
International Journal of Engineering Trends and Technology Volume 72 Issue 10, 306-315, October 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I10P128 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Deep Learning Approach for IoT Malware Detection and

Classification based on Squirrel Search Algorithm and

Convolutional Neural Network (IMD_SSACNN)

V. S. Jeyalakshmi1, Krishnan Nallaperumal2

1,2Centre for Information Technology and Engineering, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli,

Tamilnadu, India.

1Corresponding Author : vsjeyalakshmiap@gmail.com

Received: 13 June 2024 Revised: 05 October 2024 Accepted: 14 October 2024 Published: 25 October 2024

Abstract - The number of Internet of Things (IoT) devices that are exposed to the public has been rising as more of these

devices are connecting to the internet using their default settings. Due to the variety of designs and the IoT's limited

computation and storage capacities, it is challenging to implement sufficient security measures, which makes it more

susceptible to infection. Accurate IoT malware identification and family attribution are crucial in order to begin implementing

attack mitigation/prevention tactics, which is why they are so important in order to reduce the threat. To prevent the risks

caused by malicious code, various research has been done on the identification of IoT malware. It might be challenging to

recognize the novel variant IoT virus that is being created rapidly, even though existing models might successfully identify

hazardous IoT code found through static analysis. This research introduced a novel IoT Malware Detection with a Squirrel

Search Algorithm and Convolutional Neural Network (IMD-SSACNN). IoT malware datasets are used to conduct an

exhaustive analysis of the suggested technique. IMD-SSACNN is able to lessen the damage that malware infestation brings to

IoT devices by examining and analyzing the massive volume of behavior data generated by dynamic analysis. The experimental

findings show that the suggested IMD-SSACNN is the preferred approach since it has a greater detection rate than the earlier

malware detection algorithms.

Keywords - Deep Learning, Malware detection, IoT malware, Mitigation, Convolution Neural Network.

1. Introduction
The IoT has been widely used to improve a variety of

areas of the human living environment, including healthcare,

transport, etc. IoT has been incorporated into many facets of

our daily lives. Simultaneously, there is growing concern

about the security of IoT applications [1]. 50 billion IoT

devices are expected to be in operation globally by 2030,

according to predictions [2]. Despite their advantages, the

growing prevalence of malware designed specifically for the

IoT that aims to use compromised IoT devices (such as weak

authentication) to coordinate massive cyberattacks has posed

a serious threat to the broader Internet ecosystem. The

application of traditional security procedures is, however,

impractical with IoT due to their networked and autonomous

nature, as well as their limited computation and storage

capacities. This means that malware attacks can occur on a

large number of IoT devices. IoT malware threats have been

rapidly increasing. IoT device attacks are typically not

sophisticated, but they are sneaky, so users are not aware that

their gadgets are being abused. More than 120,000 different

malware variants of IoT malware seen in 2017, targeted IoT

devices in the first half of 2018, according to the Kaspersky

Lab IoT report [3]. A risky trend is continuing with the

exponential growth of malware targeting IoT devices. Less

than 2% of new malware varieties, however, differ in their

coding from known malware [4]. It shows that the majority

of malware variants from the same family share functionality

to some extent, which is a crucial foundation for malware

classification. Accurately identifying and categorizing the

rapidly multiplying IoT malware variants is crucial.

Research has been done on virus detection by feature

learning and classification in an attempt to reduce the harm

caused by malware infection by shielding IoT devices against

new and unique malware attacks [5, 6]. The process of

detecting malware is usually divided into two phases by

studies: analysis and detection [7]. Malware characteristics

were obtained during the analysis stage. The detection step is

conducted to search for malware in the content that was

inspected after the malware analysis. Malware can be

prevented from infecting further IoT devices by recognizing

known, unknown, and variant IoT malware using malware

analysis and detection tools. In this research, a novel deep

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

V. S. Jeyalakshmi & Krishnan Nallaperumal / IJETT, 72(10), 306-315, 2024

307

learning framework, IoT Malware Detection and

Classification based on Squirrel Search Algorithm and

Convolutional Neural Network (IMD-SSACNN), is

proposed. The framework integrates the SSA, a nature-

inspired optimization method, with a Convolutional Neural

Network (CNN) to improve malware detection and

classification efficiency. The SSA is used to optimize

hyperparameters, ensuring that the CNN model achieves high

accuracy and minimal false positives in detecting and

categorizing IoT malware. By leveraging the SSA’s ability to

explore and exploit the search space dynamically, the

proposed model can effectively adapt to the diverse and

evolving nature of malware in IoT systems. The CNN,

known for its strong feature extraction capabilities, enhances

the classification performance, making the model robust in

distinguishing between benign and malicious IoT traffic.

This article suggests a dynamic IoT malware detection

system and Classification based on a Squirrel Search

Algorithm and Convolutional Neural Network (IMD-

SSACNN). To simplify malware classification models and

satisfies the security and defense requirements of various

platforms. The suggested dynamic analysis in order to

identify the IoT malware through a continuous analysis of

malware behavior. Dynamic analysis tools are used to obtain

the disassembled binary files in a virtual environment. Later,

it was converted into image files for malware analysis. The

remainder of the piece is organized as follows: In Section 2,

the research approaches for assessing and recognizing IoT

malware are examined. Section 3 describes the IMD-

SSACNN presented in the paper. In Section 4, the suggested

model's performance evaluation is discussed. The paper's

findings and recommendations for additional research are

provided in Section 5.

2. Related Works
This section is a survey of the literature on IoT malware

detection. Given a summary of the current DL-based

approaches for IoT malware classification. Vasan et al. [8]

have suggested a novel architecture based on ensemble

Convolutional Neural Networks (CNNs) that are capable of

effectively detecting malware that is both packed and

unpacked. A set of CNN architectures enables the extraction

of features with higher quality than conventional techniques.

According to experimental findings, IMCEC is especially

suited for malware detection. It might be able to achieve low

false alarm rates and high detection accuracy using malware

raw-input. The outcome shows over 99% accuracy for

malware that has been unpacked and over 98% accuracy for

malware that has been packed. A novel malware-detection

model employing opcode sequences and a convolutional

recurrent neural network is presented by Jeon et al. [9]. An

executable file is seen statistically as a collection of

sequential machine codes. First, it has been covered how to

use opcode sequences to look for malware theoretically. The

Area Under the Curve (AUC) of the suggested model was

0.99, its True Positive Rate (TPR) was 95%, and its

malware-detection accuracy was 96%. Kuang et al. [10]

suggest a unique deep neural network-based approach for

detecting visual malware. First, samples of executable files

are gathered and disassembled using technology to create

bytes and ASM files. After that, the samples are further

transformed into three-channel RGB images by employing

data augmentation and visualization methods to extract high-

dimensional intrinsic features from the data samples.

Giacomo Iadarola et al. [11] describe a technique that uses an

explainable deep learning model created by the authors to

detect malware on Android and identify families, which

relies on the representation of the application in terms of the

photographs used as input.

Furthermore, this study demonstrates how the analyst

might take explainability into account when evaluating

various models. Averaging accuracy between 0.96 and 0.97,

this model examined 8446 Android samples from six

separate malware families and one additional family of

trusted samples. Transformers on raw binaries for real-time

malware categorization were studied by Lu et al. [12]. Two

models that interpret the binary in two distinct ways are put

forth in order to do malware categorization. In order to

handle the raw data as a byte sequence, they suggested by

using SeqConvAttn. Observed the latency for classification

increases quadratically with the length of the input sequence,

subsequently introduced ImgConvAttn. This low-latency

substitute model employs Vision Transformer for malware

classification using preprocessed images.

 The two combined models into a two-stage framework

that takes the file size into account in order to effectively

utilize both models. The MalFSM framework is proposed by

Kong et al. [13]. The machine learning classification is

effectively applied and achieves a good accuracy rate after

reducing the 735 opcode features in the Kaggle dataset to 16

using the feature selection approach. Then, fuse on metadata

features (the number of file lines and file size) for a total of

18 features and evaluate the chosen features to examine the

relationship between the malicious samples' opcode features.

The extensive tests applied to the Microsoft Kaggle malware

dataset demonstrates that the maximum classification

accuracy of MalFSM achieved 98.6% and the classification

time is only 7.76 s.

Table 1. An overview of earlier research on anomaly detection

S.No. Reference Model Accuracy

1 [8] ECNN 99%

2 [9]

Convolutional

Recurrent Neural

Network (CRNN)

96%

3 [10] SERLA 98%

4 [11] Grad-CAM 97%

5 [12] ImgConvAttn 93.42%

6 [13] MalFSM 98.6%

V. S. Jeyalakshmi & Krishnan Nallaperumal / IJETT, 72(10), 306-315, 2024

308

3. Proposed Methodology

Fig. 1 Proposed SSACNN based malware detection architecture

This study addresses the challenge of IoT malware

classification through the analysis of IoT malware binaries.

Because IoT devices lack secure protocols and security

standards, they are more vulnerable to malware assaults. As a

result, protecting data in Internet of Things networks is a

difficult but necessary undertaking. IoT-malware byte

sequences are examined in the paper. For the experiment,

byte sequence is taken into consideration as a characteristic

because it can be built into a detection model with little

computational complexity and is platform-independent. In

this research, the IoT malware is classified using the L based

approach that can identify and classify IoT malware families

in order to address the limitations mentioned above. The goal

is to create and evaluate a classification technique that

increases overall classification accuracy by combining many

modalities and proactively discovering characteristics from

different malware binary representations. The proposed

malware classification model is described in the section. The

section goes into great detail on the dataset used for the

research, data preparation, the suggested SSACNN approach,

and experimental design. The working steps of the proposed

SSACNN architecture on malware detection are illustrated in

Figure 1.

3.1. Dataset

The BIG15 dataset is utilized for experimentation and

assessment of the suggested technique. Microsoft makes this

dataset available on the Kaggle platform for competition

purposes. Microsoft offers this for competition purposes.

There are two sets of it, each with 10868 training samples

and 10873 test samples, totaling 21,741 different malware

kinds [14]. This dataset takes up approximately half a

terabyte when it is uncompressed. In this experiment, just the

train data are used; the test sample lacks labels. A class, an

integer that designates one of nine potential malware family

names, and an id, a hash value of 20 characters that serves as

the file's unique identity, are both present in every malware

file. The number of instances for each malware class of the

BIG 15 dataset is illustrated in Table 2. Without the PE

header, each sample of malware is just a raw hexadecimal

representation of the file's binary data. A metadata

representation is additionally included, which contains

information on function calls, embedded text, etc., that was

collected using a disassembler tool. The work focuses on

using deep learning approaches to classify malware based on

the content of raw binary files.

Table 2. Number of instances in the dataset for each malware class

Class Number of Instances

Ramnit 1541

Lollipop 2478

Kelihos_ver3 2942

Vundo 475

Simda 42

Tracur 751

Kelihos_ver1 398

Obfuscator.ACY 1228

Gatak 1013

Malware Benign

Dataset

SSACNN- Detection Procedure

Preprocessing
Feature

extraction

Malware Benign

Image data

generation

Classification

Training Testing

V. S. Jeyalakshmi & Krishnan Nallaperumal / IJETT, 72(10), 306-315, 2024

309

3.2. Data Pre-processing and Feature Extraction

Deep learning has the benefit over other machine

learning approaches in that it may be used on raw data

without the need for explicit feature engineering in a

particular area. The objective is to effectively categorize

malware without requiring specialized knowledge or time-

consuming procedures to find and extract malware

signatures. This serves as a major motivator for the work.

For the deep learning strategy to parallelize the computation

for training and testing the models, each file must have a

specified size. On the other hand, malware can exist in a

variety of file sizes. In addition to being the same size, the

deep learning approaches need that the size be restricted

from a computational standpoint in order to keep the model

training procedure feasible with standard hardware. To

preserve as much of the original structure as possible because

the deep learning algorithms are built to identify and detect

similar patterns and structures in malware file data, even

while padding and truncation have been employed to

standardize the file size.

3.3. Image Data Generation from Byte Data

Before the resizing and normalization, byte files are

converted into image data. Malware is represented as binary

or assembly mnemonics at the machine level. Byte files [15],

which are effectively compiled binaries, serve as malware

representations. With the aid of programmers like Interactive

Disassembler, the compiled binary must first be transformed

into equivalent mnemonic sequences as the first stage in the

categorization process (IDA). Then, mnemonics are

transformed into hexadecimal digit combinations and

combined, as illustrated in Figure 2. Then, set the image's

preset width and height to 1024x1 to ensure that hexadecimal

sequences are represented appropriately in pixels. Such an

image had 2 hexadecimal digits per pixel, each of which

represented a byte. Later, this image was scaled using

conventional bicubic interpolation to match the SSACNN

input channel size.

3.4. Resizing and Normalization

Due to the input size's flexibility, it can be adjusted to fit

the algorithms employed in this study. For data

normalization, the min-max scaling strategy is used in

addition to regular scaling [16]. Normalization keeps the

model from becoming stale and is essential for learning on

neural networks. The following is a definition of a Min-Max

Scalar (MMS).

𝑀𝑀𝑆 =
𝐷𝑆 − 𝐷𝑆𝑚𝑖𝑛

𝐷𝑆𝑚𝑎𝑥 − 𝐷𝑆𝑚𝑖𝑛

 (1)

 𝐷𝑆 signifies a data sample within a column, whereas

DSmin and DSmax indicate the minimum and maximum

data samples in that column. Post Min-Max normalization,

the values reside inside the range [0, 1], which is sometimes

a preferred attribute for input [16].

Fig. 2 Steps involved in byte into image conversion

The data surrounding a mean with a single standard

deviation are standardized by traditional scaling, given by the

following equation

𝑐𝑠 =
𝐷𝑆 − 𝜇

𝜎
 (2)

3.5. Autoencoder

An autoencoder is an artificial neural network designed

to identify a data representation. Its principal application is in

dimensionality reduction. They may acquire fundamental

data representations and how to revert these representations

to the original data.

An autoencoder has three fundamental components:

• The objective of encoding architecture is to reduce the

dimensionality of incoming data. It often manifests as

layers with a reduced number of nodes.

• Subordinate representation of data subsequent to its

traversal through the encoding framework.

• A growing quantity of layers in a decoding architecture

is employed to transform data from a low-level

representation to its original form.

L1 and L2 weight regularization coefficients are

incorporated into the loss function to enhance generalization

in autoencoder training. Regularization is a fundamental

machine learning principle. Its goal is to prevent overfitting

of the model. It is utilized in the cost function minimization

process. To minimize the costs of L1 regularization, sums of

weights are added to them. As a result, it generates incredibly

sparse matrices with plenty of zeros. In contrast, the cost

Binary Files

Disassembly

Hexadecimal representation

Pixel Representation

Byte data

Mnemonics

Hex bytes

V. S. Jeyalakshmi & Krishnan Nallaperumal / IJETT, 72(10), 306-315, 2024

310

function is combined with the weights' sum and square in the

L2 regularization. The cost function additionally employs L2

regularization to prevent overfitting.

4. Feature Extraction
Convolutional layers of CNNs are trained with

convolutional autoencoders to achieve feature extraction.

The original byte data are utilized to train two Convolutional

Autoencoders (CAE). The original encoded data from the

first encoder is input into the second autoencoder. For fine-

tuning, two completely linked layers of a CNN are employed

as convolution layers, with the pre-trained encoding layers

from CAE. The optimal model state with the lowest log loss

for validation data is saved throughout fine-tuning.

Following training, the best model is applied to the entire

dataset (train, validation, and test) to produce nine

probabilities for each malware sample as features.

4.1. Squirrel Search Algorithm

SSA is one of the more sophisticated Swarm Intelligence

(SI) models developed using squirrel foraging behavior [17].

The SSO approach is developed by flying squirrel's foraging

activity and a successful method for migration involved

using small animals. A squirrel may be simulated in a multi-

dimensional search area while looking for food in a

population-based scheme with many squirrels. Different

parameters are assigned to different places of squirrels in the

SSA technique. Individual squirrels also shift their locations

in order to find the best option. Some of the significant

elements of SSA are population sizes 𝑃_𝑆, maximum

iteration value 𝐼𝑚𝑥, likelihood of predator presence 𝑃𝑝,

decision variables value 𝑑, gliding constants 𝑔, scaling

factors 𝐹, and upper and lower limits to decision variables

𝐹𝐿𝑆𝑢 and 𝐹𝐿𝑆𝑙. A random position for the squirrel is

loaded from the search space.

𝐹𝐿𝑆𝑎,𝑏 = 𝐹𝐿𝑆𝐿 + 𝑟() ∗ (𝐹𝐿𝑆𝑢 − 𝐹𝐿𝑆𝐿),

𝑎 = 1,2, ⋯ , 𝑃𝑆 𝑎𝑛𝑑 𝑏 = 1,2, ⋯ , 𝑑 (3)

 Where rand () designates an arbitrary value in the range

[0, 1], a squirrel position's fitness measure 𝑓𝑚 =
𝑓𝑚1𝑓𝑚2, 𝑓𝑚𝑃−𝑠 was processed by substituting FF for the

decision variable: Next, the fitness measure of a squirrel

position is used to assess the quality of food sources as

follows:

[𝑠𝑜𝑟𝑡𝑒𝑑𝑓𝑚, 𝑠𝑜𝑟𝑡𝑒𝑑𝑖𝑛𝑑𝑒𝑥] = 𝑠(𝑓) (4)

The array is sorted ascending after recording the fitness

values of each flying squirrel's position. Food supplies were

organized and included hickory trees, regular trees, and oak

trees (acorn nuts). The hickory nut tree (𝐹𝐿𝑆ℎ𝑛) was thought

to be the best food source (lowest fitness), followed by acorn

nut trees (𝐹𝐿𝑆𝑎𝑛), and the remaining trees are known as

"regular trees" (𝐹𝐿𝑆𝑛𝑡). As previously mentioned, there are

three potential consequences when flying squirrels engage in

dynamic foraging. In all instances, it is believed that in the

absence of predators, the flying squirrel glides and efficiently

forages the forest for its chosen sustenance; nevertheless,

when a predator is present, it becomes vigilant and must

undertake a swift, aimless search for a concealment location.

This mathematical model may represent dynamic foraging

activity.

• Scenario 1-Flying squirrels may move from acorn nut

trees to hickory nut trees (FlSan). The new position of

the squirrel may be determined as follows:

• Flying squirrels have the potential to migrate from acorn

nut trees (𝐹𝑙𝑆𝑎𝑛) to hickory nut trees. In this case, the

following is how to find the new squirrel position:

𝐹𝐿𝑆𝑎𝑛
𝑡+1

= {
𝐹𝐿𝑆𝑎𝑛

𝑡+1 + 𝑅𝑔𝑑 × 𝑔 × (𝐹𝐿𝑆ℎ𝑛
𝑡 − 𝐹𝐿𝑆𝑎𝑛

𝑡) 𝑁1 ≥ 𝑃𝑝

𝑅𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5𝑎)

In this context, RL denotes the random location, 𝐹𝑆ℎ𝑛

indicates the position of the flying squirrel that has arrived at

the hickory nut tree, 𝑅𝑔𝑑 represents the random gliding

distance, and 𝑡 signifies the current iteration. The glide

constant 𝑔 within the mathematical model facilitates the

equilibrium between exploration and exploitation. The value

significantly influences the performance of the proposed

algorithm. The value of 𝑔 is established at 1.9 in the present

study, determined through thorough analysis.

• Scenario 2: To fulfil their daily energy needs, flying

squirrels residing in regular trees (𝐹𝑆𝑛𝑡) may migrate in

proximity to acorn nut trees. The following are newly

identified locations for squirrels:

𝐹𝐿𝑆𝑛𝑡
𝑡+1

= {
𝐹𝐿𝑆𝑛𝑡

𝑡 + 𝑅𝑔𝑑 × 𝑔 × (𝐹𝐿𝑆𝑎𝑛
𝑡 − 𝐹𝐿𝑆𝑛𝑡

𝑡) 𝑁2 ≥ 𝑃𝑝

𝑅𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5𝑏)

• Scenario 3: In situations where food availability

decreases, certain squirrels that have been foraging on

acorn nuts from prevalent tree species may transition to

hickory nut trees, allowing them to store hickory nuts for

future use. The following locations for squirrels have

been identified:

𝐹𝐿𝑆𝑛𝑡
𝑡+1

= {
𝐹𝐿𝑆𝑛𝑡

𝑡 + 𝑅𝑔𝑑 × 𝑔 × (𝐹𝐿𝑆ℎ𝑛
𝑡 − 𝐹𝐿𝑆𝑛𝑡

𝑡) 𝑁3 ≥ 𝑃𝑝

𝑅𝐿 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5𝑐)

 𝑁1, 𝑁2 𝑎𝑛𝑑 𝑁3 are the random values between [0, 1].

Flying squirrel foraging habits are influenced by the season,

which changes often. The trapping is therefore eliminated in

the local ideal outcome as a result of the implementation of

the seasonal observation. The minimum value and seasonal

constant 𝑆𝑛𝑐 can be expressed as follows:

𝑆𝑛𝑐𝑐
𝑡 = √∑(𝐹𝐿𝑆𝑎𝑛,𝑘

𝑡 − 𝐹𝐿𝑆ℎ𝑛,𝑘)
2

𝑑

𝑘=1

, 𝑡

= 1,2,3 (6)

V. S. Jeyalakshmi & Krishnan Nallaperumal / IJETT, 72(10), 306-315, 2024

311

𝑆𝑐𝑚𝑛 =
10𝐸 − 6

365𝐼/(𝐼𝑚𝑛)/2.5
 (7)

As the winter season increases 𝑆𝑛𝑐𝑐
𝑡 < 𝑆𝑐𝑚𝑛, the

squirrel loses its capacity for exploration, and the manner of

looking for food sources and sites changes:

𝐹𝐿𝑆𝑛𝑡
𝑛𝑒𝑤 = 𝐹𝐿𝑆𝐿 + 𝐿(𝑑) × (𝐹𝐿𝑆𝑢 − 𝐹𝐿𝑆𝐿) (8)

The Lévy distribution is now used to transform the

global search into an improved technique:

𝐿(𝑥) = 0.01 ×
𝑑𝑟𝑖 × 𝛼

|𝑑𝑟𝑗|
1/𝛿

 (9)

Where 𝛿 is a constant in the current work assumed to be

1.5, 𝑑𝑟𝑖 and 𝑑𝑟𝑗 are two randomly distributed values in the

range [0, 1], and is calculated as:

𝛼 = (
Г(1 + 𝛿) × 𝑠𝑖𝑛 (

𝜋𝛿
2

)

Г (
1 + 𝛿

2
) × 𝛿 × 2

(
𝛿−1

2
)
)

1/𝛿

 (10)

Where Г(𝑥)𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 (𝑥 − 1)

4.2. CNN

The CNN classifier was developed to lower the

classification error rate caused by other feature extraction

techniques that lacked the CNN method's level of robustness.

This section describes the CNN and its intricate algorithm

process. The layers of this classifier are to create a network

of neurons depending on the dataset's relevant properties

during the classifier's training phase. To extract the class

label of the testing image frame, this computes the separation

between the training set and the testing feature vector during

the testing instance. The CNN is composed of three main

layers: the fully connected layer, the max-pooling layer, and

the convolutional layer.

During the CNN training phase, these layers were

mostly engaged in the two main types of propagation, which

are forward propagation and backward propagation. The

feature's importance is evaluated using one of these two

propagations, and the distance's compliance with the

permissible range is ascertained using the other. That

includes the mathematical model to express the network

setup based on the input feature matrix and a hidden layer of

NN. With the help of these five layers, CNN trains its

features and predicts how relevant they will be.

This was considered for the dataset's training case for

the input patterns of image frames. By determining the

shortest path between the training feature set and the testing

vector, the feature vector was subsequently verified from the

intricate pattern during testing and was able to predict the

class. The completely networked layer represents CNN's

categorized output and is a part of the output stage. In order

to create the small patches in CNN, the convoluted

image frames have to be reassembled into a number of pre-

defined blocks. The length of the features that need to be

classified determines the size of the patch separation.

4.2.1. CNN Classifier Training Utilizing SSA

The utilization of the "back propagation" method

exclusively for training a Neural Network (NN) may result in

the solution being confined to a "local" optimum. The SSA

optimization algorithm is utilized to identify the optimal

solution by executing multiple cycles to address this issue.

This article analyses the SSA method for achieving optimal

weight initialization in CNN classifiers. The SSA search

agents determine the weights of the "CNN" classifier through

the use of actual numerical values.

The initial real integers are utilized to encode the three

convolutional masks. The final actual value functions as the

"seed measure" for the Random Number Generator (RNG),

which is employed to initialize the CNN. Additionally, the

'CNN' classifier undergoes training exclusively through the

back-propagation method for a minimum of Q1 epochs.

Training the CNN classifier using the back-propagation

technique significantly reduces the risk of data overfitting.

The conventional feed-forward artificial neural network is

also referred to as the back-propagation technique.

The back propagation method is employed to train the

network, achieving the A1 epochs metric, which is

considered the fitness value of the SSA search agent. This

study investigates a specific set of weight initializations to

identify the optimal weight initialization that results in an

enhanced solution utilizing the SSA algorithm. To identify a

solution that is more likely to represent the "global" optimal.

To utilize the gradient descent algorithm to enhance the

search process and effectively identify the local optimum

within a specified weight initialization basin. The advantage

of employing the "gradient descent" method lies in its ability

to decrease the time required to identify the "local" optimum

from the "weight initializations" utilizing the SSA algorithm

(basins). This process can reduce the number of candidates,

known as "initial weights," that the SSA must evaluate to

identify the "local" optimum. Algorithm 1 demonstrates the

SSACNN working architecture.

Algorithm 1: SSACNN

Initialize the SSA population.

Calculate the SSA search agents' fitness metric and

use it to establish a "CNN" classifier.

Execution of SSA for a number of different cycles

using equations (1-4).

Calculate the final population of SSA.

Initialize CNN classifiers using the final SSA population.

Combine CNN classifier outputs (evidences) from SSA

agents.

V. S. Jeyalakshmi & Krishnan Nallaperumal / IJETT, 72(10), 306-315, 2024

312

4.2.2. Experimental Results

 The experiments designed to determine whether the

hybrid framework for malware classification is effective are

presented. In this section, the BIG15 dataset is used to

compare the outcomes of the proposed model's performance

analysis. Models are taught and assessed according to their

intrinsic behavior and classification proficiency.

To preserve class distribution, stratified splitting was

employed to partition the BIG15 dataset into a 75% training

set and a 25% testing set, thereafter training the model. The

metrics used for the evaluations are precision, recall, F-

measure and Accuracy.

Precision (P)

Its definition is the ratio of real positive, relevant

occurrences to all retrieved instances. It is supplied by:

𝑃 =
𝑇𝑃

TP + FP
 (11)

Precision is a critical metric for evaluating the

proportion of correctly identified positive instances relative

to the total number of instances classified as positive. It is

particularly important in scenarios where minimizing false

positives is a priority. In this study, the CNN model achieved

a precision of 98.39%, whereas the SSACNN model

outperformed it with a precision of 99.18%. The improved

precision of the SSACNN model demonstrates its

effectiveness in reducing false positives, making it a more

reliable classifier in this context.

Recall (R)

 The sensitivity, as it is often known, is the proportion of

accurately anticipated positive cases to the total number of

positive events.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

TP + FN
 (12)

Recall, also known as sensitivity, measures the ability of

a model to correctly identify all relevant instances (true

positives) within the dataset. The recall for the CNN model

was observed to be 98.57%, while the SSACNN model

demonstrated superior performance with a recall of 99.28%.

This higher recall indicates that the SSACNN model is more

capable of detecting true positives, making it particularly

effective in identifying positive instances without missing

significant portions of the relevant data.

Fig. 3 Class distribution of microsoft malware dataset

0

500

1000

1500

2000

2500

3000

n
u

m
b

er
 o

f
in

st
a

n
ce

s

Class Distribution

V. S. Jeyalakshmi & Krishnan Nallaperumal / IJETT, 72(10), 306-315, 2024

313

Accuracy

 It is the ratio of the number of correctly predicted

examples to all of the dataset's instances. It is provided by:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
 (13)

Accuracy measures the overall correctness of the model

by calculating the proportion of true results (both true

positives and true negatives) among the total number of

instances. The CNN model achieved an accuracy of 98.47%,

while the SSACNN model yielded a notably higher accuracy

of 99.16%. This significant improvement in accuracy reflects

the SSACNN model's enhanced ability to classify instances

correctly, demonstrating its potential as a robust classifier for

this specific application.

 F-Measure

 A harmonic mean of precision and recall is called an F-

measure.

 𝑓 = 2 ∗ (
𝑃∗𝑅

𝑃+𝑅
) (14)

The F-measure, or F1-score, provides a harmonic mean

of precision and recall, offering a balanced assessment of a

model's performance. It is especially useful when there is an

uneven class distribution. In the experiments, the CNN

model exhibited an F1-score of 98.33%, whereas the

SSACNN model achieved a higher F1-score of 99.16%.

This further validates the superiority of the SSACNN

model in balancing both precision and recall, ensuring

consistent classification accuracy across different classes.

Table 3. Performance Evaluation result for CNN and SSACNN

Models Precision Recall F-measure Accuracy

CNN 98.39 98.57 98.33 98.47

SSACNN 99.18 99.28 99.16 99.16

Fig. 4 Performance metrics value comparison report

Fig. 5 SSACNN train and test accuracy

Fig. 6 SSACNN train and test loss

Fig. 7 Accuracy comparison with Existing works

V. S. Jeyalakshmi & Krishnan Nallaperumal / IJETT, 72(10), 306-315, 2024

314

A preliminary CNN model is constructed to classify

malware issues, utilizing the Adam optimizer and categorical

cross-entropy loss function across 100 epochs. Figures 3

depict the class distribution of the BIG15 dataset. Figure 4

depicts the accuracy and loss for the test and training

datasets, respectively, over each epoch. Table 3 gives the

performance evaluation results for CNN and SSACNN.

Likewise, the proposed SSACNN was trained and evaluated

using identical parameter settings, resulting in the accuracy

and loss values depicted in Figures 5 and 6.

Six models' evaluation performances are shown, along

with comparative data, using the Microsoft BIG15 dataset.

As can be seen, the suggested model had the best accuracy,

scoring 99.16%. Figure 7 shows the accuracy comparison

with prior works. It is challenging to assess the effectiveness

of deep learning algorithms based solely on classification

accuracy. Therefore, the link between the anticipated and

actual values of the classifier is divided using a confusion

matrix known as an error matrix to define the performance

index, which is used to measure the performance of the

classifier.

4.2.3. Discussion

The SSACNN (Squirrel Search Algorithm

Convolutional Neural Network) model has demonstrated

remarkable effectiveness in detecting and classifying IoT

malware. Its superiority over traditional CNN models is

evident from the significantly improved performance

metrics, which reflect the advantages of incorporating the

Squirrel Search Algorithm (SSA) for weight initialization

and optimization. This section outlines key reasons why the

SSACNN model is highly effective for IoT malware

detection.

1. Enhanced Detection Accuracy: The SSACNN model

achieves a notable accuracy of 99.16%, which is higher

than the conventional CNN's accuracy of 98.47%. This

improvement underscores the effectiveness of the SSA

in optimizing the CNN’s weights and convolutional

layers, which leads to better identification and

classification of malware patterns in IoT environments.

Given the evolving and sophisticated nature of IoT

malware, such high accuracy is crucial for minimizing

false alarms and missed detections.

2. Reduction in False Positives and False Negatives:

Precision and recall are two critical measures in malware

detection, as they reflect the model’s ability to avoid

false positives and false negatives, respectively. The

SSACNN model achieved a precision of 99.18%, which

signifies that it accurately identifies malware without

wrongly classifying benign IoT traffic as malicious.

Additionally, the high recall value of 99.28% shows that

the model can effectively detect malware present in the

dataset, reducing the risk of missing actual threats. This

balanced performance is key in IoT environments, where

the trade-off between over-detection and under-detection

is sensitive.

3. Improved Generalization with Optimal Weight

Initialization: One of the core challenges in training deep

learning models like CNNs is the initialization of

weights. In the traditional CNN approach, improper

weight initialization may lead to the model being

trapped in local optima, limiting its generalization

capability. The SSACNN model addresses this issue by

using the SSA to explore and find better initial weight

configurations. By doing so, it ensures that the CNN

begins with a set of weights that are closer to the global

optimum, thereby improving its ability to generalize

across various types of malware, especially in highly

diverse and dynamic IoT environments.

4. Efficient Training and Reduced Overfitting: The

utilization of SSA alongside the back-propagation

method also contributes to the overall efficiency of the

model’s training process. While back-propagation

effectively tunes the weights to minimize error, SSA

optimizes the initial weights, allowing the model to

converge faster and with fewer epochs. Furthermore, the

combination of SSA and CNN mitigates overfitting—a

common problem in IoT malware detection—by

ensuring that the model does not become overly biased

toward the training data. This makes SSACNN more

robust when applied to unseen malware samples.

5. Adaptability to Complex and Evolving IoT Threats: The

complex and constantly evolving nature of IoT malware

poses a significant challenge for traditional detection

systems. The SSA’s global search capability allows the

SSACNN model to adapt more effectively to variations

in malware patterns, even as new threats emerge. The

dynamic optimization process of SSA ensures that the

CNN is well-prepared to handle the wide diversity of

malware types and their continuous evolution in IoT

ecosystems.

6. Scalability for Large IoT Networks: Given the vast

number of connected devices in IoT environments,

scalability is a crucial factor for any malware detection

system. The SSACNN model, with its improved

initialization and reduced training complexity, is well-

suited for deployment across large-scale IoT networks. It

can process and analyze vast amounts of data in real-

time, making it an efficient solution for monitoring and

securing IoT devices against potential malware attacks.

5. Conclusion
The research presents a unique hybrid framework for

malware classification that integrates computer vision and

deep learning, aiming to rectify the deficiencies in current

V. S. Jeyalakshmi & Krishnan Nallaperumal / IJETT, 72(10), 306-315, 2024

315

malware variant classification methods. The framework

includes the classification of distinguishing characteristics

derived from malware binaries in image format, and features

are extracted using a convolutional further classified with the

proposed SSACNN classifier. The present model achieved

99.16% in detecting the IoT malwares on the Microsoft

malware dataset. The results of experiments comparing the

model's performance with those of conventional CNN and

SSACNN further demonstrate the model's strong detection

performance.

In order to further enhance the effectiveness of the

detection component, feature extraction and classification

algorithms are refined with transfer learning to forecast more

unlabeled data.

Acknowledgements
Formal analysis and Investigation: VSJ; Resources: VSJ;

Methodology: VSJ; Writing Original Manuscript:

VSJandKN;Supervision:KN.

References
[1] Lionel Sujay Vailshery, Number of Internet of Things (IoT) Connections Worldwide from 2022 to 2023, with Forecasts from 2024 to

2033, Statista, 2024. [Online]. Available: https://www.statista.com/statistics/802690/ worldwide-connected-devices-by-access-

technology/

[2] Zhiwei Guo et al., “Robust Spammer Detection Using Collaborative Neural Network in Internet-of-Things Applications,” IEEE Internet

of Things Journal, vol. 8, no. 12, pp. 9549-9558, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[3] New IoT-Malware Grew Three-Fold in H1 2018, Kaspersky, 2018. [Online]. Available: https://www.kaspersky.com/about/press-

releases/new-iot-malware-grew-three-fold-in-h1-2018

[4] Baoguo Yuan et al., “IoT Malware Classification Based on Lightweight Convolutional Neural Networks,” IEEE Internet of Things

Journal, vol. 9, no. 5, pp. 3770-3783, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[5] Danish Vasan et al., “IMCFN: Image-Based Malware Classification Using Fine-Tuned Convolutional Neural Network Architecture,”

Computer Networks, vol. 171, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[6] Daniel Gibert, Carles Mateu, and Jordi Planes, “HYDRA: A Multimodal Deep Learning Framework for Malware Classification,”

Computers & Security, vol. 95, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[7] Jueun Jeon, Jong Hyuk Park, and Young-Sik Jeong, “Dynamic Analysis for IoT Malware Detection with Convolution Neural Network

Model,” IEEE Access, vol. 8, pp. 96899-96911, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[8] Danish Vasan et al., “Image-Based Malware Classification Using Ensemble of CNN Architectures (IMCEC),” Computers & Security,

vol. 92, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[9] Seungho Jeon, and Jongsub Moon, “Malware-Detection Method with a Convolutional Recurrent Neural Network Using Opcode

Sequences,” Information Sciences, vol. 535, pp. 1-15, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[10] Yifei Jian et al., “A Novel Framework for Image-Based Malware Detection with a Deep Neural Network,” Computers & Security, vol.

109, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[11] Giacomo Iadarola et al., “Towards an Interpretable Deep Learning Model for Mobile Malware Detection and Family

Identification,” Computers & Security, vol. 105, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[12] Qikai Lu et al., “Self-Attentive Models for Real-Time Malware Classification,” IEEE Access, vol. 10, pp. 95970-95985, 2022.
[CrossRef] [Google Scholar] [Publisher Link]

[13] Zixiao Kong et al., “MalFSM: Feature Subset Selection Method for Malware Family Classification,” Chinese Journal of Electronics,

vol. 32, no. 1, pp. 26-38, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[14] Microsoft Malware Classification Challenge (BIG 2015), Kaggle, 2015. [Online]. Available: https://www.kaggle.com/c/malware-

classification/

[15] Nadia Daoudi et al., “DexRay: A Simple, Yet Effective Deep Learning Approach to Android Malware Detection Based on Image

Representation of Bytecode,” Second International Workshop: Deployable Machine Learning for Security Defense, pp. 81-106, 2021.
[CrossRef] [Google Scholar] [Publisher Link]

[16] V.N. Ganapathi Raju et al., “Study the Influence of Normalization/Transformation Process on the Accuracy of Supervised

Classification,” 2020 Third International Conference on Smart Systems and Inventive Technology, Tirunelveli, India, pp. 729-735, 2020.
[CrossRef] [Google Scholar] [Publisher Link]

[17] Mohit Jain, Vijander Singh, and Asha Rani, “A Novel Nature-Inspired Algorithm for Optimization: Squirrel Search Algorithm,” Swarm

and Evolutionary Computation, vol. 44, pp. 148-175, 2019. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/JIOT.2020.3003802
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Robust+spammer+detection+using+collaborative+neural+network+in+internet+of+thing+applications&btnG=
https://ieeexplore.ieee.org/abstract/document/9121286
https://doi.org/10.1109/JIOT.2021.3100063
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=IoT+Malware+Classification+Based+on+Lightweight+Convolutional+Neural+Networks&btnG=
https://ieeexplore.ieee.org/abstract/document/9496689
https://doi.org/10.1016/j.comnet.2020.107138
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Imcfn%3A+Image-based+malware+classification+using+fine-tuned+convolutional+neural+network+architecture&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1389128619304736
https://doi.org/10.1016/j.cose.2020.101873
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hydra%3A+A+multimodal+deep+learning+framework+for+malware+classification&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404820301462
https://doi.org/10.1109/ACCESS.2020.2995887
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Dynamic+analysis+for+IoT+malware+detection+with+convolution+neural+network+model&btnG=
https://ieeexplore.ieee.org/abstract/document/9097224
https://doi.org/10.1016/j.cose.2020.101748
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Image-Based+malware+classification+using+ensemble+of+CNN+architectures+%28IMCEC%29&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S016740482030033X
https://doi.org/10.1016/j.ins.2020.05.026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Malware-detection+method+with+a+convolutional+recurrent+neural+network+using+opcode+sequences&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0020025520304217
https://doi.org/10.1016/j.cose.2021.102400
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+framework+for+image-based+malware+detection+with+a+deep+neural+network&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404821002248
https://doi.org/10.1016/j.cose.2021.102198
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+an+interpretable+deep+learning+model+for+mobile+malware+detection+and+family+identification&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167404821000225
https://doi.org/10.1109/ACCESS.2022.3202952
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Self-Attentive+Models+for+Real-Time+Malware+Classification&btnG=
https://ieeexplore.ieee.org/abstract/document/9877977
https://doi.org/10.23919/cje.2022.00.038
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MalFSM%3A+Feature+Subset+Selection+Method+for+Malware+Family+Classification&btnG=
https://ieeexplore.ieee.org/abstract/document/10038813
https://doi.org/10.1007/978-3-030-87839-9_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=DexRay%3A+A+Simple%2C+yet+Effective+Deep+Learning+Approach+to+Android+Malware+Detection+Based+on+Image+Representation+of+Bytecode&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-87839-9_4
https://doi.org/10.1109/ICSSIT48917.2020.9214160
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Study+the+influence+of+normalization%2Ftransformation+process+on+the+accuracy+of+supervised+classification&btnG=
https://ieeexplore.ieee.org/abstract/document/9214160
https://doi.org/10.1016/j.swevo.2018.02.013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+nature-inspired+algorithm+for+optimization%3A+Squirrel+search+algorithm&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S2210650217305229

