchor 

boxes.  

The study achieved a high accuracy rate of 96.02% in 

weed detection [8]. The research is published under an open-

access license, allowing for widespread distribution and 

reference. The methodology involves improving the anchor 

box approach to enhance the model's performance in detecting 

various types of weeds. The FT_BRC picture collection, 

presented by V. N. Thanh Le et al. (2021), consists of 3,380 

photographs taken on a commercial farm in the Western part 

of Australia. They have used real-world field settings using a 

camera mounted on a movable trolley [9]. A subset of this 

dataset was thoroughly annotated in order to locate targeted 

weeds and estimate weed density. Various feature extractors 

are combined and used with Faster RCNN models for 

detecting weed presented in the field. The network 

outperformed other networks, as evidenced by the results 

obtained during the experiment, which show that it acquired a 

mean average accuracy (mAP) of 0.555. H. Peng et al. (2022) 

propose an algorithm for the exposure of weeds in paddy fields 

[10]. They established a dataset containing both rice and 

weeds to train and evaluate their model. Additionally, the team 

introduced a method for localizing rice crops within the 

images. The proposed model demonstrated impressive results, 

achieving an accuracy of 94.1% and a processing speed of 

24.3 frames per second. According to J. M. L. Correa et al. 

(2021), a one-step method for weed detection and 

classification was created utilizing the popular Object 

Detection Network called RetinaNet [11]. The system focused 

on identifying different weeds with two growth stages in the 

field of maize crop. The accuracy of the predictions was 

assessed using the mean Average Precision (mAP) metric, 

resulting in a score of 0.88, ranging from 0.98 to 0.75 across 

different classes. K. N. Sudheer et al. (2023) propose an 

algorithm that identifies weeds and crops based on predefined 

plant characteristics, locating weeds in each row and 

measuring the distance between them [12]. The input data 

consists of 4-channel NIR + RGB or regular RGB images, 

depending on the sensor used. By using a large dataset of 

cotton weeds and crops to train a model that is applicable to 

other crops, their goal was to increase the accuracy of weed 

detection. The SSD Mobilenet model achieves 90-95% 

accuracy in this context O. G. Ajayi (2023) presents a study 

that evaluated the YOLOv5 model for classifying crops and 

weeds on UAV images [13].  It categorized different crops 

from weeds, training the model across epochs to optimize 

performance. J. Chen et al. (2022) present the model based on 

YOLOv4, which enhances sesame and weed detection by 

incorporating local importance pooling for attention, SE 

blocks for logic improvement, and ASFF structure to address 

detection gaps [14]. 

This model achieves high accuracy while maintaining fast 

detection speed. V. S. Babu and N. Venkatram (2024) present 

YOLOv4 that excels in weed detection and localization in 

soybean fields, achieving 98.42% accuracy, 93.13% recall, 

and 81.24% mAP, outperforming R-CNN and SSD networks 

[15]. Various pre-trained models are explored for weed/crop 

classification, with Densenet201 showing the highest 

accuracy at 99.67%. YOLOv4 demonstrates efficiency in both 

classification and detection with localization capabilities. 

Table 1 summarizes the different object detection models with 

their advantages, disadvantages and applications. 
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3. Research Gap 
While existing deep learning models like Faster R-CNN, 

SSD, YOLO, and RetinaNet offer promising solutions for 

crop and weed detection, some limitations require further 

research as follows; 

• Investigating techniques for real-time object detection 

with high accuracy, potentially using hardware 

acceleration. 

• Develop larger and more diverse datasets encompassing 

various crops, weeds, and agricultural environments. 

• The cost-effectiveness of deploying these models, 

especially with complex hardware requirements, needs 

further investigation. 

4. A Proposed Method for Crop and Weed 

Detection using YOLO with Neural Network 

Search (YOLO-NAS) 
In this research, an efficient architecture for object 

detection called YOLO-NAS is proposed for crop and weed 

detection. YOLO-NAS builds upon the conventional YOLO 

framework by leveraging Neural Architecture Search (NAS) 

to discover an optimal architecture for object detection tasks 

automatically. Deci AI released YOLO-NAS, a state-of-the-

art object identification model that comes in three flavors: 

small, medium, and large [16]. In this study, YOLO-NAS is 

proposed to address the challenging task of crop and weed 

recognition in agricultural fields. 

YOLO-NAS uses Neural Architecture Search (NAS) 

technology to improve its architecture on its own, making it 

more suitable for production-level performance and 

improving its real-time object identification capabilities. The 

quantization-friendly fundamental block architecture of 

YOLO-NAS, which overcomes earlier drawbacks in YOLO 

models, is a noteworthy feature. This quantization based 

design enables its deployment on resource-constrained 

devices like smartphones and IoT devices [17]. This feature is 

particularly beneficial in agricultural settings, where real-time 

object detection on edge devices can facilitate timely and 

efficient decision-making.  

YOLO-NAS incorporates advanced training methods 

with post-training quantization techniques [18]. These 

techniques enhance the robustness and efficiency of the 

model, ensuring reliable performance in diverse field 

conditions. Neural Architecture Search (NAS) in our research 

was employed to optimize the YOLO-NAS model for 

detecting crops among weeds. The search space encompassed 

key architectural elements such as convolutional layers, kernel 

sizes, activation functions, and skip connections. For the 

search strategy, we utilized an evolutionary algorithm that 

iteratively refined candidate architectures based on 

performance, combining and mutating high-performing 

models over multiple generations. To ensure computational 

efficiency, we adopted a weight-sharing approach in the 

performance estimation strategy, allowing multiple 

architectures to share parameters during training. 

A detailed explanation of building blocks of YOLO-NAS 

is given below: 

1. Input Image: The model takes an image as input, typically 

with three channels representing Red, Green, and Blue 

(RGB) color information. The image dimensions are 

denoted as W (width), H (height), and 3 channels (C). 

2. Early Feature Extraction: A convolutional layer performs 

an initial feature extraction from the input image. This 

layer extracts low-level features like edges and textures. 

The output is a feature map with potentially reduced 

dimensions (W', H') and an increased number of channels 

(C') compared to the input image. 

3. Dual-Path Backbone: This is the core of the YOLO-NAS 

architecture where NAS is implemented: 

• Dense Path: This path consists of multiple Dense Blocks. 

Each dense block is a group of convolutional layers with 

skip connections. Skip connections allow information to 

flow directly from earlier layers to later ones while 

preserving detailed features crucial for object detection. It 

is quite efficient especially for smaller objects like 

detecting weeds. 

• Sparse Path: This path utilizes Transition Blocks to 

reduce the spatial resolution (W'' x H'') of the feature 

maps while increasing the number of channels (C''). This 

helps capture higher-level semantic information about the 

image content. This is beneficial for detecting larger 

objects like crops. 

4. Feature Concatenation: Outputs from both Dense and 

Sparse paths are concatenated. This combines the detailed 

features from the dense path with the semantic 

information from the sparse path. It creates a richer 

feature representation suitable for detecting objects of 

various sizes (crops and weeds). 

5. Neck: The neck further refines the concatenated features 

from the backbone. It might use operations like 

upsampling and concatenation to create a feature pyramid 

with different resolutions. It allows the model to discover 

objects of various sizes effectively. 

6. Object Detection: The processed features from the neck 

are fed into the head of the network for object detection 

tasks. It includes: 

• Classification Branch: Predicts the class probabilities for 

each detected object (e.g., crop or weed). 

• Regression Branch: Predicts bounding box coordinates 

for each detected object. 
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Table 1. Summary of object detection models used for crop and weed detection 

Model Advantages Disadvantages Applications References 

Faster R-CNN 

High accuracy; Good at 

handling complex 

backgrounds 

Slower than SSD and YOLO; 

Requires large training 

datasets. 

Precise crop and weed 

detection, even in 

cluttered fields. 

[6], [7], [9] 

SSD (Single 

Shot MultiBox 

Detector) 

Faster than Faster R-CNN; 

Good real-time 

performance 

Lower accuracy compared to 

Faster R-CNN. 

Weed detection in 

fields captured by 

drones or ground 

vehicles. 

[7], [13] 

YOLO (You 

Only Look 

Once) 

Very fast processing speed; 

Efficient for resource-

constrained devices 

Lower accuracy than Faster R-

CNN for complex scenes. 

Real-time crop and 

weed detection on 

mobile platforms. 

[7], [14], 

[13], [15] 

RetinaNet 

High accuracy comparable 

to Faster R-CNN; Faster 

inference speed than Faster 

R-CNN 

More complex architecture 

compared to SSD and YOLO. 

It may require larger training 

datasets. 

Crop and weed 

detection in diverse 

agricultural 

environments. 

[10], [11], 

[7] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 A detailed architecture of YOLO-NAS for crop and weed detection [16] 

CBR 1X1 

2XQARepVGG 

2XQARepVGG 

CBR 1X1 

Concat 

CBR 1X1 

QCI Block 

2XQARepVGG 

CBR 1X1 

2XQARepVGG 

2XQARepVGG 

2XQARepVGG 

CBR 1X1 

Concat 

CBR 1X1 

QSP Block 

Detect Head 

Detect Head 

Detect Head 

Width multiplier = 0.5 

Head 

128 

128 

128 

128 

D
o
w

n
 S

ta
g
e 

7
 

64 

64 

64 

U
p
 S

ta
g
e 

6
 64 

64 

D
o
w

n
 S

ta
g
e 

8
 

192 

192 

U
p
 S

ta
g
e 

6
 192 

Neck 

STEM 

 

64 

64 

S
ta

g
e 

1
 

 

256 

256 

S
ta

g
e 

2
 

256 

 

384 

384 

S
ta

g
e 

3
 

384 

384 

384 

 

64 

S
ta

g
e 

4
 

64 

SPP 

Backbone 



Sanskruti Patel et al. / IJETT, 72(10), 35-45, 2024 

 

39 

A supervised learning approach is followed for training 

the proposed YOLO-NAS for crop and weed detection. 

Pseudo-labels were produced with the COCO dataset 

following the model's pre-training on the two million picture 

and 365 category Objects365 [20] dataset.  

Finally, the models are trained using the original 118,000 

training images from the COCO dataset. The model was 

learned from labeled images of agricultural fields. Each image 

is tagged with bounding boxes and class information for crops 

and weeds.  

During training, the model minimized a loss function, 

combining bounding box and classification losses and refining 

its predictions to align with the ground truth [21]. After 

training, YOLO-NAS demonstrated remarkable adaptability 

and deployment across multiple platforms, such as CPUs, 

GPUs, and TPUs.  

Additionally, quantization techniques further optimized 

the size and performance of the model on hardware with 

limited computational resources. It is enabling its practical 

application in resource-constrained agricultural settings. 

Algorithm 1 outlines the specific steps used to perform object 

detection tasks in this research. 

An Algorithm for Crop and Weed Detection  

1.  Input: Dataset D = {(I_i, B_i, C_i)} where: 

I_i is an agricultural field image. 

B_i is a set of bounding boxes for objects 

(crops and weeds) in image I_i. 

C_i is a set of class labels (crop or weed) 

corresponding to bounding boxes in B_i. 

2.  For each image I_i in dataset D: 

Resize I_i to a fixed size (H, W, C) suitable for 

the model. 

Normalize pixel values in I_i to a range (e.g., 

0-1) 

3.  Divide the preprocessed data D into training set 

D_train, validation set D_val, and test set D_test 

using a predefined split ratio. 

4.  Initialize the YOLO-NAS model architecture with 

parameters θ: 

5.  Define Dense path as f_d ; Sparse paths using 

f_s ; Neck as f_neck; classification as f_cls; 

bounding box regression as f_reg; 

Load pre-trained weights θ_pre for the 

YOLO-NAS model; 

6.  Set hyperparameters for training; 

 Optimizer function opt = Adam; 

Learning rate η = 0.0001; Number of 

training epochs N = 30; Batch size 

b=32; 

7.  Define the loss function L as a combination of 

bounding box loss L_box and classification 

loss L_cls:  

L(θ, I, B, C) = 

L_box(f_reg(f_neck(f_d(I, θ_d) + 

f_s(I, θ_s))), B) + λ * 

L_cls(f_cls(f_neck(f_d(I, θ_d) + 

f_s(I, θ_s))), C) where λ is a hyperparameter 

balancing the importance of each loss term. 

8.  For each epoch n in [1, N]:  

9.  For each batch B_t of images and 

corresponding labels from D_train:  

Forward pass - Predict bounding boxes and 

class probabilities: ŷ_b = 

f_reg(f_neck(f_d(I_j, θ_d) + f_s(I_j, 

θ_s)))) ŷ_c = f_cls(f_neck(f_d(I_j, 

θ_d) + f_s(I_j, θ_s)))) for all images I_j 

in B_t. 

Loss calculation - L_batch = L(θ, B_t, B_truth, 

C_truth) where B_truth and C_truth are ground truth 

bounding boxes and class labels in B_t.  

Backpropagation - ∇_θ L_batch to compute 

gradients for each model weight in θ.  

Weight update - θ ← opt(θ, η, ∇_θ L_batch) 

using the optimizer function with learning rate. 

10.   Evaluate model performance on D_val using metrics 

like mean Average Precision (mAP). Save the trained 

model weights θ*. 

5. Experiments and Results 
5.1. Dataset 

In this experiment, the annotated food crops and weed 

photos dataset was used. The Life Sciences and Technologies, 

Latvia University and the Institute of Electronics and 

Computer Science, Latvia, made this dataset available in 2021 

[22]. A dataset that includes hand-annotated copies of images 

showing food crops and weeds at various stages of seedling 

growth. 1118 photos (.jpg files) and 7853 XML annotations 

(.xml files) make up the dataset. It includes 14 staple food 

crops and common weed species that grow in Latvia's 

agricultural fields.  

The dataset was developed to support the creation and 

comparison of deep learning and computer vision algorithms 

for precision agriculture, particularly for applications like 

robotic weed control management, crop recognition, and weed 

detection. The dataset contains objects belonging to two 

classes: weed and crop. All images in the dataset have 

bounding box annotations for the labeled objects.  

This dataset seems to be a valuable resource for 

developing and evaluating object detection models tailored for 

agricultural applications, particularly in identifying and 

distinguishing between weeds and crops during their early 

growth stages. Figure 2 shows the raw images of food crops 

and weeds from the dataset. Figure 3 shows the colored 

bounding boxes on the annotated image of the weed and crop. 
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Fig. 2 Raw images of food crops and weeds of the dataset 

 
Fig. 3 Colored bounding boxes on annotated images of the weed and 

crop 

5.2. Hardware and Software Setup 

The experiments leveraged a powerful computational 

environment specifically designed for deep learning tasks. 

This system featured a state-of-the-art TESLA-V100 Graphics 

Processing Unit (GPU) of NVIDIA, boasting 32GB of 

dedicated memory. To unlock the full potential of the GPU, 

the environment utilized CUDA 11.0, a software toolkit that 

facilitates communication and optimization between the GPU 

and deep learning frameworks. Additionally, cuDNN 8.0, a 

library specifically designed to accelerate deep learning 

workloads on NVIDIA GPUs, was employed. Finally, the 

training environment itself was built on Python 3.10, a widely 

used programming language that offers a robust foundation for 

deep learning development. This combination of cutting-edge 

hardware, optimized software tools, and a modern 

programming language ensured a highly performant and 

efficient platform for conducting deep learning experiments. 

5.3. Training, Validation and Testing Data 

Three separate sets of training data were carefully 

selected: an 80% training set that was used to train the model, 

a 10% validation set that was used to track training progress 

and adjust hyperparameters, and a final 10% test set that was 

used to assess the model's generalizability on untested data 

objectively. This ensures the model learns effectively from the 

training data while avoiding overfitting, ultimately leading to 

robust performance on real-world applications. This 80-10-10 

split is a common practice in machine learning, ensuring the 

model has sufficient data for training while also allowing for 

proper validation and testing to achieve robust performance. 

• Training Set (80%): This will comprise 894 images (0.8 

* 1118). This is the largest portion where the model learns 

by processing the data and identifying patterns.  

• Validation Set (10%): This set will contain 112 images 

(0.1 * 1118). It is used to fine-tune hyperparameters and 

monitor the model's learning progress during training to 

prevent overfitting.  

• Test Set (10%): This final collection, which will have 112 

photos (0.1 * 1118), is meant to be used for an objective 

assessment of the model's performance using untested 

data. This aids in evaluating how well the model applies 

to actual situations. 

5.4. Performance Evaluation Criteria 

A set of standard metrics frequently used in object 

detection tasks to ensure an accurate and impartial evaluation 

of the suggested model's performance are taken into 

consideration in this research. F1-score, mean Average 

Precision (mAP), recall, precision, and precision are some of 

these. The percentage of expected positive detections that are 

actually present (proper targets) is precisely measured by 

precision [23][24]. It basically shows how well the favorable 

predictions made by our model worked. The precision metric 

measures the percentage of anticipated positive detections that 

are actually true positives. It reflects the accuracy of your 

model's positive predictions. A high precision value indicates 

that most of the objects of the model identified are indeed 

present in the image. 

Precision =
TP

TP+FP
 𝑋 100%                    (1) 

Average Precision (AP) =  ∫ 𝑃(𝑟) 𝑑𝑟
0

1
                  (2) 

Recall, also known as sensitivity, focuses on the 

completeness of the detections performed by the model [27]. 

It calculates the proportion of actual positive cases that your 

model correctly identifies. A high recall value signifies that 

the model captures most of the relevant objects in the image.  

    Recall =
TP

TP+FN
 𝑋 100%                       (3) 

The F1-score provides a harmonic mean to offer a 

balanced view of both metrics. It penalizes models that excel 

in either precision or recall at the expense of the other. A 

model that strikes a good balance between limiting false 

positives and identifying real positives is indicated by a high 

F1-score. Since a mAP takes into account the trade-off 

between precision and recall across various detection 

confidence thresholds, it is especially useful for object 
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detection tasks [26]. It essentially calculates the average 

precision at various thresholds.  

Mean Average Precision (mAP) =  
1

𝑛
 ∑ 𝐴𝑃𝐼

𝑛
𝑖=1                (4) 

5.5. Initialization Parameters of YOLO-NAS Network 

Hyperparameters are variables whose values affect the 

learning process, and they define the model parameter values 

that a learning algorithm finally learns [27]. The accuracy of 

the model is also affected by the hyperparameter choices made 

to help an object identification model achieve its maximum 

accuracy [28]. Table 2 shows the parameters set for training 

the YOLO-NAS for crop and weed detection during the 

experiment. PPYoloELoss is used as a loss function [29]. 

5.6. Implementation Details and Challenges 

Model training was computationally intensive, especially 

with large datasets. Additionally, dealing with imbalanced 

datasets and adapting the model to field conditions were 

significant hurdles which were addressed through custom data 

augmentation and model tuning techniques.  

6. Results and Discussion 
Loss functions play a critical role in guiding the training 

process of object detection models [30]. They measure the 

discrepancy between the predictions given by the model and 

the actual ground truth (real-world object locations and 

classifications). By minimizing these losses, the model learns 

to: 

• Accurately classify objects: The classification loss 

penalizes the model for incorrectly assigning class labels 

to detected objects [31]. A lower classification loss 

indicates that the model can effectively distinguish 

between different object categories. 

• Precisely localize objects: The localization loss measures 

how far the actual locations of objects deviate from the 

bounding boxes that are anticipated [32].  

A reduced localization loss indicates that the model is good at 

enclosing the objects in the pictures with bounding boxes. 

Table 3 summarizes the classification loss, localization loss, 

and total loss for various object detection models considered 

for the experiment. SSD has the highest classification loss and 

a relatively higher localization loss compared to others. Faster 

RCNN performs better than SSD with MobileNetV2 in both 

classification and localization, indicating a more accurate 

detection overall. Faster RCNN is known for its accuracy but 

tends to be slower than other models like SSD and YOLO 

[33].  

RetinaNet shows a good balance with a relatively low 

classification and the lowest localization loss among the non-

YOLO models, indicating strong performance, particularly in 

pinpointing object locations. YOLOv8 significantly 

outperforms the previous models in both classification and 

localization loss [34]. YOLO (You Only Look Once) models 

are known for their speed and accuracy [35], which is reflected 

here. The proposed YOLO-NAS model shows the best 

performance among all listed models with the lowest 

classification and localization loss. 

 This indicates that this model is the most accurate in 

detecting and locating objects, making it highly efficient. 

Figure 4 shows the graph of total loss derived from YOLO-

NAS during training. Our research investigates the critical 

task of crop and weed detection using deep learning 

techniques. We compared the performance of six distinct 

object detection models to identify the most effective 

approach for this agricultural application. These models were 

rigorously trained, validated, and tested on a comprehensive 

dataset of agricultural images.  

Table 2 summarizes the specific models evaluated, along 

with their corresponding results on four key metrics: 

precision, recall, mean Average Precision (mAP), likely 

focusing on an Intersection over Union (IoU) threshold of 0.5 

(mAP@0.5) (details in Table 4). By analyzing these metrics, 

we aimed to determine which model achieved the optimal 

balance between accurately identifying crops and minimizing 

the misdetection of weeds. SSD has good precision and a 

relatively high mAP, indicating a strong ability to identify 

objects correctly. The faster RCNN model has the lowest 

precision, recall, and mAP among the listed models. 

RetinaNet shows slightly higher precision than SSD with 

MobileNetV2 and similar recall.  

Table 2. Parameters set for training the YOLO-NAS for crop and weed detection 

Size of input images Batch Optimizer Initial learning rate Loss Training steps 

640 × 640 8 Adam 0.0001 PPYoloELoss 20,000 

Table 3. The classification loss, localization loss, and total loss for various object detection models 

Object Detection Models Classification Loss Localization Loss Total Loss 

SSD with MobileNetV2 (Quantized) 1.7971 0.2739 2.0710 

Faster RCNN ResNet50 V1 0.9860 0.1327 1.1187 

RetinaNet 0.9910 0.0787 1.0697 

YOLOv8 0.2477 0.0578 0.3055 

YOLO-NAS (Proposed) 0.2311 0.0427 0.2738 
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Fig. 4 Total loss obtained during training YOLO-NAS 

Table 4. Performance Comparison of the proposed model with 

other state-of-the-art object detection model 

Object Detection 

Model 
Precision Recall mAP@0.50 

SSD with 

MobileNetV2 

(Quantized) 

78.2 51.9 82.11 

Faster RCNN 

ResNet50 V1 
71.4 49.2 72.23 

RetinaNet with 

ResNet50 V1 
78.5 49.9 81.19 

YOLOv8 81.2 53.3 85.56 

YOLO-NAS 

(Proposed) 
82.6 60.7 86.11 

 

 
Fig. 5 Precision, Recall, and mAP@50 values show that YOLO-NAS outperforms all other state-of-the-art object detection models 

Its mAP is also high, indicating robust detection 

performance, particularly in accurately identifying objects. 

YOLOv8 demonstrates high precision and recall, along with a 

high map. This suggests it is effective at both identifying and 

correctly locating objects, resulting in fewer false positives 

and false negatives. The proposed YOLO-NAS model 

outperforms all others in precision, recall, and mAP, as shown 

in Figure 5. This indicates that it is the most accurate and 

reliable model for detecting objects with minimal errors. In 

order to measure and analyse the accuracy of several object 

detection models, Intersection over Union (IoU) serves as a 

crucial metric [36]. Figure 7 showcases weed and crop objects 

detected by the proposed model. IoU helps quantify how well 

the model's predicted bounding boxes (boxes drawn around 

the objects) overlap with the actual locations of weeds and 

crops in the image. A higher IoU score indicates a greater 

overlap between the predicted and actual bounding boxes, 

signifying a more accurate detection of weeds and crops by 

the model. This information is valuable for tasks like targeted 

weed removal or automated crop yield estimation, where 

precise identification and localization of these objects are 

essential. Figures 6 (a) and (b) present the Real-time Weed and 

Crop Object Detection with IoU Visualization. 

 
Fig. 6 (a) Real-time weed and crop object detection with IoU 

visualization – Sample 1 
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Fig. 6 (b) Real-time weed and crop object detection with IoU 

visualization – Sample 2. Figure (a) and (b) show images with bounding 

boxes for weed and crop classes. This visualization is crucial for 

informed weed removal and crop yield estimation. 

Table 5. Summary of the major research carried out for crop and weed 

detection 

Reference 
Object Detection 

Model Used 

mAP 

Score 

I. Gallo (2023) [37] YOLOv7 61.0% 

Ahmad et al. 

(2021) [38] 
YOLOv3 54.3 % 

Gao et al. (2020) 

[39] 
YOLOv3-tiny 82.9% 

A. Rahman et al. 

(2023) [40] 
Yolov5m 78.64% 

Proposed Model YOLO-NAS 86.11% 

Table 5 shows the summary of the major research carried 

out for crop and weed detection. It shows that the proposed 

model achieved the highest mAP score of 82.9%, which 

outperforms all other models. In this research, the proposed 

model uses an automated search strategy to design the 

architecture, optimizing it for more efficient in detecting 

objects like weeds and crops. Moreover, YOLO-NAS 

balances the trade-off between speed and accuracy better than 

previous YOLO versions or other object detection models. 

The feature extraction techniques used in the proposed 

research capture finer details at multiple scales. The proposed 

model incorporates YOLO-NAS, which is specially designed 

for edge devices that, make it suitable for agricultural use 

cases where the model may need to run on drones, mobile 

devices, or other low-power systems directly in the field. 

7. Future Directions and Improvements 
The YOLO-NAS model for crop and weed identification 

may be improved, and this part examines new technologies 

that may help the model function better. Advances in NAS 

approaches, including more effective search algorithms or the 

integration of reinforcement learning for dynamic design 

adaption. Experimenting with new deep learning architectures 

such as transformers or hybrid CNN-Transformer models may 

also improve the robustness and accuracy of the model. 

Adding other data sources, such as multispectral or 

hyperspectral imaging, could greatly improve the model's 

capacity to distinguish between weeds and crops, particularly 

in difficult environmental circumstances. These developments 

could enhance the effectiveness of precision agriculture 

applications. 

8. Conclusion 
This research presents YOLO-NAS, a cutting-edge object 

detection model designed specifically for crop and weed 

detection in agricultural fields. By leveraging Neural 

Architecture Search (NAS) and advanced training techniques, 

YOLO-NAS achieves superior performance compared to 

existing state-of-the-art models. The experimental results 

demonstrate the ability of YOLO-NAS to identify and localize 

both crops and weeds accurately, outperforming competitors 

in terms of precision, recall, and mean Average Precision 

(mAP). With an mAP of 86.11%, YOLO-NAS maintains an 

optimal balance between correctly identifying crops and 

minimizing weed misdetection, addressing a critical challenge 

in precision agriculture. The proposed model offers a 

quantization-friendly design and deployment flexibility on 

various computational resources, from powerful workstations 

to resource-constrained edge devices, making it a versatile 

solution adaptable to diverse agricultural operations. Overall, 

YOLO-NAS represents a significant advancement in the field 

of automated crop and weed detection, offering a robust and 

efficient solution to enhance precision agriculture practices. 

Its seamless integration and deployment potential position it 

as a valuable tool for farmers, researchers, and agricultural 

technology companies, ultimately contributing to a more 

sustainable and productive agricultural sector. 
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