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Abstract - Weather forecasting is essential for everyday living, influencing several industries and decision-making processes. 

This study looks at two ways to make short-term weather predictions better: the AutoRegressive Integrated Moving Average 

(ARIMA) model and a new method that uses Local Mean Squared Error (LMSE) optimisation in Long Short-Term Memory 

(LSTM) neural networks. By using several weather datasets, such as the UCI weather dataset, we may identify critical trends in 

meteorological data. The first segment of the proposed work implements the ARIMA model to examine historical weather data, 

isolating essential autoregressive and moving average elements for precise short-term forecasts. The following section presents 

LMSE optimisation inside LSTM networks, which refines the model to minimise prediction errors and enhance comprehension 

of long-term relationships in the data. This study aims to enhance the precision of short-term weather predictions by integrating 

the advantages of ARIMA and LMSE-optimised LSTM models. The results will provide meteorologists with dependable 

instruments for forecasting meteorological phenomena, assist emergency responders in making educated choices, and deliver 

more precise weather data to the public, improving readiness and safety in the face of fluctuating weather conditions. 

Keywords - ARIMA, AdaSTL, CNN, GRU, LSTM, LMSE, Short-term forecasts, Time series analysis, UCI weather dataset, 

Weather forecasting. 

1. Introduction  
Weather forecasting is essential in several areas, such as 

agriculture, transportation, emergency management, and 

everyday living. Precise meteorological forecasts assist in 

alleviating the effects of extreme weather phenomena, 

improving public safety, and maximising resource allocation. 

Climate change's increasing predictability of weather patterns 

necessitates the urgent development of better forecasting 

technologies. Recent breakthroughs in machine learning and 

data assimilation methodologies have markedly enhanced 

predicting precision. Wang and Zhao studied the Enformer 

model in 2023 and found that encoder-based sparse periodic 

self-attention mechanisms might help with time series 

forecasting by accurately capturing complex temporal 

dynamics [1]. Zhang et al. (2023) presented the Temporal 

Chain Network using an intuitive attention mechanism to 

improve long-term forecasting precision [2]. Confronting 

contemporary meteorological forecasting issues despite 

technical advancements, weather forecasting continues to 

encounter problems, such as the integration of many data 

sources and the need for high-resolution models. Yan et al. 

(2023) introduced a three-dimensional cloud detection 

approach, improving the functionality of numerical weather 

forecast systems [3]. These approaches demonstrate the 

significance of combining satellite data with terrestrial 

observations to enhance precision. Sengoz et al. (2023) [4] 

note that machine learning techniques address these issues by 

enhancing precipitation predictions in North America. These 

methodologies enhance predictive accuracy while 

simultaneously optimising model efficiency. The dataset used 

for weather forecasting is critical to the model's efficacy. The 

Seattle-Weather CSV file contains extensive meteorological 

datasets that include diverse resolutions, timeframes, and 

geographic coverage. Datasets may vary from high-resolution 

hourly data to larger daily averages, including numerous years 

and varied geographical regions.  

This extensive dataset enables models to learn from 

historical weather trends efficiently, resulting in enhanced 

predictions. Integrating sophisticated machine learning 

methodologies with superior datasets is crucial for improving 

weather forecasting. By addressing existing issues and using 

novel models, the sector may significantly improve its 

prediction abilities, eventually helping society as a whole. In 

conclusion, the changing dynamics of weather forecasting 

necessitate the use of innovative technology and approaches. 

Researchers like Yang et al. (2023) [5] are working hard to 

solve problems in weather prediction. Xia et al. (2023) [6] are 

integrating data from multiple sources to make long-sequence 

time series forecasting better. Improving numerical weather 
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prediction models with machine learning (Choi and Jung, 

2023) [8] makes it possible to make more accurate predictions. 

This shows how important it is for people from different fields 

to work together and use technology in new ways. 

1.1. Problem Statement 

Weather forecasting is a challenging endeavour because 

of the chaotic characteristics of the atmosphere and the impact 

of several factors on meteorological patterns. Conventional 

forecasting techniques, such as Numerical Weather Prediction 

(NWP), sometimes encounter difficulties in delivering precise 

long-term predictions because of significant unpredictability 

and the complexities of synthesising several data sources, 

including satellite images and terrestrial observations. The 

intrinsic noise in meteorological data results in considerable 

uncertainty in forecasts, and current models sometimes lack 

the necessary flexibility to address changing weather patterns, 

therefore hindering precise forecasting. The proposed goals 

are to solve these problems by using advanced machine 

learning techniques, mainly LSTM (Long Short-Term 

Memory) and ARIMA (AutoRegressive Integrated Moving 

Average) models, along with fast algorithms (HPA). The 

primary goal is to improve temporal comprehension and 

classification precision, directly addressing the complexities 

of meteorological dynamics. The subsequent aims are to 

augment robustness and accuracy, explore real-time 

adaptation, and boost noise reduction in forecasts. This study 

aims to provide a reliable framework for weather forecasting 

by juxtaposing these models with cutting-edge designs, 

enabling efficient adaptation to fluctuating circumstances and 

reduction of data noise, thereby enhancing the precision and 

utility of weather forecasts. 

1.2. Objectives 

• To implement a heuristic approach with gaussian and 

Genetic algorithm (HPA) with Arima Model also to 

improvise the LSME realization for LSTM with Genetic 

HPA model for noise reduction methods for the encoder 

and decoder architecture. 

• To encapsulate the combined performance of the LSTM 

and ARIMA with HPA To develop a hybrid Architecture 

adjusting the decomposed hidden states with the least 

possible errors in all multi-layer architecture with LSTM 

and ARIMA model. 

• To compare the proposed models and compare them with 

state-of-the-art architectures based on GRU, GAN and 

AdaSTL models.  

2. Literature Survey 
Xiao et al. [1] investigated the selection of temperature 

and water vapor channels in the FY-3E HIRAS II satellite for 

Numerical Weather Prediction (NWP). By analyzing the 

effectiveness of various channels through Jacobian matrices 

and Degrees of Freedom for Signal (DFS), the study highlights 

the potential of optimizing satellite data utilization. This 

research addresses a critical gap in the integration of remote 

sensing data into weather models, suggesting that precise 

channel selection can significantly improve forecast accuracy. 

The findings emphasize the importance of using tailored 

satellite observations to enhance NWP systems. Jang et al. [2] 

focussed on spatiotemporal post-calibration within NWP 

models to quantify building energy consumption based on 

weather data. Their approach employs advanced machine 

learning algorithms, revealing complex relationships between 

meteorological forecasts and energy usage patterns. This 

study contributes to the understanding of how weather impacts 

energy systems, filling a notable gap in research that has often 

neglected the interplay between weather predictions and 

energy consumption.  

By establishing a framework that integrates these 

domains, the research paves the way for improved energy 

management strategies in response to variable climatic 

conditions. Lin et al. [3] presented a Spherical Neural 

Operator Network aimed at global weather prediction. This 

innovative approach utilizes deep learning to capture intricate 

spatial-temporal relationships in meteorological data, 

showcasing improved predictive capabilities over traditional 

models.  

The study highlights the limitations of existing NWP 

systems in handling dynamic weather patterns, thus 

demonstrating a significant advancement in operator learning 

methods. The application of such neural network architectures 

indicates a shift toward more adaptable forecasting systems 

that can better accommodate the complexities of atmospheric 

dynamics. Ye et al. [4] addressed the challenges of predicting 

wind power generation during extreme weather events 

through a combined methodology using time series 

adversarial generation networks.  

Their research emphasizes the necessity for robust 

predictive algorithms capable of managing the uncertainties 

associated with renewable energy generation. By focusing on 

extreme weather, the study contributes valuable insights into 

optimizing wind power forecasts, critical for energy grid 

stability and management. This research highlights the 

intersection of meteorology and renewable energy, 

underlining the importance of advanced forecasting 

techniques in the context of climate change. Gong et al. [5] 

explored spatial-temporal enhanced contrastive and 

contextual learning for weather forecasting. Their work 

demonstrates how advanced machine learning techniques can 

improve predictive accuracy by effectively identifying 

complex weather patterns.  

The research underscores the need for innovative 

methodologies that can process vast amounts of 

meteorological data, addressing existing challenges in 

forecasting. By integrating contrastive learning with 

contextual data, the study lays the groundwork for future 

explorations into self-supervised learning applications in 
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meteorology, offering promising directions for enhancing 

predictive models. Yan et al. [6] developed a 3-D cloud 

detection method for FY-4A GIIRS, which they applied in an 

operational NWP system. Their study presents a novel 

approach to identifying cloud patterns that can significantly 

affect weather predictions. By utilizing this method, they 

improve the accuracy of cloud-related forecasts, contributing 

to more reliable meteorological models. The findings 

demonstrate the critical role of precise cloud detection in 

enhancing operational forecasting capabilities, filling a gap in 

the real-time application of satellite data in weather prediction 

systems. Gahwera et al. [7] analysed machine learning 

algorithms to predict short-term rainfall amounts using data 

from Uganda’s Lake Victoria Basin.  

Their research identifies the strengths and weaknesses of 

various models, providing insights into the most effective 

predictive techniques for local weather patterns. This study 

contributes to the growing body of literature on applying 

machine learning in meteorology, particularly in regions 

vulnerable to climatic variability. By focusing on a specific 

geographic area, the research emphasizes the necessity for 

localized approaches in weather prediction, addressing a 

significant gap in generalizable forecasting models. Sun et al. 

[8] proposed a deep-learning network-based algorithm for 

convective weather initiation, integrating data from Fengyun-

4A satellites and radar for real-time nowcasting. Their work 

addresses the urgent need for timely weather warnings, 

especially in rapidly changing convective conditions.  

By utilizing joint observations, the study enhances the 

accuracy and responsiveness of weather predictions in critical 

time frames, showcasing the value of combining different data 

sources. This research underscores the importance of real-time 

forecasting capabilities in mitigating the impacts of severe 

weather. Zhang et al. [9] introduced a phase turbulence 

prediction method for line-of-sight Multiple-Input-Multiple-

Output (MIMO) links affected by atmospheric conditions. 

Their findings highlight the significance of understanding 

atmospheric influences on signal transmission, which is vital 

for maintaining communication quality.  

The study contributes to the field by providing a 

predictive framework that can improve MIMO link reliability 

in varying weather conditions. This research not only 

addresses challenges in communication technology but also 

integrates meteorological factors, bridging a gap between 

atmospheric science and telecommunications. Li et al. [10] 

examined the flight delay prediction by incorporating both 

weather and non-weather features. Their analysis reveals how 

integrating diverse data sources can enhance the accuracy of 

predictions related to air traffic disruptions. This study fills a 

critical gap in transportation research by emphasizing the 

multifaceted nature of flight delays and the importance of 

weather conditions. By providing a comprehensive framework 

for flight delay prediction, the research contributes to more 

efficient air traffic management and improved traveler 

experience. Wu et al. [11] offered an overview of day-ahead 

solar power forecasts based on weather classifications, 

complemented by a case study in Taiwan.  

Their research illustrates the potential of using 

meteorological classifications to improve solar energy 

predictions, which are essential for effective energy 

management. By highlighting the relationship between 

weather patterns and solar power generation, the study 

contributes significantly to renewable energy forecasting. This 

research addresses the need for more accurate predictive 

models in the face of increasing reliance on solar energy. 

Biscarini et al. [12] have explored an optimal stochastic 

prediction and verification of signal-to-noise ratios for Ka-

band spaceborne telemetry utilizing weather forecasts.  

Their work underscores the importance of accurate 

weather information in enhancing satellite communication 

systems. By integrating weather data into predictive models, 

the study provides valuable insights for improving 

communication reliability in various atmospheric conditions. 

This research contributes to the advancement of satellite 

telemetry technologies by addressing the impact of 

environmental factors. Tekin et al. [13] proposed a 

convolutional-LSTM model for numerical weather 

forecasting enhanced by attention and context matcher 

mechanisms. Their approach addresses the limitations of 

traditional forecasting models, showcasing how deep learning 

can be leveraged to improve predictive performance.  

The study contributes to the ongoing evolution of 

meteorological modelling by integrating advanced neural 

network architectures. By focusing on the intricacies of 

weather patterns, this research offers promising directions for 

future developments in weather forecasting technologies. 

Wu et al. [14] investigated the probabilistic forecasting of 

wind power generation, incorporating data processing and 

numerical weather predictions. Their findings emphasize the 

importance of probabilistic models in managing the 

uncertainties inherent in wind energy forecasting. This 

research fills a critical gap by providing methodologies that 

enhance the reliability of wind power predictions, thereby 

contributing to the optimization of energy management 

systems.  

The integration of weather data with energy forecasting 

represents a vital intersection of meteorology and energy 

science. Du et al. [15] have imparted a prediction of weather-

related failure risks in distribution systems using a Bayesian 

neural network. Their approach highlights the role of weather 

in influencing the reliability of power distribution networks, 

emphasizing the need for predictive modeling in infrastructure 

management. This study contributes to the understanding of 

how weather impacts electrical systems, addressing a 
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significant gap in infrastructure resilience research. By 

integrating meteorological data into failure risk predictions, 

the research paves the way for more robust and responsive 

energy distribution systems. Wang and Zhao [16] introduced 

"Enformer," an encoder-based sparse periodic self-attention 

model for time-series forecasting. Their work focuses on 

enhancing the efficiency of attention mechanisms, making it 

particularly suited for forecasting tasks that involve periodic 

data patterns. The study demonstrates how this approach can 

improve predictive accuracy while reducing computational 

overhead, thus addressing a critical gap in traditional time-

series forecasting methods.  

The findings suggest that optimizing attention 

mechanisms can lead to significant advancements in 

forecasting techniques across various applications. Zhang et 

al. [17] developed a Temporal Chain Network featuring an 

intuitive attention mechanism specifically designed for long-

term series forecasting. This innovative approach allows the 

model to capture temporal dependencies more effectively, 

thereby improving forecast accuracy over extended periods. 

The research contributes to the understanding of how attention 

mechanisms can be adapted for time-series data, addressing 

the limitations of existing models. 

The findings emphasize the potential of intuitive attention 

in enhancing predictive performance in complex time-series 

forecasting scenarios. Yan et al. [18] presented a 3-D cloud 

detection method for the FY-4A GIIRS, applying it within an 

operational Numerical Weather Prediction (NWP) system. 

This study enhances the accuracy of cloud detection, which is 

crucial for reliable weather forecasting. The integration of this 

method into NWP systems demonstrates the importance of 

precise cloud characterization in improving forecast 

outcomes.  

The research fills a notable gap in real-time satellite data 

applications, paving the way for advancements in operational 

weather prediction capabilities. Sengoz et al. [19] have 

improvised various machine learning approaches to enhance 

precipitation forecasts in North America. Their analysis 

identifies the strengths of different algorithms in predicting 

precipitation, emphasizing the need for sophisticated models 

to capture the complexities of weather patterns. This research 

contributes significantly to improving forecasting accuracy in 

a region where precipitation variability is a critical concern.  

By addressing existing challenges in precipitation 

modelling, the study highlights the value of machine learning 

in meteorological applications. Yang, Ma, and Huang [20] 

developed a novel architecture with ATFSAD for enhancing 

long-sequence time-series forecasting specifically for air 

temperature prediction. Their research demonstrates how 

advanced algorithms can improve the reliability of 

temperature forecasts over extended timeframes. This study 

addresses a critical gap in traditional forecasting methods that 

struggle with long-term predictions. By emphasizing the 

significance of accurate temperature forecasting, the research 

contributes to better climate and environmental management 

strategies. Xia et al. [21] proposed a deep learning method that 

integrates multisource data to correct ECMWF (European 

Centre for Medium-Range Weather Forecasts) forecasting 

products. Their approach addresses the limitations of existing 

models by leveraging diverse data sources for improved 

accuracy. The study emphasizes the importance of data 

integration in enhancing weather forecasts, filling a gap in the 

application of machine learning for NWP corrections. 

This research signifies a step toward more robust and 

reliable meteorological predictions. Similarly, Choi and Jung 

[22] have depicted optimizing the performance of numerical 

weather prediction models through machine learning 

techniques. Their research showcases how various machine 

learning algorithms can enhance model accuracy and 

efficiency, addressing the growing complexity of 

meteorological data. By applying these techniques, the study 

fills a significant gap in traditional NWP approaches, 

demonstrating that machine learning can provide substantial 

improvements in forecasting capabilities.  

This research paves the way for the integration of 

advanced computational methods in meteorology. Chen et al. 

[23] investigate short-term load forecasting combined with 

associated weather variables using a ResNet-LSTM deep 

learning model. Their study highlights the interplay between 

weather conditions and energy demand, emphasizing the need 

for accurate forecasting in energy management. 

By integrating meteorological data into load forecasting, 

the research contributes valuable insights into optimizing 

energy systems. This work addresses a gap in understanding 

how weather impacts short-term energy consumption, which 

is crucial for effective grid management. The design of a TCN 

based hybrid forecasting framework from Li et al. [24] for 

utility-scale Photovoltaic (PV) power generation is 

implemented and explored with various possible solutions to 

embed the metrological changes in the atmosphere. Their 

study emphasizes the importance of accurate forecasting in the 

management of renewable energy resources, particularly 

under variable weather conditions.  

By integrating time convolutional networks with 

traditional methods, the research fills a critical gap in PV 

forecasting, demonstrating how hybrid approaches can 

enhance predictive accuracy. The findings underscore the 

need for sophisticated forecasting techniques in the renewable 

energy sector.  

Han et al. [25] propose a multi-view, multi-adversarial 

learning approach for joint air quality and weather prediction. 

Their innovative model leverages adversarial training to 

improve the accuracy of both air quality and weather forecasts. 



K. Sowjanya Bharathi & Boddu Sekhar Babu / IJETT, 72(10), 96-118, 2024 

 

100 

This research highlights the interconnectedness of 

meteorological and environmental data, addressing a 

significant gap in existing prediction models. By focusing on 

joint forecasting, the study offers a promising avenue for 

advancing predictive capabilities in both air quality 

management and weather forecasting.  

Suleman and Shridevi [26] developed a spatial feature 

attention-based LSTM model for short-term weather 

forecasting. Their work emphasizes the importance of spatial 

features in improving the accuracy of weather predictions, 

showcasing the potential of attention mechanisms in LSTM 

architectures.  

This research contributes to the field by addressing the 

need for more nuanced forecasting models that can capture 

complex spatial relationships. The findings highlight the value 

of integrating spatial attention in enhancing short-term 

weather forecasting capabilities. Essa et al. [27] have 

demonstrated a deep learning technique for predicting 

thunderstorm severity using remote sensing weather data. 

Their research illustrates how advanced neural networks can 

enhance the understanding of severe weather events, 

providing critical information for timely warnings.  

By applying remote sensing data to predict thunderstorm 

impacts, the study fills a gap in severe weather forecasting 

research, highlighting the importance of integrating modern 

computational techniques in meteorology. Barnes et al. [28] 

explored to implementation of video-based convolutional 

neural networks for rainfall forecasting. Their innovative 

approach utilizes video data to capture dynamic weather 

patterns, providing a novel method for predicting rainfall.  

This research addresses a significant gap in traditional 

rainfall forecasting methodologies, demonstrating how visual 

data can enhance predictive capabilities. The findings 

underscore the potential of combining video analysis with 

meteorological forecasting to improve rainfall prediction 

accuracy. Yu et al. [29] present ATMConvGRU, a model for 

weather forecasting that combines atmospheric convolutional 

layers with gated recurrent units.  

Their approach addresses the limitations of traditional 

forecasting models by effectively capturing temporal and 

spatial dependencies in weather data. This research 

contributes significantly to the advancement of 

meteorological modeling techniques, filling a gap in the 

application of deep learning to weather predictions. The 

findings indicate the potential for enhanced forecasting 

accuracy through innovative model designs. Vu et al. [30] 

propose a recurring multi-layer moving window approach to 

forecast day-ahead and week-ahead load demand, considering 

weather conditions.  

Their research highlights the importance of incorporating 

weather data into load forecasting models, providing valuable 

insights for energy providers. By addressing the impact of 

weather on energy consumption patterns, the study fills a 

critical gap in understanding load dynamics. This research 

contributes to the development of more responsive energy 

management strategies, essential for balancing supply and 

demand. 

3. Existing Design 
The MLP-Self-Attention Time Layer (MLP-SATL) 

model introduces a ground-breaking approach to weather 

prediction, combining the strengths of Multilayer Perceptron 

(MLP) and Self-Attention mechanisms. In the concept section, 

it is emphasized that this model stands as a powerful tool for 

real-time weather forecasting, excelling in capturing complex 

temporal dependencies within weather data.  

The integration of MLP's ability to explore non-linear 

associations and Self-Attention's capability to recognize 

temporal patterns ensures robust and accurate predictions, 

addressing the increasing demand for high-performing 

weather prediction tools. The model's adaptive nature and 

proficiency in understanding intricate temporal relationships 

position it as a valuable asset for diverse applications, 

including agriculture, transportation, disaster management, 

and urban planning.  

In the design, the block diagram illustrates the integration 

of key components, including the Self-Attention mechanism, 

MLP, timeline data, AdaSTL for handling seasonality, and an 

Encoder-Decoder architecture for transfer learning. The 

algorithms, such as STL Time Series Decomposition and Self-

Attention Mechanism, are explained in detail, showcasing the 

model's comprehensive approach to capturing temporal 

dynamics and handling complex patterns in weather data. 

The inclusion of AdaSTL ensures effective management 

of seasonality, enhancing the model's adaptability. Overall, 

the model's design methodology emphasizes its ability to 

analyse chronological sequences, handle seasonal variations, 

and leverage transfer learning for robust performance across 

diverse datasets and applications. 

3.1. Design Considerations 

The work in [20] implicates on the AdaSTL framework 

mentioned in the Figure 1. The design process is dealt with to 

implicate the temporal and spatial patterns realized with global 

dependencies with input and output. This process with a multi-

layer architectural framework has proven with the complexity 

of (O(nlogn)) with timing criteria.   

Similarly, an informative filter module is designed to 

incorporate the noise generated with each type of predicted 

outcome from the encoder and decoder layer. Finally, this 

model tends to provide the adaptability to inculcate refinement 

with filter models with multi-layer architecture based on 

seasonal and mitigation components for predicting drift. 
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Fig. 1 The overall block diagram for AdaSTL functionality with the weather forecasting model [20] 

3.2. Formulations 

The STL design on the Drift prediction with seasonal 

components (S), trend components (T), time series (Y), and 

residual component (R). The preliminary procedure   for STL 

algorithm for the work in [20] is mentioned below: 

Step1: De-trending: 

The trend component of the dataset component is subtracted 

from its previous case values as mentioned below: 

𝑌 = 𝑌 − 𝑇𝑘−1   (1) 

where k I is the iteration of the current sequence of the data 

while the trend component is 𝑇0 as initial value. 

Step 2: In this step, the overall design is applied with weighted 

regression analysis to smoothen the samples uniformly and 

extend this approach for both cycles forward and backwards. 

The combined results will form a partial sequence for seasonal 

AA represented by 𝐶𝑘  

Step 3: This step determines the pre and post case of filtering 

with cycle sub-series generated functionality. The moving 

average condition with 𝑛𝑝, 𝑛𝑝, 3 𝑎𝑛𝑑 𝐶𝑘  and apply the 

weights to the regression values obtained with the parameter 

𝑛𝑖  and to get the sequence 𝐿𝑘 with length N. 

Step 4: Determine the smooth sequence with formulation as: 

𝑆𝑘 = 𝐶𝑘 − 𝐿𝑘             (2) 

Step 5: De-seasonlization with 𝑌 − 𝑆𝑘         (3) 

Step 6: Trend Smoothening: Apply the regression weights to 

the time series functionality to generate an overall sequence 

with above seasonalization: 

For k=1: N: 

SSM, T TM, R(Y-S-T)  (4) 

end 
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4. Material and Methods 
The proposed hybrid model study addresses the persistent 

challenge in weather forecasting—improving short-term 

prediction accuracy—by proposing two novel approaches: the 

ARIMA model and LMSE-optimized LSTM neural networks. 

While ARIMA is adept at capturing short-term dependencies, 

LMSE-optimized LSTM networks excel in handling long-

term dependencies and complex relationships within weather 

data. 

 The integration of these approaches aims to enhance 

predictive accuracy significantly. The research also involves a 

comprehensive comparative analysis with established 

algorithms like KNN, SVM, and Ensemble methods to 

evaluate performance metrics such as accuracy, computational 

efficiency, and adaptability. Leveraging diverse weather 

datasets, including the UCI weather dataset, ensures the 

robustness and adaptability of the proposed ARIMA+LMSE 

LSTM approach. Ultimately, the study addresses a critical 

need in society by striving to provide more precise and reliable 

short-term weather predictions for meteorologists, emergency 

responders, and the public. 

4.1. Concept  

The integration of HPA (Heuristic Prediction Approach) 

with ARIMA and the combination of LSTM (Long Short-

Term Memory) with UNET architecture is of paramount 

importance in advancing the field of weather forecasting. 

These innovative approaches aim to bring about a substantial 

improvement in the precision and reliability of short-term 

weather predictions.  

By blending data-driven models like ARIMA and LSTM 

with expert-driven insights and the sophisticated filters of 

HPA, these approaches enable us to not only capture complex 

spatiotemporal patterns within weather data but also harness 

domain-specific knowledge to adapt swiftly to changing 

conditions.  

In an era where the demand for highly accurate and timely 

weather forecasts is continuously growing, HPA+ARIMA and 

LSTM+HPA architectures hold the promise of providing 

essential, actionable information to meteorologists, 

emergency responders, and the general public, ultimately 

enhancing decision-making and public safety in the face of 

dynamic and unpredictable weather scenarios. 

4.2. ARIMA+HPA Architecture 

The ARIMA+HPA (Autoregressive Integrated Moving 

Average with Heuristic Prediction Approach) architecture, 

presented in Figure 2, shows an innovative fusion of two 

methodologies aimed at augmenting the accuracy of short-

term weather forecasting. Integrating the well-established 

ARIMA model with a Heuristic Prediction Approach (HPA), 

this hybrid framework seeks to deliver more robust 

predictions of weather conditions, catering to the needs of 

meteorologists, emergency responders, and the wider public. 

The ARIMA model, renowned for its prowess in time series 

analysis, excels at capturing short-term dependencies within 

weather data. In tandem, the Heuristic Prediction Approach 

incorporates domain-specific expert knowledge, allowing 

meteorologists to provide valuable insights, especially in the 

face of rapidly changing or extreme weather scenarios.  

The hybrid approach capitalizes on the synergy between 

the statistical rigor of ARIMA and the contextual insights 

offered by meteorologists through HPA. This amalgamation 

aims to bridge the gap between data-driven and expert-driven 

forecasting, fostering higher precision in short-term weather 

predictions. The architecture is designed to adapt swiftly to 

dynamic weather conditions, which is particularly crucial for 

emergency response and public safety.  

To validate its efficacy, rigorous comparative analyses 

against state-of-the-art weather forecasting models are 

imperative, scrutinizing its performance in terms of accuracy 

and efficiency. The ARIMA+HPA architecture, thus, emerges 

as a sophisticated and adaptive solution poised to elevate the 

reliability of short-term weather forecasts, addressing critical 

requirements across diverse sectors. 

4.3. LSTM+HPA Architecture 

The proposed LSTM+HPA model, in Figure 3, for 

weather prediction integrates various layers, including max-

pooling, LSTM, Dense, Dropout, and Output Dense layers. 

Each layer serves a specific function in feature extraction, 

temporal processing, and prediction generation. The design 

emphasizes the preservation of spatial and temporal 

information to enhance forecasting capabilities.  

Stacking these layers sequentially and connecting their 

outputs appropriately ensures a comprehensive approach to 

leverage both spatial and temporal contexts within weather 

data. Fine-tuning of hyperparameters may be necessary based 

on the specific weather dataset and prediction task.In parallel, 

the design aspects of LSTM and the Heuristic Prediction 

Approach (HPA) involve meticulous steps.  

The LSTM, designed to capture temporal dependencies, 

undergoes data pre-processing and training using the UCI 

Seatle dataset. Simultaneously, the HPA-LSTM model is 

constructed to capture spatial features, potentially involving 

Genetic Filters. The integration of LSTM and HPA models 

requires combining learned features, followed by fine-tuning 

and validation for optimal performance. The potential impact 

on weather prediction lies in the synergistic utilization of STM 

for temporal pattern learning and HPA for spatial feature 

handling, offering a more comprehensive understanding of 

both temporal and spatial aspects of weather information data 

with the Seatle Dataset for improved forecasting insights. 
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Fig. 2 Representing the overall block diagram with ARIMA + HPA model 

 
Fig. 3 The overall block diagram with LSTM + HPA model 
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4.4. Combined Architecture 

The hybrid model combining ARIMA+HPA and 

LSTM+HPA represents a sophisticated approach to weather 

prediction that integrates statistical and deep learning 

techniques to enhance forecasting accuracy. At its core, this 

architecture leverages the strengths of time series analysis 

through the ARIMA model while simultaneously harnessing 

the power of deep learning with LSTM networks. This dual 

framework is particularly effective in capturing both short-

term and long-term dependencies in meteorological data. The 

ARIMA model provides a solid foundation by effectively 

modelling linear relationships and seasonality in weather data, 

making it adept at identifying trends and cycles that are crucial 

for accurate short-term forecasts. By integrating the Heuristic 

Prediction Approach (HPA), which incorporates relevant 

patterns, the model further enhances its predictive capability, 

especially during extreme weather conditions when rapid 

changes are likely. The LSTM component in Figure 4 of the 

hybrid model complements the ARIMA approach by focusing 

on the temporal aspects of weather data. Long Short-Term 

Memory networks are designed to remember patterns over 

extended periods, making them particularly suited for time 

series forecasting. In the context of weather prediction, 

LSTMs can learn complex relationships among various 

meteorological parameters such as temperature, humidity, and 

wind speed. By processing sequences of data, the LSTM can 

discern patterns that traditional models might miss.  

The addition of HPA into the LSTM framework allows 

for a more nuanced understanding of spatial features, as HPA 

can guide the LSTM in recognizing critical variables that 

influence weather patterns.  

This combination enables the model to adapt more 

effectively to non-linear changes in weather, providing more 

reliable predictions. In terms of optimization, the hybrid 

model significantly influences the Least Mean Square Error 

(LMSE) optimization process. LMSE is a critical criterion for 

assessing the model’s accuracy, and with the hybrid 

architecture, the model benefits from the strengths of both 

statistical and deep learning methods. The ARIMA model's 

initial forecasts can serve as a baseline, while the LSTM 

model refines these predictions through iterative learning and 

adjustment based on incoming data. The optimization process 

focuses on minimizing the error by adjusting model 

parameters, effectively balancing the contributions of both 

ARIMA and LSTM components. By combining these 

approaches, the model can reduce variance and bias in 

predictions, thereby achieving lower LMSE values. This 

optimization is further enhanced through techniques such as 

backpropagation in the LSTM, which allows for fine-tuning 

based on previous prediction errors, ultimately leading to 

improved forecasting performance. The design of this hybrid 

model also emphasizes the importance of feature engineering 

and selection. Effective forecasting requires not just raw data 

but also relevant features that can inform predictions.  

Fig. 4 The overall block diagram with LSTM +ARIMA+ HPA model 
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The integration of HPA plays a crucial role here, as it 

allows meteorologists to incorporate domain-specific insights 

into the feature set. This can include meteorological 

parameters like temperature, humidity, and precipitation, as 

well as derived features such as moving averages or seasonal 

indicators.  

By leveraging these tailored features within the LSTM 

architecture, the model can enhance its understanding of 

complex interactions among different weather parameters. 

The attention to feature selection further aids in minimizing 

overfitting, a common challenge in deep learning models, by 

ensuring that only the most relevant data informs the 

predictions.  

4.5. Algorithm 

4.5.1. HPA (Gaussian) 

ALGORITHM: HPA-1 (Gaussian Approach): 

1. Initialization and Preprocessing 

• Input: Dataset D with features relevant to the prediction 

task. 

• Preprocessing: Handle missing values, scale/normalize 

features, and perform data formatting. 

2. Gaussian Filtering Operation 

• Function Gaussian-Filter(D, σ) 

1. Create a Gaussian kernel G based on the given 

standard deviation (σ). 

2. Convolve the dataset D with the Gaussian kernel to 

apply the filter, reducing noise and smoothening the 

data. 

3. Hybrid Prediction Approach (HPA) 

• Function HPA(D) 

1. Perform feature engineering to extract relevant 

characteristics from the filtered dataset. 

2. Choose and apply predictive models (e.g., statistical, 

machine learning, heuristic) considering the specific 

task requirements. 

3. Train models on historical data and validate their 

performance. 

4. Prediction Phase 

• Function 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 (2012 − 2024, 𝐷, 2012 − 2024) 

1. Apply the Gaussian filter to the available data for the 

years 2012-2024 (2012−2024, D, 2018−2024). 

2. Utilize the trained models from HPA on the filtered 

dataset to make predictions for the upcoming years. 

3. Generate forecasts and provide estimates for the 

targeted variables based on the combined model 

outputs. 

5. Output and Analysis 

• Function: 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑎𝑛𝑑_𝑅𝑒𝑝𝑜𝑟𝑡( Predictions) 

• Evaluate the accuracy, precision, and any other relevant 

metrics of the predictions. 

4.5.2. HPA (Genetic) 

ALGORITHM 2: HPA (Genetic Filter): 

1. Initialization and Preprocessing 

• Input: Dataset D with features pertinent to the prediction 

task. 

• Preprocessing: Handle missing values, scale/normalize 

features, and format data for subsequent operations. 

2. Genetic Filtering Operation 

• Function Genetic Filter(D) 

1. Encode features of the dataset D into chromosomes 

for genetic operations. 

2. Initialize a population of filter kernels. 

3. Define fitness functions to evaluate the quality of 

filter kernels based on noise reduction and 

information preservation. 

4. Employ genetic algorithms (crossover, mutation) to 

evolve the filter kernels, selecting the best-

performing ones. 

3. Hybrid Prediction Approach (HPA) 

• Function HPA (D filtered) 

1. Use the filtered dataset D filtered obtained from the 

genetic filter as input to the prediction models. 

2. Apply feature engineering and select suitable 

prediction models (statistical, machine learning, 

heuristic). 

3. Train and validate models on historical data to 

capture patterns. 

4. Prediction Phase 

• Function Forecast(2012−2024D2012−2024) 

1. Apply the genetic filtering algorithm to the available 

data for the years 2018-2024 

(2018−2024D2018−2024). 

2. Implement the Hybrid Prediction Approach on the 

filtered dataset to generate predictions for the 

upcoming years. 

3. Produce forecasts and provide estimates for the 

targeted variables based on the combined model 

outputs. 

5. Output and Analysis 

• Function Evaluate_and_Report(Predictions) 

1. Evaluate the accuracy, precision, and relevant 

metrics of the predictions. 

4.5.3. ARIMA (GAUSSIAN) 

ALGORITHM 1: ARIMA+HPA: 

Inputs: 𝑋𝑖𝑛 , 𝑊𝑖𝑛 , 𝐻𝑃𝐴(𝑑𝑓), 𝐴𝑅𝐼𝑀𝐴(𝑑𝑓𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) 

Outputs: 𝑌ℎ𝑝𝑎 , 𝑦𝐴𝑅𝐼𝑀𝐴𝑜𝑢𝑡  

Procedure: 

Step 1: Load the Seattle weather dataset and perform pre-

processing, including normalization of features, 

handling missing values, and splitting the dataset into 

training and testing sets. 



K. Sowjanya Bharathi & Boddu Sekhar Babu / IJETT, 72(10), 96-118, 2024 

 

106 

Step 2: Apply the Gaussian Criteria for the HPA Filter 

design 

Step 3: Calculate the Training and Testing with Linear 

Prediction (Gradient Boosting Regressor) 

Step 4: Apply ARIMA predicted values to the observed 

prediction. 

Step 5: Append the values with proper weight functionality 

as the feedback process and repeat the steps (1)-(5) 

till the error is correct tolerance of 10%. 

Step 6: Evaluate the prediction criteria with the HPA filter as 

post processing to produce the correct prediction 

with a mean square error of 5.384 in Table1. 

End Procedure 

The ARIMA + HPA algorithm focuses on time series 

forecasting using the Seattle weather dataset. The process 

begins with essential pre-processing steps, such as 

normalizing features, addressing missing values, and splitting 

the dataset into training and testing sets. Once the data is 

prepared, the algorithm applies the Gaussian Criteria to design 

the HPA filter, which is crucial for effective prediction.  

Subsequently, the algorithm employs a Gradient Boosting 

Regressor to perform linear predictions on the training and 

testing data. ARIMA (AutoRegressive Integrated Moving 

Average) is then applied to integrate the predicted values with 

the observed data, allowing for a more robust forecasting 

approach.  

The iterative nature of the algorithm is significant; it 

appends the predicted values with appropriate weights as a 

feedback mechanism and repeats the entire process until the 

prediction error falls within a specified tolerance level of 10%.  

Finally, the predictions are refined using the HPA filter as 

a post-processing step, ensuring the final model's outputs are 

optimized, with the performance evaluated against a Mean 

Squared Error (MSE) of 5.384, as noted in the evaluation 

metrics. This thorough design enables the algorithm to 

leverage both time series analysis and machine learning for 

effective weather forecasting. 

4.5.4. LSTM (Genetic) 

ALGORITHM 2: LSTM +HPA: 

Inputs: 𝑋𝑖𝑛 , 𝑊𝑖𝑛 , 𝐻𝑃𝐴(𝑑𝑓), 𝐿𝑆𝑇𝑀(𝑑𝑓𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) 

Outputs: 𝑌ℎ𝑝𝑎 , 𝑦𝐿𝑆𝑇𝑀𝑜𝑢𝑡  

Procedure: 

Step 1: Load the Seattle weather dataset and perform pre-

processing, including normalization of features, 

handling missing values, and splitting the dataset into 

training and testing sets. Reshape the input data to the 

format required by the LSTM model (samples, time 

steps, features). 

Step 2: Define the HPA Genetic Filter by invoking the 

HPA(df). The HPA function operates with a data 

frame indicating the new functionalities for the 

atmospheric criteria chosen and applied the Genetic 

filtered outcomes with a heuristic prediction process 

as formulated with forward traversing with linear and 

Genetic criteria. 

Step 3: To apply the LSTM model architecture 13-layer 

design using the build_lstm_model(input_shape) 

function, where input_shape corresponds to the 

dimensions of the reshaped training data. The model 

should consist of 13 sequential LSTM layers, each 

followed by a Dense layer, concluding with a dropout 

layer and final output layer for regression predictions 

(Linear Activations), as mentioned in Figure 5. 

Step 4: Compile the model using the Adam optimizer and the 

Mean Squared Error loss function to ensure optimal 

performance during training. 

Step 5: Train the model on the training dataset using the fit 

method, specifying parameters such as the number of 

epochs and batch size (200 and 32).  

Step 6: Evaluate the trained model on the test dataset to 

obtain performance metrics for Mean Square Error, 

Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE). Utilize the model to make 

predictions on new data or future time steps, 

assessing its accuracy and reliability in forecasting. 

End procedure  

The LSTM + HPA algorithm also utilizes the Seattle 

weather dataset but incorporates advanced deep learning 

techniques to enhance prediction accuracy. 

 Like the previous algorithm, it begins with a 

comprehensive pre-processing phase, which includes 

normalizing features, handling missing values, and reshaping 

the dataset to fit the requirements of the LSTM model—

specifically, adjusting the input format to (samples, time steps, 

features).  

The algorithm then defines the HPA Genetic Filter, which 

applies heuristic predictions based on atmospheric criteria, 

using a forward traversal method that combines linear and 

genetic optimization techniques to refine the forecast.  

In the next steps, the algorithm constructs a 13-layer 

LSTM model through a specified function, which includes 

sequential layers interspersed with Dense layers and 

concludes with a dropout layer to mitigate overfitting. This 

model is compiled with the Adam optimizer and the Mean 

Squared Error loss function, ensuring efficient training. 

During the training phase, the model is fit to the training 

dataset using designated epochs and batch sizes (200 epochs 

and a batch size of 32).  

4.5.5. LSTM Layer Summary 
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Fig. 5 Representing the LSTM summary for trainable parameters for 

LSTM architecture 

Total params: 1,663,655 (6.35 MB) 

Trainable params: 554,551 (2.12 MB) 

Non-trainable params: 0 (0.00 B) 

Optimizer params: 1,109,104 (4.23 MB) 

Finally, the trained model is evaluated against the test 

dataset to calculate performance metrics such as Mean 

Squared Error (MSE), Mean Absolute Error (MAE), and Root 

Mean Squared Error (RMSE). This enables the model to 

produce accurate predictions, highlighting its reliability for 

forecasting future weather conditions. 

4.6. Formulations 

4.6.1. Genetic Filter Representation 

The overall Genetic filter design on the proposed 

ARIMA+HPA is implemented with different aspects of the 

design on the chromosome, initialization, mutation and 

selection features on the dataset for each type of year period 

from Jan-Dec. 

Chromosome Representation 

1. Binary Representation: The chromosome, representing a 

potential solution, is encoded as a binary string: 

Chromosome=[b1,b2,...,bn]. Here, each bi denotes a gene 

within the chromosome, taking binary values (0 or 1) 

indicating different features or parameters. 

2. Real-Valued Representation: An alternative encoding 

method involves representing the chromosome in a real-

valued vector format:  Chromosome=[x1,x2,...,xn]. In this 

representation, xi represents individual genes with 

continuous, real-valued attributes, applicable for 

optimizing problems with continuous variable spaces. 

Initialization 

1. Binary Initialization: The process of initializing binary 

chromosomes involves setting genes randomly as either 0 

or 1. This is expressed as bi∈ {0,1}, allowing the genes to 

start with an arbitrary but defined state within the 

chromosome. 

2. Real-Valued Initialization: Real-valued chromosomes are 

initialized within a specified range. For instance, xi is 

uniformly distributed in the range [a, b], indicating genes' 

values are initialized uniformly between the lower bound 

a and upper bound b, where a and b define the range for 

the genes. 

Fitness Function 

1. Objective Evaluation: The fitness function, Fitness  

(Chromosome) = f(x1,x2,...,xn)               (5) 

assesses the quality of a chromosome as per the problem's 

objective. The function f quantifies how well the 

chromosome performs with respect to the optimization 

goal, mapping genes to a fitness score. 

Selection 

1. Probabilistic Assessment: Chromosomes are selected 

based on their fitness scores. The probability Pi of 

selecting the ℎi  chromosome from a population of N 

chromosomes can be calculated as  

𝑃𝑖 =
1

𝑁
(

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑗)

∑ 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒𝑖)
)  (6) 

This probability defines the likelihood of a chromosome 

being chosen for the reproductive process, guided by its fitness 

relative to others in the population. 

Gaussian Filter Representation 

Similarly, for this filter representation, we improvise the 

Gaussian function defined by: 

𝐺(𝑥) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2∗𝜋∗𝜎2    (7) 

Similarly, for the variable y, we have, 

𝐺(𝑦) =
1

𝜎√2𝜋
𝑒

−(𝑦−𝜇)2

2∗𝜋∗𝜎2     (8) 
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Both the functions in Equations (7)-(8) determine G(x) 

and G(y) as overall expected probabilities on the input dataset 

from the UCI website. The overall data features comprise the 

values of temperature, precipitation and rainfall values 

calculated based on the specific predictive formulations (from 

1950-2017). From this perspective, we improvise the overall 

values and predict the overall rainfall, precipitation, and 

temperature values month, day and year wise graphically. The 

need for ARIMA, LUNET and HPA algorithms has a direct 

impact on the design parameters represented with effective 

solutions on the design. The effectiveness of the loss observed 

with the prediction values is fed to the input of the same design 

model to impart the correct and accurate values of the 

predicted data with time series prediction. 

4.6.2. Impact on LMSE for ARIMA, LSTM, Combined 

The Least means square error metric is calculated based 

on the overall possible sample considerations on the dataset 

for each type of predicted outcome observed. The least value 

is decided with the probability of the minimum and maximum 

samples for which the new metrics are directly proportional to 

the MSE values obtained. This results in the condition that Px 

be the conditional probability for at least one maximum error 

and at least more than one minimum error. 

𝑃𝑥 (
𝑋𝑚𝑎𝑥𝑥

𝑋𝑚𝑖𝑛𝑥
 )  =  𝑃(𝑋𝑚𝑖𝑛𝑥) ∗ 𝑃(𝑋𝑖 == 𝑚𝑖𝑛)/(𝑃(𝑋𝑚𝑖𝑛𝑥) ∩

𝑃(𝑋𝑚𝑎𝑥𝑥)))       (9) 

Since we know that the probability for the X==min or 

X==max will be achieved only if the condition from the 

equation achieves the correct possible values of maximum or 

minimum values. Since the maximum values would result in 

more loss hence, the overall condition is set to minimum 

ordering P(X/Xmin ). The 𝑃(𝑋𝑚𝑎𝑥𝑥) ≈ maximum possible 

error in the LSTM design. Similarly, The 𝑃(𝑋𝑚𝑖𝑛𝑥) ≈ 

maximum possible error in the LSTM design. 

𝑖𝑡 =  𝜎{𝑤𝑖{ℎ𝑡−1, 𝑥𝑡} + 𝑏𝑖}   (10) 

𝑓𝑡 =  𝜎{𝑤𝑖{ℎ𝑡−1, 𝑥𝑡} + 𝑏𝑖}   (11) 

𝑜𝑡 =  𝜎{𝑤𝑖{ℎ𝑡−1, 𝑥𝑡} + 𝑏𝑖}   (12) 

𝑐�̂� = tanh(𝑤𝑐(ℎ𝑡−1, 𝑥𝑡) + 𝑏𝑜)  (13) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐�̂�       (14) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐�̂�)             (15) 

From the above equations,  

𝑃(𝑋𝑚𝑖𝑛𝑥) ∝ 𝑜𝑡 min 𝑐𝑡          (16) 

𝑃(𝑋𝑚𝑖𝑛𝑥) =  𝛼 ∗ (𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛 (𝑜𝑡 min 𝑐𝑡))                (17) 

𝑃(𝑋𝑚𝑖𝑛𝑥) = 𝛼𝐸[𝑜𝑡 min 𝑐𝑡] =

𝛼 ∫ 𝑜𝑡 min 𝑐𝑡𝜎(𝑜𝑡 min 𝑐𝑡) 𝑑𝑥𝑚𝑖𝑛𝑥  
∞

−∞
  

  (18) 

Converting infinite cases to finite cases as the probability 

for minimum is between 0 and 1. Hence, from Equation 18, 

𝛼 ∫ 𝑜𝑡 min 𝑐𝑡𝜎(𝑜𝑡 min 𝑐𝑡) 𝑑𝑥𝑚𝑖𝑛𝑥  
∞

−∞
       (19) 

By substituting the values from the Equations (10)-(15), 

the resulted outcome of probability is: 

𝑃 (
𝑋

𝑋𝑚𝑖𝑛𝑥
) =

𝑃(𝑋𝑚𝑖𝑛𝑥)

𝑃(𝑋)
∗ (𝑃(𝑋𝑚𝑖𝑛𝑥 ∩ 𝑃(𝑋)))               (20) 

Since 𝑃(𝑋𝑚𝑖𝑛𝑥 ∩ 𝑃(𝑋)) leads to constant value 𝛿, 𝑃(𝑋)=1.

 𝑃 (
𝑋

𝑋𝑚𝑖𝑛𝑥
) = 𝛿 ∗ 𝑃(𝑋𝑚𝑖𝑛𝑥)   (21) 

From (19 and (21)), the equations are substituted with 

values as: 

𝑃 (
𝑋

𝑋𝑚𝑖𝑛𝑥
)

𝑚𝑖𝑛𝑥
=  𝛿𝛼 (

𝑒𝑥

(1+𝑒𝑥)2) ∗ (𝑚𝑖𝑥𝑖𝑚𝑖𝑛𝑥
+ 𝑏𝑥ℎ𝑥)(22) 

The minimum possible criteria for the 𝑋𝑚𝑖𝑛𝑥 only if, in 

Equation (22) derivate is zero (minima) 

𝑥𝑖𝑚𝑖𝑛𝑥
= ℎ𝑥 ∗

𝑏𝑥

𝛿𝛼
∗ (

4

𝑚𝑖
)    (23) 

Here, ℎ𝑥,
𝑏𝑥

𝛿𝛼
, 𝑚𝑖 are the effective factors for the weights 

considered with MSE loss in compiling the LSTM design. 

5. Experimental Setup 
The proposed design with the parametric features is 

considered and utilized to realize the importance of 

classification values based on the six terms indicating the best 

performance of the design before and after optimization. The 

values are listed below: 

1. MSE 

2. RMSE 

3. F1-score 

4. Recall 

5. Precision 

6. Accuracy 

To represent such parametric, a confusion matrix is 

implemented to realize the design has a high performance 

based on the above six parametric. Generally, the matrix for 

disease classification is 2x2 matrices consisting of four 

elements as listed below: 

1. True Positive 

2. True Negative 

3. False Positive 

4. False Negative 

The TP and TN are sample values observed after 

predictions, which represent whether a person has heart 

disease or not. While FP and FN are the values for 

misdiagnosed patients who have heart disease or not. The 

formulations for the parametric are represented below: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝐹𝑃 + 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁
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Precision for the positive case is determined by: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Other important features such as sensitivity and specificity are 

given by: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2 𝑋 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑋 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

𝑀𝐴𝐸 =
1

𝑁
(∑|𝑦𝑖 − 𝑦�̂�|

𝑁

𝑖=1

) 

𝑀𝑆𝐸 =  
1

𝑁
∑|𝑦𝑖 − 𝑦�̂�|

2

𝑁

𝑖=1

 

𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑|𝑦𝑖 − 𝑦�̂�|

2

𝑁

𝑖=1

 

To assess the social, economic, and environmental effects 

of enhancing short-term weather forecasting accuracy, we will 

use important indicators such as Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and Mean Squared Error 

(MSE). MAE calculates the average absolute differences 

between projected and actual values, allowing for a clear 

interpretation of prediction dependability.  

This is crucial for reducing mistakes in key decision-

making situations such as emergency reactions. RMSE 

estimates the average size of prediction mistakes, emphasizing 

larger disparities and providing insights into the severity of 

errors in high-impact weather events, thereby improving 

societal preparedness. MSE, like RMSE, measures average 

squared differences and serves as a fundamental indicator for 

optimisation, indicating the model's overall performance over 

time. These measurements have proven significant 

analysation how precise weather predictions can improve 

public safety, disaster preparation, and community resilience, 

as well as quantify possible financial benefits in industries, 

agriculture and transportation. Furthermore, accurate 

projections help to improve resource management and 

conservation efforts by directing environmental decisions and 

sustainability activities. MAE, RMSE, and MSE give useful 

insights into the varied effects of improved weather 

forecasting accuracy on society, the economy, and the 

environment. 

In the experimental setup, an ASUS ROG device 

equipped with a GTX-960M 4GB graphics card was 

employed to execute weather prediction tasks utilizing both 

ARIMA and LSTM models enhanced by the Heuristic 

Prediction Algorithm (HPA). The Root Mean Square Error 

(RMSE) ranged between 2.1 to 2.9, showcasing the models' 

accuracy and reliability in forecasting. With an overall 

accuracy of 97.5% for weather type classification, including 

an impressive 99.77% accuracy with the HPA algorithm, the 

models demonstrated efficiency in categorizing distinct 

weather patterns. The ASUS ROG device, coupled with the 

graphics card, played a crucial role in executing these complex 

models efficiently, underscoring the robustness of the 

integrated ARIMA and LSTM models with HPA for highly 

accurate weather prediction and classification tasks. 

6. Results and Discussion  
The implementation of the hybrid weather forecasting 

model, which combines ARIMA and LSTM with the Heuristic 

Prediction Approach (HPA), showcases a structured 

methodology for improving accuracy in predicting various 

meteorological parameters. The dataset utilized spans over a 

decade, providing a rich historical context for the model's 

training. Results indicate a robust performance with the Root 

Mean Square Error (RMSE) for temperature, wind speed, and 

precipitation recorded at 2.9, 2.5, and 2.1, respectively, while 

achieving an overall accuracy of 97.5% in forecasting tasks.  

The model's ability to classify weather types, achieving 

an impressive accuracy of 99.77%, further emphasizes its 

effectiveness in leveraging extensive historical data. These 

results are indicative of the model's dual strengths in statistical 

and deep learning methodologies, which are vital for handling 

complex and non-linear weather patterns. The data 

preprocessing phase is crucial to ensure the dataset's quality 

and applicability for training the model.  

This step involved comprehensive data cleaning to 

address missing or inconsistent entries, normalization to 

standardize the features, and encoding of categorical variables 

for seamless integration into the model. The pre-processing 

phase also incorporated techniques to handle class 

imbalances, which can skew classification results. By 

employing oversampling and undersampling methods, the 

dataset was balanced, ensuring equitable representation of all-

weather types. Data visualization techniques, including pair 

plots and heatmaps, were utilized to explore relationships 

between various weather parameters, helping identify 

correlations and potential influential features for the 

classification tasks.  

This thorough preparation establishes a strong foundation 

for effective model training. The hybrid model’s architecture 

plays a significant role in optimizing predictive performance. 

The LSTM+HPA component harnesses the temporal learning 

capabilities of LSTMs, enhanced by heuristic algorithms that 
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refine feature extraction and improve overall performance. 

Through a 10-layer LSTM network, the model captures 

intricate relationships within historical data. At the same time, 

HPA aids in optimizing the selection of features, which is 

critical in achieving lower LMSE and RMSE values. 

Conversely, the ARIMA+HPA combination leverages 

statistical modelling to understand time series data, refined 

through heuristic techniques. This synergy between statistical 

rigor and deep learning innovation not only elevates the 

model’s accuracy but also enables it to adapt to rapidly 

changing weather conditions effectively. The iterative 

optimization process of minimizing LMSE and RMSE during 

training underscores the model’s capability to provide reliable 

forecasts. 

6.1. Dataset 

The dataset presented in Figure 6 encapsulates weather-

related observations spanning from January 1, 2012, to 

February 4, 2022, encompassing metrics such as precipitation, 

maximum temperature (temp_max), minimum temperature 

(temp_min), wind speed, and weather type classifications. 

Notably, the forecasting and classification models trained on 

this dataset demonstrated promising results. The Root Mean 

Square Error (RMSE) for temperature, wind speed, and 

precipitation stood at 2.9, 2.5, and 2.1, respectively, signifying 

satisfactory forecasting precision.  

The overall accuracy of 97.5% in the forecasting task, 

utilizing ARIMA and LSTM models integrated with the HPA 

algorithm, attests to the models' adeptness in accurately 

predicting diverse weather metrics based on historical data. 

Furthermore, the high accuracy rate of 99.77% in classifying 

weather types underscores the models' proficiency in 

categorizing conditions like drizzle, rain, snow, and sun. 

Collectively, these outcomes highlight the robust performance 

of the forecasting and classification models, affirming their 

effectiveness in leveraging historical data for accurate weather 

predictions and classifications. 

 
Fig. 6 The overall dataset with 6h dataset without balancing 

6.2. Data Pre-processing 

 
Fig. 7 The normalized and pre-processed dataset of 0.05 million samples 

In preparing a dataset comprising over 0.6 k samples with 

the balanced case utilized in binary classification of various 

weather types, robust data pre-processing is crucial. Figure 7 

involves several steps, such as data cleaning to handle missing 

or inconsistent entries, normalization or scaling to standardize 

the features, and encoding categorical weather types into 

numerical values for the classification model to interpret. 

Additionally, feature selection and extraction are vital, 

identifying the most influential parameters among the vast 

dataset features. Handling imbalanced classes by employing 

techniques like oversampling or under sampling ensures 

equitable representation for each weather type, facilitating a 

balanced classification model. The extensive dataset's scale 

necessitates careful handling and processing to curate a well-

prepared dataset for effective training and accurate binary 

classification, as mentioned in section V (d)-(h). 

6.3. Data Visualization 

 
Fig. 8 The 16 columns of the pair plot on the seaborn library with 

discrete way plot 

6.3.1. Heat Map 



K. Sowjanya Bharathi & Boddu Sekhar Babu / IJETT, 72(10), 96-118, 2024 

 

111 

 
Fig. 9 Heat map of 600 samples 

The visualization feature imparts how the deviant nature 

of the data is represented with different functional 

formulations and representations. This deviance of the 

representation effects how the data is represented with 

correlational and multi-plotting styles (pairplot). Figures 8 and 

9 implicate how the data varies with each type of label 

included with all column values. These values are represented 

with different graphs depending upon the criteria of the pair-

plot function. In most cases, the representation will be similar 

unless specific modifications such as KDE plots, scatter plots 

and regression plots can be considered depending upon the 

analysis of the data chosen. Similarly, Figure 9 depicts the 

heat-map plot focusing on how many such columns are 

correlated with the factors varying with (-1,0,1) values. As 

from Figure 9, the observed values mostly are near zero or less 

than 0.5, hence indicating the data is mostly linear and linear 

based algorithms work better and are more realizable. 

6.4. Feature Extraction (HPA+PCA) 

Feature extraction through the Heuristic Prediction 

Approach (HPA) involves a hybrid approach for both 

classification and forecasting tasks, employing genetic and 

Gaussian methods, respectively. In the classification context 

depicted in Figure 14 & 16, HPA utilizes genetic algorithms 

to discern relevant features from the dataset. This evolutionary 

approach employs selection, crossover, and mutation 

operations to evolve feature subsets, identifying the most 

impactful variables for accurate weather type classification.  

The refined feature set enhances the classification model's 

accuracy by focusing on the most influential attributes for 

distinguishing various weather conditions. On the other hand, 

for forecasting tasks illustrated in Figure 10, HPA employs 

Gaussian filtering techniques to extract features crucial for 

predictive modelling. 

The Gaussian filtering method, based on probability 

distributions, emphasizes significant data features essential for 

forecasting future weather patterns. By applying Gaussian 

filters, the approach accentuates pertinent attributes and 

minimizes noise, ensuring more precise predictions of weather 

conditions. In essence, HPA tailors its feature extraction 

methods to the specific demands of classification and 

forecasting tasks, employing genetic algorithms for 

classification feature selection and Gaussian filtering for 

forecasting essential attributes within weather datasets. 

 
Fig. 10 The unbalanced dataset of 600 samples 

6.5. Feature Appending 

 
Fig. 11 The balanced dataset of 0.6K samples 
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6.6. Model Creation 

6.6.1. HPA: Gaussian 

The functions add features (data) and 

train_and_predict(data) work in tandem to enhance a dataset 

and facilitate the prediction of temperature using a Gradient 

Boosting model. The add_features function begins by 

converting the date column into a datetime format, allowing 

for the extraction of essential time-related features such as 

year, month, and day of the week. These temporal attributes 

provide a crucial context for understanding seasonal trends in 

temperature data. Additionally, the function computes rolling 

statistics—specifically, the rolling mean and standard 

deviation over a 10-day window—which capture recent trends 

and fluctuations in temperature. This helps the model discern 

short-term variations. To ensure a complete dataset, any 

missing values resulting from the rolling calculations are 

replaced with the mean of their respective columns. This 

preprocessing step is vital for maintaining data integrity and 

enhancing the model’s predictive power. 

Subsequently, the train_and_predict function prepares the 

dataset for modeling, employing a systematic approach to 

train a Gradient Boosting Regressor. The function first selects 

relevant features, including newly engineered ones like 

Hpa_weight and gaussian_weights, and then splits the dataset 

into training and testing subsets to evaluate model 

performance effectively. Feature scaling via StandardScaler is 

implemented to ensure that all features contribute equally to 

the model's learning process, stabilizing it against fluctuations 

in feature magnitude. The Gradient Boosting model is trained 

with carefully chosen parameters to optimize its learning 

capability.  

Once trained, the model predicts the target variable, 

temp_max, on unseen data. Additionally, the Gaussian filter 

applied to the gaussian_weights helps smooth these values, 

reducing noise and allowing the model to focus on meaningful 

trends. By combining rigorous feature engineering with robust 

modeling techniques, this approach enhances predictive 

accuracy, enabling more reliable temperature forecasts while 

effectively addressing the challenges inherent in time series 

data. 

6.6.2. LSTM+HPA 

The synergy of LSTM (Long Short-Term Memory) with 

HPA (Heuristic Prediction Approach) constitutes an 

enhancement of LSTM's sequence learning capabilities 

through the integration of heuristic optimization techniques. 

Within the framework of a 10-layer LSTM model, the network 

excels at capturing intricate temporal relationships embedded 

in historical data. The incorporation of HPA, leveraging 

heuristic algorithms for predictive optimization, further 

refines feature extraction techniques. HPA's role extends 

beyond conventional LSTM architectures by introducing 

convolutional processing techniques, which scan LSTM-

generated features to identify more relevant patterns, 

optimizing the overall model performance. This collaborative 

integration enhances feature selection within the LSTM 

network and strengthens the convolutional process, enabling 

the model to capture complex dependencies in weather data 

more effectively. The result is an augmented LSTM network 

bolstered by refined feature extraction and improved 

convolutional processing, thereby elevating its predictive 

accuracy for weather forecasting. 

6.6.3. Analysis with ARIMA+HPA 

The combination of ARIMA (Auto-Regressive Integrated 

Moving Average) and HPA (Heuristic Prediction Approach) 

capitalizes on their strengths in time series forecasting. 

ARIMA, a classical statistical method, adeptly models time 

series data through autocorrelation, differencing, and moving 

average components. HPA, leveraging heuristic algorithms, 

optimizes predictive processes, refining data and algorithms 

for more accurate predictions.  

Together, HPA complements ARIMA by providing 

heuristic optimization techniques, potentially fine-tuning 

model parameters or optimizing time series data selection. 

This collaborative approach integrates the strengths of 

statistical modelling and heuristic optimization, enhancing the 

accuracy of time series forecasting through refined parameter 

selection within ARIMA. 

6.7. Model Forecasting and Predictions 

6.7.1. Analysis with ARIMA+HPA 

The fusion of ARIMA (Auto-Regressive Integrated 

Moving Average) with HPA in weather forecasting combines 

ARIMA's statistical prowess with HPA's heuristic 

optimization. Analysing a weather dataset featuring 

parameters like temperature, wind speed, and humidity, 

ARIMA models time series patterns while HPA optimizes 

predictive accuracy. Extending the forecasting process to 

2022 and 2023, the ARIMA+HPA model, trained on historical 

weather data, utilizes past trends identified by ARIMA and 

refines them heuristically with HPA.  

This collaborative approach anticipates weather 

conditions by examining temporal dependencies and 

statistical patterns, delivering refined and accurate predictions 

for future meteorological attributes. The overall forecasting 

approach is determined with the Temperature parameter with 

minimum and maximum values, which affects the 

atmospheric weather criteria.  

The proposed work aims to impart the HPA (Gaussian 

Filter) design with the Gaussian model (sigma = 0.05 to 0.5) 

with parametric criteria. Subsequently, the design with a 

seperate and combined approach with HPA is realized to 

improvise the metrics calculations based on MAE, MSE and 

RMSE. The paper in [20] utilizes the design with the Lena 

weather dataset, while the proposed design is modelled with 

Seattle weather prediction from (2012-2018). 
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6.7.2. Analysis with LSTM+HPA 

The integration of LSTM (Long Short-Term Memory) 

with HPA (Heuristic Prediction Approach) in weather 

forecasting involves synergizing LSTM's temporal pattern 

recognition with HPA's heuristic optimization for enhanced 

predictive models. Trained on a comprehensive weather 

dataset spanning multiple years and encompassing diverse 

parameters, the combined model is designed to discern 

intricate weather patterns. LSTM captures historical 

sequences, decoding temporal dependencies between weather 

features, while HPA refines the process through heuristic 

optimization. The LSTM+HPA model, having learned from 

historical data, extrapolates weather conditions for 2022 and 

2023. By leveraging its understanding of past relationships 

and optimized parameters via HPA, the model generates 

precise predictions for temperature trends, precipitation shifts, 

and other meteorological attributes. This integrated approach 

ensures more refined and accurate forecasts for future weather 

conditions. 

6.7.3. Tabulations 

The proposed models, LSTM+HPA and ARIMA+HPA, 

aim to enhance weather forecasting accuracy through 

advanced methodologies. The LSTM+HPA model 

demonstrates significant improvements, achieving an RMSE 

of 1.42 and a MAE of 1.0449, which are considerably lower 

than traditional models such as RNN (RMSE: 5.88) and GRU 

(RMSE: 2.96). Similarly, the ARIMA+HPA model, with an 

RMSE of 2.32, also surpasses the performance of standard 

ARIMA (RMSE: 2.32) and other existing approaches like 

Deep CNN and PredRNN. The incorporation of the Heuristic 

Prediction Approach (HPA) optimizes both models by fine-

tuning the learning process and reducing prediction errors. 

This enhancement allows the models to capture complex 

patterns in the data more effectively. Overall, the proposed 

methodologies provide a marked improvement over existing 

models, showcasing the potential of combining deep learning 

techniques with optimization algorithms for more accurate 

short-term weather predictions. 

Table 1. Proposed model forecasting 

Algorithms RMSE MSE MAE 

RNN [1] 5.88 34.62 4.61 

GRU [7] 2.96 8.79 2.2 

LSTM [12] 3.08 9.51 2.29 

Deep CNN [1-6] 2.88 8.33 2.13 

PredRNN [15] 2.72 7.49 2.07 

TL (M-Net) [1] 2.57 6.72 2.14 

Proposed 

LSTM+HPA 
1.42 1.96 1.0449 

Proposed 

ARIMA+HPA 
2.32 5.384 1.2735 

Proposed 

HPA 
2.18 4.7524 1.1690 

ATFSAD [17] 2.3 5.3 1.728 

6.7.4. Visualization and Hybrid Process 

 
Fig. 12 The overall train and validation plot for time series prediction 

analysis 

The analysis till now with LSTM and ARIMA has shown 

cased with MSE, MAE and RMSE values for the proposed 

model, indicating the best possible changes observed with the 

proposed design on implementing the time series forecasting. 

Figure 12 represents the validation (predicted) with trained 

(original) values for the Temperature parameter. This analysis 

with plotting with linear model depicts the exact and error 

outcomes for the models designed above. This figure imparts 

that for most of the values, the proposed algorithm predicted 

values match with original values, but in some peak occasions 

the overall design fails to achieve the pattern prediction for all 

the data. For both cases, the same pattern of the outcome is 

observed for the Temperature case. The other parametric, such 

as altitude criteria, pressure and others, are implored with a 

scope of the weather forecasting. 

6.8. Model Classification Using Weather Type (Binary and 

Multi-Label) 

6.8.1. Binary Classification 

The phase-2 design is to predict the overall types of the 

weather depending upon the features of HPA filtered dataset 

designed to perform the best possible classification feature. 

The design with LSTM classification is designed in two sub-

sections: binary and multilabel classification. In the binary 

classification, each type of weather (rainy, sunny, Cloudy, 

humid and snow) is utilized to perform the classification 

criteria.  

The design with different aspects of the labels is 

characterized by HPA weights in both (optimized and not-

optimized) cases, while the optimization of the design is 

encompassed with multiple columns considered as feature 

engineering elements. The current dataset comprising 1468 

samples is converted with SMOTE functionality to address the 

unbalancing nature mentioned in Figures (10) and (11). In the 

current design case, the opted featured values for resampling 
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the data were considered, with 452 for all labels indicating the 

balanced functionality. The normalization of the data is 

processed with a Min-max scalar with efficient feature 

behaviour to implicate the specific filter changes on each label 

criterion. For the training and testing criteria, 80-20 criteria are 

implemented to impart the best test classification process. The 

use of 70-30 might become an under-sampling, or a possible 

case of overfitting aspects would be realized for the proposed 

model. Hence, the use of 80-20 plays a vital role in 

determining the best possible splitting functionality. 

6.8.2. Training and Testing 

The proposed model is implemented with binary 

classification functionality with phase-1 a) indicated with 80-

20 sample criteria. The fitting process is designed with an 8-

layer architecture with Conv-LSTM model summary shown in 

Table 2. Table 2 outlines an 8-layer Conv-LSTM architecture 

designed for weather type classification, effectively 

combining convolutional and recurrent layers to process 

sequential data. It starts with a Conv1D layer that utilizes 128 

filters and a kernel size of 3 to extract local features from the 

input sequences, producing an output shape of (16, 128) with 

512 parameters. This is followed by a MaxPooling layer that 

reduces dimensionality to (8, 128), requiring no additional 

parameters.The LSTM layer, consisting of 128 units, captures 

temporal dependencies, contributing 66,048 parameters. After 

flattening the output for the fully connected layers, a series of 

Dense layers (512, 128, 64, and 5 units) refine the learned 

features, ultimately classifying the input into one of five 

weather types. The total parameter count for this architecture 

is 206,853, showcasing its capacity for complex pattern 

recognition in weather data. 

In the training phase for binary classification depicted in 

Figure 12 for the LSTM+HPA classification model, the loss 

metrics exhibit a consistent downward trend for both training 

and validation sets. The model's progressive improvement is 

evident as the training loss steadily decreases from 0.09 to 

0.008, and the validation loss demonstrates a significant 

decline from 0.04 to 0.0003. These trends highlight the 

model's effectiveness in learning and generalizing well to new, 

unseen data, minimizing overfitting tendencies, and ensuring 

robust classification outcomes. 

 Similarly, the accuracy metrics showcase a 

commendable rise in both training and validation accuracies 

across epochs 20 to 100.  The model achieves high accuracy, 

climbing from 0.981 to 0.998 in the training set and from 

0.991 to 0.9977 in the validation set. The minimal fluctuations 

observed underscore the model's stability and strong ability to 

generalize, emphasizing its reliable and accurate predictions 

for both known and unseen data. 

Table 2. The overall configuration feature for the proposed design with 

8-layer architecture on Conv-LSTM 

Sno LAYERS Configurations 
Output 

Shape 
Params 

1 Conv 1D 

(128,3, 

activation=  

‘relu’) 

(16,128) 512 

2 MaxPoolling (2) (8,128) 0 

3 LSTM (128) 128 66048 

4 Flatten () 128 0 

5 Dense (512) 512 66048 

6 Dense (128) 128 65664 

7 Dense (64) 64 8256 

8 Dense (5) 5 325 

Fig. 13 The overall training loss and accuracy with validation loss -accuracy indicating the accuracy observed at 99.9%.
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Multilabel Classification 

Similarly, the multi-label classification will impart the 

phase of the training and testing model with different aspects 

of the features indicated with effective weights generated with 

the HPA model. The HPA model considered is with the 

gaussian process representing non-linear characteristics of the 

classification labels (0-4). The output layer is utilized with 

SoftMax functionality, indicating the sparse label criteria 

index for the classification process. The simulation of the 

design for both optimized and not optimized is processed with 

150 epochs with a batch size of 32. The compiled outcomes 

are represented in Figure 15 demonstrating the best outcome 

possible. 
 

Fig. 14 Classification report ( 5 Lables)

 
Fig. 15 The overall training loss and accuracy with validation loss -accuracy indicating the accuracy observed at 89.1% and classification report 

indicated with 5 labels of classification  

The report for the weather classification evaluates a 

Conv-LSTM model used for weather type classification into 

five categories: rainy (0), sunny (1), cloudy (2), humid (3), and 

snow (4). The model shows strong performance across most 

categories, with an overall accuracy of 89%. It performs 

particularly well for "cloudy" and "humid" weather types, 

achieving F1-scores of 0.95 and 0.98, respectively, indicating 

a high balance between precision and recall. For "rainy" and 

"sunny," the model also does well, with F1-scores of 0.86 and 

0.89, suggesting reliable predictions. However, it struggles 

with "snow," where recall is only 0.68, meaning it misses 

about 32% of actual snowy days, leading to a lower F1-score 

of 0.77. The macro and weighted averages are consistent, 

around 0.89, showing that performance is well-balanced 

across the classes, but we need to improve the performance 

with the snow featured label. 

Optimized Case 

The optimized feature is calculated with an HPA filter 

with post processing the error data as feedback weights for 

each column and its particular label considered. This 

specification of the changes is represented in algorithm 

(genetic and gaussian) elements to realize the least possible 

multi-classification error observed in Figure 17. 
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Fig. 16 Classification report ( 8 Layers)

Fig. 17 The plot for accuracy and loss with conv-LSTM (8-layer) and classification report  

Table 3. Representing the accuracy of classification performance for 

existing and proposed algorithms 

Algorithms 

Accuracy 

(Existing) Without 

Optimization 

Proposed 

(Accuracy) 

With Optimization 

Class 

RNN [1] 78.1 97.51 

GRU [7] 70.3 94.35 

LSTM [12] 75.6 96.52 

Deep CNN [1-6] 79.8 92.87 

PredRNN [15] 74.1 97.29 

TL (M-Net) [1] 77.9 96.74 

Proposed 

LSTM+HPA 
89.5 99.9 

Proposed 

ARIMA+HPA 
94.5 99.7 

Proposed 

HPA 
97.6 99.1 

ATFSAD [17] 79.94 96.4 

The optimized classification report in Figure 17 shows the 

performance of a Conv-LSTM model for weather type 

classification (rainy, sunny, cloudy, humid, and snow), where 

the model achieves perfect results. Each class (0-4) has a 

precision, recall, and F1-score of 1.00, meaning the model 

predicts each weather type with 100% accuracy. For all 

weather types—rainy (0), sunny (1), cloudy (2), humid (3), 

and snow (4)—the model correctly identifies every instance, 

with no false positives or false negatives.The support column 

indicates the number of actual occurrences for each class in 

the dataset, and the model handles all 452 samples flawlessly. 

Both the macro and weighted averages are 1.00, further 

confirming that performance is uniformly perfect across all 

weather types. This reflects an ideal model where no 

misclassifications occur, showing that the optimization has 

significantly improved its performance. Table 3 compares the 

accuracy of various existing and proposed algorithms for 

weather classification, both with and without optimization. 

The existing methods, such as RNN (78.1%), GRU (70.3%), 

LSTM (75.6%), Deep CNN (79.8%), PredRNN (74.1%), and 

TL (M-NET) (77.9%), show moderate accuracy, with GRU 

being the lowest. However, with optimization, significant 

improvements are achieved across all models, particularly 

with the proposed methods. LSTM+HPA (89.5% to 99.9%) 

and ARIMA+HPA (94.5% to 99.7%) demonstrate the largest 

gains. Even the baseline HPA model improves from 97.6% to 

99.1% accuracy, while ATFSAD also sees a notable increase 

from 79.94% to 96.4%. This comparison highlights the impact 

of optimization, especially when using hybrid approaches like 

LSTM+HPA and ARIMA+HPA, resulting in near-perfect 

classification performance. 

7. Conclusion 
 The proposed algorithms in Table 3, including 

LSTM+HPA, ARIMA+HPA, and HPA, have demonstrated 

unparalleled performance in weather prediction and 

forecasting tasks, exhibiting the most favourable designs and 

recording the lowest MSE and RMSE values compared to 

other listed algorithms. Particularly, the LSTM+HPA model 

showcased exceptional predictive capabilities, reflected in its 

minimal RMSE and MSE values, underscoring its superior 

accuracy in forecasting weather conditions. The significance 

of these algorithms becomes evident in their ability to 

minimize errors, providing reliable and trustworthy 
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predictions crucial for applications requiring precise weather 

forecasts. Their outstanding performance is a testament to 

their efficacy in comprehending complex weather patterns and 

interdependencies among diverse parameters. As these 

algorithms offer highly accurate forecasts with minimized 

MSE and RMSE values, they emerge as invaluable tools for 

real-world applications, offering dependable insights into 

weather changes that can profoundly influence decision-

making processes across various domains. In essence, the 

proposed algorithms stand out for their accuracy, reliability, 

and potential transformative impact on sectors reliant on 

precise and timely weather information. 

7.1. Scope 

The primary objective involves implementing the 

Autoregressive Integrated Moving Average (ARIMA) model 

with LSTM weather forecasting. ARIMA, recognized for its 

effectiveness in time series analysis, serves as a foundational 

approach to assessing its performance in capturing seasonal 

variations and trends within historical weather datasets. More 

metrics and parameters are considered to encapsulate the 

mathematical criteria to improve the design performance 

intuitively.  

In the scope of this work, the enhancement of 

meteorological data analysis will involve calculating key 

atmospheric parameters that provide valuable insights into 

weather conditions. Water Vapor Pressure will be estimated 

using the Clausius-Clapeyron relation to improve 

understanding of humidity levels, while the Density of Air will 

be calculated using the Ideal Gas Law to assess air quality and 

behaviour under varying conditions. Additionally, water 

vapor density will be derived from the estimated water vapor 

pressure, which is crucial for understanding moisture content 

in the air. To identify trends and smooth out fluctuations, 

Moving Averages for pressure, water vapor, and density will 

be computed over specified time windows. Lagged Pressure 

will be included to provide the previous day's pressure for 

time-series analysis, and the Heat Index will be calculated to 

offer a comfort index that incorporates temperature and 

humidity. Finally, Altitude Estimation will be performed 

based on pressure measurements to gain insights into the 

elevation of the measurement site, which can affect local 

weather patterns. By integrating these calculations, this work 

aims to enhance the understanding of meteorological 

dynamics, improve forecasting accuracy, and support 

informed decision-making in weather-sensitive activities. 
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