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Abstract - The way farming and agricultural practices are conducted has changed as a result of the use of the Internet of 

Things (IoT) and Artificial Intelligence (AI) technology. The development of smart agricultural systems, where automation and 

autonomous operations are possible, is made possible by IoT and AI technology. The proposed model’s goal is to classify soil 

images using deep learning methods in order to determine the type of soil. With the help of this proposed modified DenseNet 

model, an accurate assessment of soil characteristics, including fertility, moisture content, and nutrient levels, will be made 

possible. Modified DenseNet delivers enhanced feature propagation, effective parameter use, resistance against overfitting, 

and precise findings when used to classify soil image data. The categorized soil data will be used to create an automated crop 

recommendation system utilizing the random forest algorithm, together with meteorological data and other pertinent criteria. 

Multiple decision trees are used in the ensemble learning technique known as Random Forest. It uses the combined wisdom of 

these trees to provide reliable predictions. The Random Forest method’s averaging or voting process reduces the impact of 

individual trees’ biases and faults, producing more reliable crop selection suggestions. Based on specific soil characteristics, 

this technology will provide farmers with customized recommendations for acceptable crop selections. As a result, it will help 

farmers improve their land management techniques, allowing them to attain maximum production and sustainable results. 

Keywords - Soil image classification, Crop recommendation, Artificial Intelligence, Internet of Things, DenseNet, Random 

Forest, Ensemble learning.  

1. Introduction 
Agriculture is one of several fields that have been 

significantly transformed by technological advancements in 

areas such as Artificial Intelligence (AI) and the Internet of 

Things (IoT) [1]. The use of AI and IoT in agricultural 

settings has created new opportunities for the creation of 

more efficient systems for classifying soils and 

recommending crops [2]. These innovations in technology 

have the potential to significantly enhance agricultural 

operations, maximize the use of resource availability, and 

increase crop yields. In this article, Artificial Intelligence 

(AI) and the Internet of Things (IoT) will be examined in the 

context of agriculture, with a focus on soil classification and 

crop recommendation. One of the main areas where AI and 

IoT have significantly impacted the agricultural sector is the 

categorization of soil [3]. In the past, the classification of soil 

was done manually via observation and study, which was 

time-consuming and prone to human error. Farmers may now 

utilize advanced sensing technology and machine learning 

algorithms to automate the process of soil categorization [4].  

IoT devices like soil moisture sensors, temperature sensors, 

and nutrient sensors may be scattered over the land in order 

to get real-time information on the condition of the soil in 

agricultural areas [5]. These sensors continuously monitor 

the different properties of the soil and transmit that data to a 

centralized system. In order to accurately identify the soil 

type, the data is then examined by AI algorithms that include 

factors including the soil’s moisture content, nutrient levels, 

pH value, and texture [6]. This computerized soil 

categorization enables farmers to choose crops, irrigation 

strategies, and nutrient management practices wisely, which 

eventually leads to greater crop growth and higher 

agricultural output. Additionally, AI-powered systems for 

classifying soil may provide a wealth of information on the 

fertility and health of the soil [7]. The ability of these 

systems to identify patterns and trends helps farmers 

comprehend the long-term effects of soil conditions on crop 

productivity. This is accomplished via the analysis of 

historical data and the correlation of that data with crop 

performance. Farmers are given the ability to enhance soil 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sreelata Alugoju & P. Praveen / IJETT, 72(10), 119-129, 2024 

 

120 

health and maintain optimum growing conditions as a result 

of this information, which enables them to execute targeted 

interventions such as crop rotation and soil amendments. The 

categorization of soil is only one of the ways that artificial 

intelligence and internet of things technologies have changed 

crop recommendation systems. These systems use algorithms 

for machine learning in order to assess massive quantities of 

data, such as the historical performance of crops, weather 

patterns, soil properties, and consumer demand. AI 

algorithms are able to deliver customized suggestions to 

farmers about crop selections that are suited for certain 

regions and seasons by taking into consideration the 

parameters mentioned above [8]. Devices connected to the 

IoT are crucial in the collection of real-time data for use in 

crop recommendation systems [9]. The data on climatic 

conditions, such as temperature, rainfall, humidity, and solar 

radiation, is continually gathered via the use of technology 

such as weather stations, satellite images, and remote 

sensing. When paired with data about the soil that IoT 

sensors have gathered, this information allows AI algorithms 

to offer suggestions that are both accurate and timely 

regarding the best crop choices. Farmers may use these 

guidelines as a basis for making choices motivated by data, 

which will allow them to maximize the possible yield and 

minimize the risks associated with poor meteorological 

conditions. The use of AI and the Internet of Things in 

agriculture makes precision agricultural approaches easier to 

implement [10]. Farmers are able to monitor crop health, 

identify pests and illnesses at an early stage, and perform 

targeted treatments thanks to the combination of data from 

Internet of Things devices, such as drones and robots 

equipped with cameras and sensors, with artificial 

intelligence algorithms. This strategy decreases the amount 

of agrochemicals used, lessens the amount of waste 

produced, and encourages the adoption of sustainable 

agricultural techniques. 

2. Literature Survey 
Tien-Heng Hsieh et al. [11] developed a variety of 

Convolutional Neural Network (CNN) variations were, to 

classify Hyperspectral Images (HSIs) of agricultural regions, 

including 1D-CNN with pixel-wise spectral data, 1D-CNN 

with specified bands, 1D-CNN with spectral-spatial features, 

and 2D-CNN with principal components. HSI data from 

agriculture in the Salinas Valley and mixed vegetation 

agriculture in Indian Pines were used to evaluate the 

performance of these CNN algorithms. Zhenrong Du et al. 

[12] employed Deep semantic segmentation networks to 

extract CA from high-resolution RS pictures and then 

classify the results. Using images from WorldView-2 (WV-

2) with just the Red-Green-Blue (RGB) bands, it was 

possible to verify that the proposed semantic classification 

framework is effective for both the information extraction 

job and the CA mapping activity. Specifically, the authors 

developed a platform for sampling, training, and testing, in 

addition to categorizing, in order to extract and map CA on 

the basis of DeepLabv3+ by making use of TensorFlow, 

which is a framework for deep learning. Vittorio Mazzia et 

al. [13] utilized both Recurrent Neural Networks (RNN) and 

Convolutional Neural Networks (CNN) to create a new and 

best deep learning model for pixel-based Land Cover and 

Crop Classification (LC&CC). They used this model on 

multi-temporal Sentinel-2 images of central north Italy, a 

region known for its diverse farming system, which is mostly 

made up of foods grown for sale. The suggested method gets 

rid of the need for human feature engineering and crop 

phenological stage modelling by automating the extraction of 

features by learning the time association between many 

shots. In their research, the study looked at 15 groups, 

including important farming crops. Ce Zhang et al. [14] 

suggested scale sequence because it replaces the 

conventional scale selection paradigm by incorporating a 

series of scales into the iterative process of fitting the joint 

distribution implicit in the Joint Deep Learning (JDL) 

approach, the Joint Deep Learning (SS-JDL) strategy for 

joint LU and LC classification is simple and affordable. The 

scales enable the sequential transfer of information from low-

level characteristics to high-level representations and from 

simple LC states to complex LU characterizations.  

They are separately created and used to establish the 

CNN input patch sizes. The effectiveness of the special SS-

JDL technology was assessed using aerial digital imagery of 

three intricate and diverse landscapes in Southern England 

(Bournemouth and Southampton) and Northern England 

(Manchester). Several LC and LU strategies, including the 

cutting-edge Joint Deep Learning (JDL) technique, were 

provided as comparison points. Rahim Azadnia et al. [15] 

utilized a convolutional neural network (CNN) to classify 

soil texture photos captured at 20, 40, and 60 cm. This 

system may be deployed everywhere a smartphone can be 

used. The proposed CNN model is composed of two parts, 

each with several layers. The first block (feature extraction) 

consists of the layers Conv, Max-pooling, drop out, and 

batch normalization.  

The second block (classifier) is composed of the flatten, 

SVM classifier, and fully connected layers. Pallavi 

Srivastava et al. [16] explored various computer-based soil 

categorization techniques in two streams. The first involves 

techniques based on image processing and computer vision 

that distinguish between soil using different attributes such as 

texture, colour, and particle size. These methods use 

common image processing algorithms and methods. The 

second category consists of techniques for classifying soil 

using deep learning and machine learning, such as CNN, 

which provide state-of-the-art results. Deep learning 

applications streamline the whole process, which essentially 

lowers the dependency on spatial-form designs and pre-

processing techniques. In this paper, the researchers also 

provide a number of databases that are in line with the 

study’s objectives. Databases are made using many tools, 
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including digital cameras, digital camcorders, and 

smartphone cameras, under a variety of lighting and 

environmental circumstances. Additionally, a short 

discussion of assessment metrics is included to set out some 

graded measurements for distinction. Amit Bhola et al. [17] 

analyzed how well different Machine Learning (ML) systems 

do at predicting the right crop depending on soil and 

meteorological conditions. Random Forest, Decision Tree, 

Support Vector Machine, Naive Bayes, XGBoost, along K-

Nearest Neighbour are six supervised machine learning 

algorithms that have been implemented and analyzed.  

Liheng Zhong et al. [18] provided a categorization 

system for remotely sensed time series based on deep 

learning. The study was carried out in Yolo County, 

California, which has a very diverse irrigation-based 

agriculture system dominated by cash crops. For the 

challenging task of classifying summer crops using Landsat 

Enhanced Vegetation Index (EVI) time series, two different 

deep learning models were developed: one is based on one-

dimensional convolutional (Conv1D) layers, while the other 

is based on Long Short-Term Memory (LSTM).  

For comparison, three well-known classifiers—the 

Random Forest, the Support Vector Machine, and a gradient-

boosting algorithm called XGBoost—were also put to the 

test. Sequential data is often represented using LSTM. Zeel 

Doshi et al. [19] presented AgroConsultant, an intelligent 

system that would aid Indian farmers in selecting the crop to 

produce by taking into account the sowing season, the 

location of their farms, the qualities of the soil, and climatic 

elements like temperature and rainfall. Andreas Kamilaris et 

al. [20] conducted a study of 40 research projects that use 

deep learning techniques to solve different problems in 

agriculture and food supply. The authors look at the specific 

farming problems that are being studied, the models and 

frameworks that are being used, the sources, types, and pre-

processing of the data that is being used, as well as the 

general success based on the measures that are being used at 

each work. They also look at how classification or regression 

performance is different between deep learning and other 

famous methods that already exist.  

Krupa Patel et al. [21] investigated the many categories 

of recommendation systems and the domains in which they 

are used. The authors next investigate alternative evaluation 

criteria for recommendation systems, followed by unresolved 

problems and research challenges. They look more closely at 

the research that has already been done in the field. Our 

algorithm for suggesting crops based on numerous 

characteristics has been submitted for the Agriculture sector 

as part of our contribution via this study. P. Parameswari et 

al. [22] employed decision trees, SVM, and RNN algorithms 

to create a hybrid model. This study looks at the information 

and helps farmers predict the crop, increasing their 

profitability. 

3. Proposed Framework 
The proposed approach uses deep learning to categorize 

soil pictures for the evaluation of farmland. This will make it 

possible to analyze soil characteristics, including fertility, 

moisture content, and nutrient levels, with accuracy. An 

automated crop recommendation system will be created 

using the identified soil data, weather information, and other 

characteristics to identify the best crops for a given soil 

condition. Farmers will be assisted in managing their land 

more effectively in order to maximize production and 

sustainability. 

3.1. Soil Image Classification 

When classifying soil images, machine learning 

techniques like Convolutional Neural Networks (CNNs) are 

often used. This comprises the automatic classification and 

identification of different soil types according to their visual 

appearance. This technique may be used for a number of 

things, including assessing the fertility of farmland, 

recommending crops that are appropriate for the area, and 

keeping track of how environmental conditions affect the 

soil’s quality. The categorization of soil pictures has many 

advantages, such as being non-destructive, rapid, and able to 

differentiate between challenging soil types. It offers 

efficient soil condition data collection. However, there are 

challenges to be solved, including the necessity for high-

quality photographs for accurate classification, sensitivity to 

changes in lighting and the environment, and the need for 

enormous amounts of labelled data in order to build effective 

classification models. 

3.1.1. Proposed DenseNet Model 

DenseNet is a densely connected Convolutional Neural 

Network (CNN) in which each layer is connected to all of the 

layers that came before it. Because of this, DenseNet is able 

to train more effectively and avoid the issue of vanishing 

gradients, which may arise in deep CNNs. The layers used in 

the proposed DenseNet architecture are: 

Input layer 

The data are initially processed by a neural network at 

this layer, which is the first layer of the network. It is a 

representation of the unprocessed characteristics or data that 

is sent into the network. The dimensionality of the data that 

is being entered is reflected in the number of nodes that are 

present in the input layer. 

Convolutional Layer 

Convolutional Neural Networks (also known as CNNs) 

rely heavily on this particular component. Convolutional 

operations are performed on the input data using a collection 

of learnable filters or kernels as the transformative 

component. These filters glide through the input data, 

carrying out element-wise multiplication and summing, 

which assists in the identification of patterns and 

characteristics. Convolutional layers are designed to capture 
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spatial hierarchies and are commonly used in image 

recognition tasks. 

Batch Normalization 

This is a method that is used to enhance the training of 

neural networks as well as their overall performance. The 

outputs of the layer below are normalized by this operation, 

which involves removing the batch mean and dividing the 

result by the batch standard deviation. This helps to solve the 

issue of the internal covariate shift, stabilize the training 

process, and speed up convergence. Batch normalization also 

functions as a regularizer, which eliminates the need for 

using additional regularisation methods such as dropout. 

ReLU (Rectified Linear Unit) 

In neural networks, this is an example of an activation 

function that is often employed. By outputting the input 

value if it is positive and 0 otherwise, it creates a non-linear 

relationship between the two variables. ReLU is 

computationally efficient and contributes to the solution of 

the vanishing gradient issue. As a result, neural networks are 

able to learn complicated associations, which leads to an 

improvement in model performance. 

Max Pooling 

Downsampling is a method that is used in CNNs in 

order to bring the spatial dimensions of the feature maps 

down to a more manageable level. It then outputs the greatest 

value inside each zone and separates the input into regions 

that do not overlap with one another. The most important 

characteristics may be extracted with the aid of max pooling, 

which also helps to minimize the network’s spatial 

complexity and add some translation invariance. 

Average Pooling 

Similar to max pooling, average pooling is another 

downsampling technique that partitions the input into non-

overlapping regions. However, instead of selecting the 

maximum value, average pooling computes the average 

value within each region. Average pooling can be useful 

when spatial localization is less critical, but preserving global 

information is desired. 

Dense Layer 

This is a common kind of layer that may be found in 

neural networks. A dense layer is one in which every node in 

the layer below is linked to every other node in that layer. 

The application of weights and biases to the input data, 

followed by running the resulting data through an activation 

function, is how dense layers facilitate the learning of 

complicated patterns. 

Dropout 

This is a regularisation approach that is used in neural 

networks to avoid overfitting from occurring. In the process 

of training, the dropout function will, at random, set a portion 

of the nodes in a layer to zero, therefore “dropping out” those 

nodes. This forces the network to learn redundant 

representations and improves generalization. Dropout helps 

prevent complex co-adaptations and promotes robustness in 

the model. 

 

(a) Proposed DensNet architecture 
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(b) Pooling block   

 

 

(c) Transition Layer 

 

(d) Convolution block 

                                          Concatenation 
Fig. 1 Proposed DensNet architecture 

Traditional DenseNet design defines a “dense block” as a 

collection of layers that are densely linked to one another. 

Each succeeding layer in the dense block is provided with 

inputs from all of the layers that came before it in the block. 

This dense connection architecture improves feature reuse, 

encourages gradient flow, and contributes to the alleviation 

of the issue of disappearing gradients. The dense block that 

was indicated was adjusted such that it was replaced with a 

new dense block that included batch normalization, ReLU 

activation, convolution, and dropout. You said that this was 

the updated version. The model achieves regularisation, non-

linearity, feature extraction, and normalization as a result of 

the combination of batch normalization, ReLU activation, 

convolution, and dropout inside the modified dense block. 

This design is useful for a wide range of deep learning 

problems because it supports increased training stability, 

gradient flow, and generalization performance. A transition 

layer is often used in the traditional DenseNet architecture to 

downsample the feature maps and lower the spatial 

dimensions before sending them to the next dense block.  

A convolutional layer and a pooling layer, most often a 

2D average pooling layer, make up the conventional 

transition layer. The modified transition layer is made up of 

average pooling, a 2D convolutional layer, ReLU activation, 

and batch normalization. The goal of this modification is to 

keep the information integrity intact while simultaneously 

lowering the spatial dimensions. This setting guarantees that 

critical characteristics are kept and efficiently learnt 

throughout the downsampling process, which enables greater 

representation and learning capabilities in the future dense 

blocks of the DenseNet architecture. 

3.2. Crop Recommendation System 

A crop suggestion system is an essential component of 

contemporary agriculture since it gives farmers access to 

helpful information and direction about the best possible crop 

choices. The Random Forest method is a well-known 

example of machine learning software, and it may be 

successfully used in the development of such systems. Using 

the Random Forest algorithm, we will investigate the notion 

of a crop recommendation system. The capacity of the 

Random Forest algorithm to handle complicated and non-

linear connections in the data is one of its strengths. It is able 

to capture interactions between a wide variety of agricultural 

elements and determine the characteristics that are most 

significant for crop recommendation. 

 In addition, in comparison to individual decision trees, 

Random Forest is less likely to result in overfitting, which in 

turn leads to improved generalization capabilities. An 

ensemble learning method called the Random Forest 

technique may be used for both classification and regression. 

It is a mixture of decision trees, where many trees are built, 

and the forecasts from each tree are combined to provide a 

single overall forecast. The random forest approach creates 

many decision trees, commonly known as “forests,” during 

the training phase and selects a subset of attributes at each 

split point in the decision tree.  This is in contrast to a 

standard decision tree approach, which would use all of the 

data available. A method known as bootstrap aggregating or 

bagging is used in order to accomplish this goal. This method 

contributes to the reduction of variation as well as overfitting 

that may take place in decision trees. Figure 2 illustrates the 

Random Forest algorithm. 
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Fig. 2 Random forest classifier 

Algorithm: Random Forest based crop recommendation 

system 

Input: A dataset consisting of agricultural features such 

as soil type, climate conditions, rainfall, temperature, 

nutrient levels, historical crop yields, and successes. 

Step 1: Divide the dataset into a training set and a testing 

set. The training set will be used to train the Random 

Forest model, while the testing set will be used to 

evaluate its performance. 

Step 2: Random subsets of the training data are to be 

selected with replacement (bootstrapping) to create 

multiple training datasets of the same size as the original 

dataset. 

Step 3: For each subset, a decision tree will be 

constructed using a modified version of the random forest 

algorithm. At each node, the best split will be selected 

based on a feature subset randomly chosen from the 

available features. 

Step 4: A specified number of decision trees will be 

created, each trained on a different bootstrap subset of the 

training data. 

Step 5: When a new input sample consisting of 

agricultural parameters (e.g., soil type, climate 

conditions) is provided, it will be passed through each 

decision tree in the ensemble. The predictions from each 

tree will be obtained. 

Step 6: A voting mechanism (e.g., majority voting) will 

be used to determine the final crop recommendation 

based on the predictions from the ensemble of decision 

trees. 

Step 7: The performance of the Random Forest model 

will be evaluated using the testing set. Metrics such as 

accuracy, precision, recall, or F1 score will be calculated 

to assess the model’s effectiveness in providing accurate 

crop recommendations. 

A random forest classifier is an ensemble of decision 

trees, where each tree is trained on a different subset of the 

data, and the final prediction is based on the majority vote of 

the predictions made by all of the trees in the forest. A 

random forest classifier may be thought of as a voting system 

for classification problems. In other words, the result is the 

culmination of the combined predictions made by all of the 

trees in the forest.  

Each tree in the forest is trained using its own unique 

random subset of the data, and each split point in the forest 

utilizes a new subset of the characteristics. Because of this 

unpredictability, the connection between the different trees in 

the forest is weakened, which contributes to an improvement 

in the overall performance of the ensemble. In addition to its 

ease of application and capacity to simultaneously manage a 

huge number of categorical variables and features, the 

Random Forest approach is widely regarded as one of the 

methods that provide the highest level of accuracy and 

reliability overall. In addition to this, it has a lower risk of 

producing overfitting than a single decision tree would have, 

which is a significant benefit. Tuning the hyperparameters is 
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one of the most important steps in the process of optimizing 

the performance of a Random Forest model. The 

n_estimators, max_features, and max_depth hyperparameters 

are three essential hyperparameters that have a substantial 

influence on the Random Forest method. 

• n_estimators is responsible for determining the total 

number of decision trees that make up the Random 

Forest. Increasing the total number of estimators may 

result in a model that is both more reliable and accurate. 

Nevertheless, this results in an increase in the computing 

complexity. It is essential to strike an optimal balance 

between the total number of estimators and the available 

computing resources. 

• max_features hyperparameter is used to specify the 

maximum amount of features that may be randomly 

chosen at each split point. It manages the uniqueness and 

unpredictability of each tree in the forest. Overfitting 

may be reduced by examining a more manageable subset 

of features if the max_features parameter is set to a 

lower value. 

• max_depth is a hyperparameter that limits the maximum 

level of depth that may be reached in any given Random 

Forest decision tree. A short tree with a low max_depth 

has a lower propensity to overfit the data, but it may not 

be as good at making predictions. On the other side, a 

deep tree with a high max_depth can recognize more 

intricate patterns, but it also has the potential to overfit 

the training data. 
 

4. Experimental Results 
The findings of the experiments that were conducted to 

test the suggested model are outlined in this section. The 

explanation is broken down into two parts: first, the 

categorization of soils via the suggested architecture of 

DenseNet201, and second, the selection of crops through the 

proposed Random Forest Classifier. The compilation 

includes photographs of five different types of soil, all of 

which are stored separately inside their directories. The 

collection contains information on five distinct types of soil, 

including black soil, cinder soil, yellow soil, clay soil, and 

laterite soil. Figure 3 displays some of the sample 

photographs included in the dataset. It is necessary to make 

certain adjustments to the model in order to use the 

DenseNet-201 architecture, which was first developed for 

picture classification for the classification of soil. Figure 1 

illustrates the alterations that correlate to the proposed 

DenseNet-201 model, and section III discusses those very 

same modifications. The process may be divided up into 

many distinct steps. To begin, a dataset is produced by 

collecting photographs of soil together with any relevant 

information about the soil. A total of five unique soil types 

should be included in the dataset in order to ensure that the 

model is able to classify a wide range of soils accurately. The 

success of the model is significantly dependent on a number 

of criteria, one of which is the quality of the dataset as well 

as its variety.  

   
(a) Yellow Soil 

   
(b) Laterite Soil 

   
(c) Clay Soil 

   
(d) Cinder Soil 
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(e) Black Soil 

Fig. 3 Soil sample images in the dataset 

The next thing that has to be done is the “pre-

processing” of the photos that are part of the dataset. In many 

instances, this necessitates both the scaling of pictures to a 

consistent dimension and the standardization of the pixel 

values. The usage of data augmentation techniques is another 

way that may be used to attain the goal of increasing the 

variety of the dataset approaches, as cropping, flipping, and 

random rotations may be used in order to improve the dataset 

and make the model more relevant to a larger variety of 

scenarios. These improvements can be made by using these 

approaches.After the pre-processing step, the dataset is 

partitioned into a training set and a validation set so that the 

recommended model may be trained on it. The performance 

of the updated DenseNet-201 model is evaluated with the use 

of a loss function such as categorical cross-entropy. The 

model is then supplied with training data. During the process 

of backpropagation, an optimizer such as Adam or SGD is 

used to make adjustments to the model’s weights in response 

to the estimated gradients.  

Throughout the training phase, it is essential to 

continually assess the performance of the model on the 

validation set in order to keep track of its evolution. A 

number of other performance metrics, including recall, 

accuracy, and precision, in addition to the F1 score, may be 

used in order to evaluate the effectiveness of the model. It is 

possible to improve the performance of the model by 

adjusting hyperparameters such as the learning rate and the 

batch size. If the first findings from the DenseNet-201 model 

are unacceptable, then the model as a whole may be 

modified. 

 In order to do this, you will need to defrost each layer of 

the model before carrying on with the training. When there is 

a large collection of soil imaging data accessible, fine-tuning 

is an extremely beneficial process to use.Following training, 

the final model is evaluated using a distinct testing set that it 

has neither seen nor been exposed to during validation or 

training. This provides a reasonable assessment of the 

model’s efficacy as well as its potential to generalize to 

unknown soil samples. 

 
Fig. 4 Training and validation loss plot of the proposed DensNet201 

model 

 
Fig. 5 Training and validation accuracy of the proposed DensNet201 

model 

A DenseNet-201 model’s performance during training is 

shown in Figure 4. The loss of the model over time, which is 

a measure of how well the model fits the training set of data, 

is shown on the training plot. A new validation set of data is 

shown in the validation plot to show the model’s loss over 

time. The mathematical representation of Training and 

validation loss is shown in Equations (1) and (2), 

respectively. 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 (𝐿_𝑡𝑟𝑎𝑖𝑛)  =  (1/𝑁)  ∗  𝛴(𝑦_𝑝𝑟𝑒𝑑 −
 𝑦_𝑡𝑟𝑢𝑒)2         (1) 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 (𝐿_𝑣𝑎𝑙)  =  (1/𝑀) ∗  𝛴(𝑦_𝑝𝑟𝑒𝑑_𝑣𝑎𝑙 −
 𝑦_𝑡𝑟𝑢𝑒_𝑣𝑎𝑙)2        (2) 
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Where 𝑁 is the number of training samples, 𝑀 is the 

number of validation samples, 𝑦_𝑝𝑟𝑒𝑑 is the predicted 

output, and 𝑦_𝑡𝑟𝑢𝑒 is the true output. The loss will steadily 

decrease in a perfect training plot, showing that the model is 

becoming better at matching the training data. A good 

validation plot will have a pattern that is comparable to the 

training loss, even if the loss may not decrease as quickly. 

This is because the validation set is more challenging than 

the training set, which raises the possibility that the model 

will not be able to fit it as perfectly. 

Figure 5 shows the training and validation accuracy 

charts, which provide evidence of the proposed DenseNet-

201 model’s performance during training. The training plot 

shows how the model’s accuracy increases over time, 

showing that it can successfully classify the training data.  

The validation plot, on the other hand, illustrates the model’s 

accuracy using a distinct validation dataset that was not 

included in the training phase. The training and validation 

accuracy is represented in Equations (3) and (4) respectively. 

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠) /

 (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)  ∗  100%                                 

(3) 

𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 (𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠) /

 (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠)  ∗  100%                                  

(4) 

Ideally, a training plot should exhibit increasing 

accuracy over time, demonstrating the model’s improvement 

in categorizing the training data. While the validation 

accuracy may not increase as rapidly as the training 

accuracy, a good validation plot will show a similar pattern. 

This is because the validation set is typically more 

challenging to categorize accurately than the training set. 

Overfitting becomes apparent when the training accuracy 

continues to rise while the validation accuracy plateaus or 

declines. Overfitting occurs when the model excessively 

memorizes specific instances from the training set, indicating 

that it has learned the training data too well.  

This can happen when the training set is too small or 

when the model is overly complex. A well-trained model 

often exhibits an increasing training plot and a moderately 

increasing validation plot, albeit at a slower pace. Divergent 

patterns between the training and validation plots indicate 

that the model is underperforming and may require 

adjustments. Additional factors to take into account while 

analyzing training and validation accuracy charts include the 

following: It is important to take into consideration the 

number of epochs, which is the number of times that the 

model comes into contact with the full training set. When 

training a model for too few epochs, it is possible that the 

model will not be able to learn from the training data 

properly; nevertheless, training a model for too many epochs 

might lead to overfitting.  

The size of the training set is an essential component to 

consider. Models that have been trained on bigger training 

sets are more likely to generalize efficiently, while models 

that have been trained on smaller sets may have difficulty 

generalizing to data they have not seen before. It is important 

to take into account how complicated the model is. While a 

more complicated model may be able to attain better 

accuracy on the training data, it also runs a larger risk of 

overfitting the data. The accuracy of the proposed model is 

compared with other models, such as conventional DensNet, 

VGG and ResNet. The corresponding comparison results are 

reported in Table 1. Crop selection comes after soil 

classification is finished using the proposed DenseNet-201 

model. Here, crops are chosen using a Random Forest 

classifier. Crop selection is the process of choosing the plant 

species that will produce the greatest harvest in a region, 

depending on the characteristics of the soil in that region. 

Table 1. Comparison results of soil classification using the proposed 

DenseNet201 model 

Model Name Accuracy 

AlexNet 85% 

VGG 90% 

CNN 88% 

Conventional DenseNet 94% 

Proposed DenseNet 201 99% 

Table 2. The Accuracy results of the proposed Random Forest classifier 

Crop Precision Recall F1-score 

Apple 1 1 1 

Banana 1 1 1 

Blackgram 1 1 1 

Chickpea 1 1 1 

Coconut 1 1 1 

Coffee 1 1 1 

Cotton 1 1 1 

Grapes 1 1 1 

Jute 0.88 0.93 0.90 

Kidney beans 1 1 1 

Lentil 1 1 1 

Maize 1 1 1 

Mango 1 1 1 

Mothbeans 1 1 1 

Mungbean 1 1 1 

Muskmelon 1 1 1 

Orange 1 1 1 

Papaya 1 1 1 

Pigeon peas 1 1 1 

Pomegranate 1 1 1 

Rice 0.95 0.91 0.93 

Watermelon 1 1 1 

Accuracy = 0.99 
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Fig. 6 Performance bar graph results of proposed Random Forest classifier 

Information on the various kinds of soil in the region is 

provided by the DenseNet-201 model, which was trained on 

soil categorization. The Random Forest classifier is used to 

forecast which crops would perform best in each kind of soil 

once the proposed approach has identified the various soil 

types. A technique for machine learning called Random 

Forest is often used for classification problems. It works by 

constructing a number of decision trees and then making a 

forecast using a voting system. The Random Forest classifier 

considers a number of variables, including rainfall, 

temperature, pH level, humidity, NPK metrics, and other 

significant properties, such as soil type, that are crucial for 

crop development. These criteria enable the classifier to 

categorize the various soil types into separate groups and 

suggest crops that are appropriate for each category. The 

accuracy of the proposed Random Forest classifier is 

reported in Table 2. The performance of the proposed 

Random Forest classifier is shown in Figure 6. The 99% 

Accuracy is achieved by using a Random Forest classifier for 

crop selection, which can result in a reliable and accurate 

technique. This is because it uses the information obtained by 

the DenseNet-201 model’s soil classification to make 

informed decisions about crop suitability. This combined 

approach helps to optimize agricultural practices by 

matching the soil characteristics with the right crops, which 

ultimately leads to higher yields and more efficient use of 

resources. 

5. Conclusion 
The combination of AI and IoT technologies in the 

agricultural sector has resulted in a revolution in the 

categorization of soils and the algorithms that propose crops. 

These developments make it possible for farmers to make 

educated choices based on data that is both accurate and 

current. Farmers are able to improve resource use, increase 

crop output, and encourage sustainable farming practices if 

they use internet-of-things devices to gather data on soil 

conditions and climatic parameters and then apply artificial 

intelligence algorithms to evaluate this data. Utilizing the 

capabilities of AI and the IoT to develop intelligent 

agricultural systems that optimize efficiency and output 

while reducing environmental effects is the future of 

agriculture.  

The proposed modified DenseNet model has proved to 

be a compelling choice for analyzing and classifying soil 

images, aiding in better understanding and management of 

soil properties in agricultural and environmental applications. 

Random Forest offers robust predictions, handles high-

dimensional data, is flexible and non-parametric, is robust to 

overfitting and noisy data, provides interpretability, and is 

scalable. These advantages make it a suitable choice for 

building a crop recommendation system that can assist 

farmers in making informed decisions, optimizing crop 

selection, and improving agricultural productivity. 
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