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Abstract - Accurate classification of Surface-Mount Device (SMD) components is important for a range of electronics 

manufacturing and assembly applications. Impressive results have been achieved using recent deep learning models when 

applied to image-classification problems. This study provides a comprehensive examination of the categorization of Surface-

Mounted Device (SMD) components using advanced learning models. Four cutting-edge Deep Learning (DL) models–ResNet50, 

VGG16, AlexNet, and MobileNet–were utilized to categorize SMD components into eight classes: capacitors, diodes, Electrolytic 

Capacitors (EC), Integrated Circuits (IC), LED, resistors, supercapacitors, and Zener diodes. Our approach encompasses the 

training of these models on a dataset containing SMD component images and the assessment of their performance in terms of 

accuracy, precision, recall, and F1-score. The findings indicate that MobileNet achieved the highest classification accuracy, 

reaching up to 98%, surpassing the other models. Through a comprehensive comparative analysis, we discern the strengths and 

limitations of each model in this categorization task. Our results suggest that MobileNet is the most effective deep-learning 

framework for SMD component classification, underscoring its potential applications in automated electronic assembly and 

quality control processes. This study contributes to the progress of automated electronic component classification and guides 

future research in selecting suitable deep learning models for similar tasks. 

Keywords - Object detection, SMD components, Machine learning, VGG16, ResNet50, Alexnet, MobileNet. 

1. Introduction 
Electronic components known as Surface-Mount Devices 

(SMDs) are soldered directly onto a Printed Circuit Board 

(PCB) surface. These parts are frequently used in industrial 

equipment, medical gadgets, automobile systems, and 

consumer electronics. The accurate identification and 

categorization of SMD components are crucial for automated 

assembly operations, inventory management, and quality 

control. Surface-Mount Device (SMD) components are 

essential for the production and assembly of contemporary 

electronics. These tiny electrical components include 

integrated circuits, diodes, capacitors, and resistors [1] [2]. In 

recent years, deep learning algorithms have transformed 

picture-categorization problems. Convolutional Neural 

Networks (CNNs) have shown impressive results in several 

fields, including computer vision [3]. The distinctive design 

ideas and capabilities of VGG16, ResNet50, AlexNet, and 

MobileNet distinguish them from other well-known CNN 

systems. In the context of SMD component categorization, 

this study attempted to compare and assess the efficacy of 

these four CNNs. We aimed to obtain insights into choosing 

the best model for practical applications by examining their 

tradeoffs, computational efficiency, and performance 

indicators [4]. The use of VGG16 exemplifies the precision 

and robustness of feature extraction in SMD component 

identification [5]. Although it requires significant 

computational resources, its consistent performance renders it 

an excellent option for handling tasks that require meticulous 

inspection. ResNet50 is expected to utilize its residual 

learning technique to retain its effectiveness even with many 

layers, resulting in improved accuracy in detecting SMD 

components. The model is perfect for AOI systems because of 

its robustness and consistent performance across various SMD 

components and situations [6]. However, the more profound 

architecture of ResNet50 may require substantial 

computational resources [7]. The eight-layer AlexNet 

architecture uses data augmentation techniques, dropout for 

regularization, ReLU activations, and three completely 

interconnected layers after five convolutional layers [8]. 

AlexNet is an excellent option for image classification and 
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detection applications because of its popularity and efficiency. 

Depth-wise, separable convolutions are used by MobileNet, 

which significantly reduces the number of parameters and the 

processing burden. Consequently, MobileNet is particularly 

well-suited for real-time applications that operate on devices 

with limited processing capabilities [9]. The MobileNet 

architecture contains depth-wise convolution supported by 

pointwise convolution [10, 11]. 

2. Deep Learning Models  

2.1. VGG16  

The Visual Geometry Group (VGG) developed a deep 

Convolutional Neural Network (CNN) model known as 

VGG16. It is renowned for being easy to use and efficient and 

performs well on various computer vision tasks such as object 

detection and image classification. Outline of the VGG16 

architecture at a high level. 

1. Input: An RGB-channeled picture with a fixed size of 224 

× 224 pixels is the input of the VGG16 model. 

2. Convolutional Layers: There are thirteen convolutional 

layers in the model. These layers employ tiny (3 × 3) 

convolution filters, which enable the model to capture 

more intricate details. 

3. Max-Pooling Layers: These layers come after each set of 

convolutional layers and reduce the dimensionality of the 

feature maps while keeping the most crucial information. 

4. Fully Connected Layers: These layers come after the 

convolutional and max-pooling layers and consist of three 

fully connected layers. The first two have 4096 channels, 

but the third has 1000 channels (one for each class) 

because it uses a 1000-way ILSVRC classification. 

5. Softmax Layer: A softmax layer is the last layer. 

2.2. ResNet50 

Kaiming, Zhang Xiangyu, Ren Shaoqing, and Sun Jian 

presented ResNet, a kind of Convolutional Neural Network 

(CNN) 2015. ResNet50 is a variation of ResNet. The 

network’s 48 convolutional layers, one MaxPool layer, and 

one average pool layer are represented by the “50” in 

ResNet50. Outline of ResNet50 architecture: 

1. Input: A picture with RGB channels and a fixed size of 224 

by 224 pixels serves as the input for the ResNet50 model. 

2. Convolutional Layers: There Several convolutional layers 

exist in this model. These layers employ tiny (3x3) 

convolution filters, which enable the model to pick up more 

intricate details. 

3. Shortcut Connections: The utilization of shortcut 

connections, often referred to as skip or residual 

connections, is a major ResNet invention. These 

connections avoid the vanishing gradient issue, which is 

prevalent in deep neural networks, and enable the network 

to bypass one or more layers. 

4. Bottleneck Design: The building block of ResNet50 has a 

bottleneck design that minimizes the number of parameters 

and matrix multiplications and allows for considerably 

quicker training of each layer. 

5. Fully Connected Layers: Fully connected layers come after 

the max-pooling and convolutional layers. The 

classification was performed using these layers. 

6. Softmax Layer: The last layer, called the softmax layer, 

produces a probability distribution over the classes. 

Fig. 1 VGG16 architecture [12] 
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The ResNet50 architecture was trained using the 

ImageNet dataset, comprising 14 million images categorized 

into 1000 classes. Although intricate, ResNet50 is widely used 

in numerous deep learning applications owing to its 

adaptability and exceptional efficiency. 

2.3. AlexNet 

Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton 

created the Convolutional Neural Network (CNN) architecture 

called AlexNet. A high-level overview of the AlexNet 

architecture. 

1. Input: An image with RGB channels measuring 227 × 227 

pixels is fed into the AlexNet model. 

2. Convolutional Layers: The model has five convolutional 

layers, some of which are followed by max-pooling layers. 

3. Fully Connected Layers: The final three levels are 

connected entirely. 

4. ReLU Activation: A convolution filter and a nonlinear 

activation function known as” ReLU” comprise each 

convolution layer. 

5. Dropout: The architecture’s initial two fully linked layers 

employed a dropout of 0.5 to lessen overfitting. 

6. Softmax Layer: This layer produces a probability 

distribution across the classes as its output. 

AlexNet’s notable characteristic is the utilization of a 

GPU to enhance the training performance. This architectural 

design pioneered the training of 60 million parameters, 

rendering it susceptible to overfitting.  

Nevertheless, the incorporation of Dropout and Data 

Augmentation plays a vital role in mitigating overfitting.  

Adopting the ReLU activation function instead of the tanh 

or sigmoid function led to accelerated training durations.  

In contrast to other activation functions that tend to 

saturate at higher activation values, Deep Learning Networks 

commonly integrate ReLU nonlinearity to expedite the 

training.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 

  

 

 

 

 

 

Fig. 2 ResNet50 architecture [13] 
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0Fig. 3 AlexNet architecture [14] 

Fig. 4 MobileNet architecture [15] 

2.4. MobileNet 

Convolutional Neural Networks (CNNs) of the 

MobileNet type are intended for embedded and mobile vision 

applications. Its efficiency and open-source nature make it a 

good fit for mobile device applications. The architecture of 

MobileNet is summarized as follows: 

1. Input: MobileNet uses an image as input. 

2. Depthwise Separable Convolutions: MobileNet employs 

depthwise separable convolutions, a type of factorized 

convolution that significantly reduces computational 

costs. This approach involves applying a single filter per 

input channel (depth-wise convolution), followed by a 1 

× 1 convolution.  

3. Convolutional Layers: The model comprises multiple 

convolutional layers, some of which are followed by 

nonlinear activation functions. 

4. Fully Connected Layers: The final layer is the fully 

connected layer that produces the ultimate layer. 

One of the primary features of MobileNet is its efficiency 

because it utilizes fewer parameters than other networks, 

resulting in faster and less computationally demanding 

operations. Consequently, MobileNet is particularly 

appropriate for mobile applications with limited 

computational resources. Despite its simplicity and efficiency, 

MobileNet performs well across various image-classification 

tasks. It is an excellent foundation for compact and swift 

training classifiers and is particularly suitable for mobile and 

embedded applications. 

3. Methodology 
3.1. Dataset 

The initial step of the approach involved preparing and 

loading the dataset, which comprises over 16600 images. The 

division of the dataset by category is shown in Table 1. The 

dataset was partitioned randomly in an 80:20 ratio, with 80% 

of the images allocated for training and the remaining 20% 

allocated for testing and validation, as outlined in Table 1.  

The experiment encompassed diverse types, sizes, 

orientations, and constructions of discrete and surface-

mounted electronic components. 
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3.2. Image Preprocessing 

Before training the deep learning models, the vital stage 

was image preprocessing. This process typically involves 

several essential steps: Initially, the images were adjusted to a 

standard size to ensure consistency across datasets. 

Subsequently, normalization occurs, where pixel values are 

adjusted to a common range, typically 0 to 1 or -1 to 1, 

facilitating faster convergence during training. The color 

space can be altered by converting RGB images to grayscale 

images when color information is not essential.  

To artificially expand the dataset and enhance model 

generalization, data augmentation techniques, such as image 

rotation, flipping, or noise addition, can be utilized. Image 

quality can be improved through noise-reduction filters or 

contrast enhancement. Finally, the images were converted into 

suitable numerical formats, such as tensors, for input into the 

deep learning model. These preprocessing steps serve to 

standardize the input data, reduce computational demands, 

and improve the capacity of the model to extract relevant 

features from the images. 

3.3. Implementation Tools 

Python, TensorFlow, and Keras were used as the 

implementation tools. These implementation tools enable 

users to incorporate pre-trained deep learning models such as 

VGG16, ResNet50, Alexnet, and MobileNet. 

• Python is commonly used for implementing these models 

because of its simplicity and the wide range of available 

scientific and numerical libraries, such as NumPy and 

SciPy. 

• TensorFlow, an open-source library created by Google, 

was designed for numerical computations and large-scale 

machine learning. It integrates numerous machine 

learning and deep learning models and algorithms and 

utilizes Python to offer a user-friendly front-end API. 

• Keras, a high-level neural network API, is built in Python 

and can operate on top of TensorFlow. It prioritizes 

enabling swift experimentation, aiming to minimize the 

time it takes to move from concept to outcome, which is 

crucial for conducting effective research. 

Table 1. Division of image data set 

Components Train Test Total 

Capacitor 3600 900 4500 

Diode 1000 250 1250 

EC 2000 500 2500 

IC 2080 520 2600 

LED 1400 350 1750 

Resistor 2000 500 2500 

SCapacitor 280 70 350 

Zener 920 230 1150 

Total 13280 3320 16600 

3.4. Data Augmentation and Preprocessing 

Image data augmentation is a method aimed at artificially 

expanding the size of a training dataset by generating modified 

versions of images.  

This regularization technique mitigates overfitting and 

enhances the generalization ability of the model [16]. 

The following specific augmentation steps are involved: 

• Rotation: The images can be rotated by a random angle 

within the range of 0 °to 360 °, aiding the learning model 

in recognizing objects in diverse orientations. 

• Random Horizontal Shift: Introducing a random 

horizontal shift of 20% allows the model to learn object 

recognition in distinct positions within the image, which 

is particularly beneficial for datasets in which the object 

is consistently centered. 

• Random Vertical Shift: Analogous to horizontal shift, a 

random vertical shift of 20% relocates the image 

vertically, supporting the model in learning object 

recognition by varying vertical positions within the 

image. 

• Random Zoom: Randomized zooming into the image by 

20% contributes to the model’s ability to learn object 

recognition at different scales, which is advantageous for 

datasets with varying object sizes. 

• Horizontal and Vertical Flip: Applying horizontal or 

vertical flips assists the model in recognizing objects in 

varying orientations, which is particularly advantageous 

for datasets with diverse object orientations. 

Implementing these augmentations significantly 

enhances the training data diversity, thereby improving the 

model performance. 

3.5. Implementation Steps  

To utilize VGG16, ResNet50, AlexNet, and MobileNet, 

the following steps are pursued: 

1) Importing Essential Libraries: This includes TensorFlow, 

Keras, and other relevant Python libraries. 

2) Loading Pre-Trained Model: Retrieving the pre-trained 

model architecture from Keras, potentially VGG16, 

ResNet50, AlexNet, or MobileNet. 

3) Preprocessing the Input: Aligning the input data with the 

anticipated format of the model, which may involve 

image resizing and normalization of pixel values. 

4) Compiling the Model: Specifying the optimizer and loss 

function for model training. 

5) Training the Model: Feeding the input data to the model 

and adjusting the model weights based on the computed 

loss during training on the dataset. 

6) Assessing the Model: Evaluating the model’s 

performance on a validation or test dataset. 

7) Making Predictions: Utilizing the trained model to predict 

outcomes for new data. 
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3.6. Training the Network  

The initial learning rate was established at 0.002 to 

decelerate the learning process within the transferred layers 

that were not fixed. Conversely, the learning rate multiplier 

for the fully connected layer was augmented to expedite the 

learning within the new final layers of the network. This 

configuration of learning rate adjustments reduces the training 

duration. Consequently, 50 epochs were used to train all the 

models. 

4. Results and Discussion  
A comparative study of image classification algorithms 

such as VGG16, ResNet50, AlexNet, and MobileNet for 

research purposes can yield significant insights into their 

effectiveness, efficiency, and applicability to various tasks. 

Several compelling rationales exist for undertaking such an 

analysis: assessing performance by comparing accuracy, 

precision, recall, and F1-scores across specific datasets or 

tasks; evaluating computational efficiency by examining 

training duration, inference speed, and resource demands; 

investigating model complexity by considering the number of 

parameters, layers, and architectural distinctions; assessing 

transfer learning capabilities to determine each model's 

adaptability to novel tasks or domains; comparing feature 

extraction to evaluate the quality and interpretability of 

extracted features; testing robustness to gauge performance 

under diverse conditions; determining task-specific suitability 

to identify optimal models for particular image classification 

challenges; analyzing trade-offs between accuracy and 
computational efficiency; evaluating scalability to examine 

performance as dataset size or class numbers increase; 

comparing interpretability to assess the ease of understanding 

and visualizing decision-making processes; evaluating fine-

tuning potential to determine the models' capacity for 

performance improvement through fine-tuning; and 

benchmarking against state-of-the-art architectures to 

compare these models with more recent designs. This 

comprehensive comparative analysis can aid researchers and 

practitioners in making well-informed decisions regarding 

model selection for specific applications and contribute to the 

ongoing advancement of image classification techniques. 

4.1. Graphs and Confusion Matrix 

Figures 5, 6, 7, and 8 show the relationships between the 

iteration count and accuracy/loss for the fine-tuned deep 

learning models. Table 2 summarizes the training and 

validation accuracies of the deep learning models. After 

training for 32 epochs, VGG16 achieved a validation accuracy 

of 86.28%. The graphical representation indicates that 

accuracy and loss demonstrate a harmonious and consistent 

pattern. After 36 training epochs, ResNet50 achieved a 

validation accuracy of 86.13%. Graphical representations of 

the accuracy and loss of the ResNet50 model exhibited 

minimal fluctuations throughout the training process. AlexNet 

attained a validation accuracy of 80.71% after 20 training 

epochs.  

Table 2. Summary of training and validation accuracy 

Model 
Training 

Accuracy 

Validation 

Accuracy 

VGG16 87.35% 86.28% 

ResNet50 86.75% 86.13% 

AlexNet 83.92% 80.71% 

MobileNet 98.39% 98.44% 

 
(a) Model accuracy 

 
 (b) Model loss 

Fig. 5 VGG16 training results 

The charts depicting the accuracy and loss for the 

AlexNet model illustrate persistent fluctuations throughout the 

training duration, ultimately impacting the model’s final 

validation accuracy. To substantiate the assertion that 

MobileNet is a superior framework for classifying Surface 

Mount Device (SMD) components, a comprehensive 

evaluation is necessary. This evaluation should encompass a 

comparative analysis with other widely utilized deep-learning 

architectures, including ResNet, VGG, and Inception. The 

comparison should focus on key performance metrics, such as 
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accuracy, precision, recall, and F1-score, while also 

considering computational efficiency and inference speed. 

Rigorous error analysis is essential, involving the 

identification of common misclassification patterns, 

examination of confusion matrices, and investigation of how 

factors such as image quality, illumination, and component 

orientation affect classification accuracy. It is crucial to 

discuss instances of misclassification by presenting specific 

examples, analyzing the underlying causes, and proposing 

potential remedies or enhancements. The evaluation should 

also consider dataset characteristics, examining MobileNet's 

performance across various SMD component categories and 

its ability to generalize to novel or unseen component types. 

Assessing model robustness by testing performance under 

diverse conditions and evaluating transfer-learning 

capabilities for adapting to new SMD component types will 

provide valuable insights. Comparing MobileNet with 

conventional computer vision techniques and discussing the 

balance between model size, computational demands, and 

classification accuracy will help to elucidate its advantages 

and limitations. By addressing these aspects, a more 

comprehensive and compelling argument for MobileNet's 

efficacy in SMD component classification can be presented 

while acknowledging potential shortcomings and areas for 

improvement. MobileNet achieved a validation accuracy of 

98.44% after training for 25 epochs. The accuracy and loss 

graphs show that they exhibit relatively smooth and 

complementary behavior. 

  
(a) Model Accuracy (b) Model Loss 

Fig. 6 ResNet50 training results 

  
(a) Model Accuracy (b) Model Loss 

Fig. 7 AlexNet training results 
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(a) Model Accuracy (b) Model Loss 

Fig. 8 MobileNet training results 

Figure 9 shows the confusion matrices for the VGG16, ResNet50, AlexNet, and MobileNet classifications. The overall 

performance matrix of all models is mentioned in Table 3.  

  
(a) Confusion matrix of VGG16 (b) Confusion matrix of ResNet 

  
(c) Confusion matrix of AlexNet (d) Confusion matrix of MobileNet 

Fig. 9 Confusion matrices 
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Figures 10, 11, 12, and 13 present random samples of the 

validation images, their predicted labels, and the associated 

predicted probabilities. The accuracy and loss charts 

demonstrate a reciprocal relationship. As training progresses, 

accuracy increases while loss diminishes, reaching a minimum 

at the final iteration. The validation results indicate that the 

fine-tuned networks effectively predicted the class of 

electronic components in images, regardless of their size, 

color, or orientation, showing exceptional performance.

 
Fig. 10 VGG16 image validation 

 
Fig. 11 ResNet50 image validation 

 
Fig. 12 AlexNet image validation 

 
Fig. 13 MobileNet image validation 

Table 3. Performance matrix of the trained model 

Model Class Precision Recall Accuracy F1 Score Overall Acc. 

V
G

G
1

6
 

Capacitor 0.99 0.99 1 0.99 

0.965 

Diode 0.98 0.93 0.99 0.96 

Zener 0.76 0.7 0.96 0.73 

EC 0.65 0.83 0.91 0.73 

SCapacitor 0 0 0.98 0 

IC 0.77 0.79 0.93 0.78 

Resistor 0.92 0.9 0.97 0.91 

LED 0.99 0.88 0.99 0.93 

R
es

N
et

5
0

 

Capacitor 0.99 0.97 0.99 0.98 

0.965 

Diode 0.97 0.99 1 0.98 

Zener 0.79 0.64 0.96 0.71 

EC 0.67 0.81 0.91 0.73 

SCapacitor 0.25 0.01 0.98 0.03 

IC 0.74 0.83 0.93 0.78 

Resistor 0.92 0.9 0.97 0.91 
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MobileNet achieved the highest level of accuracy, 

reaching 98.44%, surpassing all other deep learning 

models utilized in this study. In contrast, ResNet50, AlexNet, 

and VGG16 attained accuracies of 86.13%, 80.71%, and 

86.28%, respectively, following parameter fine-tuning of 

reused networks. Furthermore, increasing the number of 

epochs does not consistently enhance the performance of the 

retrained network. The potential cause lies in the adverse 

impact on the overall dataset quality and classifier 

performance when combining sub-par-quality images with 

high-quality images. Multiple validation trials were conducted 

to verify the reliability of the classification model devised in 

this study. The general precision of the model is associated 

with the precision of the validation images. Inaccurate results 

indicate a low likelihood of accurate predictions, whereas 

higher precision indicates improved classification. 

5. Conclusion  
This study evaluated the efficacy of fine-tuned deep 

learning models by examining their average accuracy and 

validation image utilization. After arranging the parameters of 

the adapted deep neural networks, accuracy rates of 98.44%, 

86.28% for VGG16, 86.13% for ResNet50, and 80.71% for 

AlexNet were achieved when utilizing and large dataset. 

Variations in the characteristics of the components, such as 

type, size, orientation, and structure, did not significantly 

affect the overall accuracy of the retrained networks. 

Implementing data augmentation methods such as rotation, 

random shifts, zoom, and flips has been found to significantly 

increase the variety of training data, potentially enhancing the 

model's performance.  

The accuracy of the model is directly related to the 

accuracy of the validation images, with a higher accuracy 

indicating better classification. According to the findings in 

this study, this technology closes the divide between tangible 

prototypes and their conceptual depictions, enabling engineers 

to make well-informed choices throughout the design and 

development phases. It has the potential to advance reverse 

engineering methodologies and improve product excellence.  

These technologies have the potential to improve 

automated assembly processes, inventory tracking, and quality 

assurance in the field of electronic production.
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