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Abstract - The number of Internet of Things (IoT) devices that are exposed to the public has been rising as more of these 

devices are connecting to the internet using their default settings. Due to the variety of designs and the IoT's limited 

computation and storage capacities, it is challenging to implement sufficient security measures, which makes it more 

susceptible to infection. Accurate IoT malware identification and family attribution are crucial in order to begin implementing 

attack mitigation/prevention tactics, which is why they are so important in order to reduce the threat. To prevent the risks 

caused by malicious code, various research has been done on the identification of IoT malware. It might be challenging to 

recognize the novel variant IoT virus that is being created rapidly, even though existing models might successfully identify 

hazardous IoT code found through static analysis. This research introduced a novel IoT Malware Detection with a Squirrel 

Search Algorithm and Convolutional Neural Network (IMD-SSACNN). IoT malware datasets are used to conduct an 

exhaustive analysis of the suggested technique. IMD-SSACNN is able to lessen the damage that malware infestation brings to 

IoT devices by examining and analyzing the massive volume of behavior data generated by dynamic analysis. The experimental 

findings show that the suggested IMD-SSACNN is the preferred approach since it has a greater detection rate than the earlier 

malware detection algorithms. 

Keywords - Deep Learning, Malware detection, IoT malware, Mitigation, Convolution Neural Network. 

1. Introduction  
The IoT has been widely used to improve a variety of 

areas of the human living environment, including healthcare, 

transport, etc. IoT has been incorporated into many facets of 

our daily lives. Simultaneously, there is growing concern 

about the security of IoT applications [1]. 50 billion IoT 

devices are expected to be in operation globally by 2030, 

according to predictions [2]. Despite their advantages, the 

growing prevalence of malware designed specifically for the 

IoT that aims to use compromised IoT devices (such as weak 

authentication) to coordinate massive cyberattacks has posed 

a serious threat to the broader Internet ecosystem. The 

application of traditional security procedures is, however, 

impractical with IoT due to their networked and autonomous 

nature, as well as their limited computation and storage 

capacities. This means that malware attacks can occur on a 

large number of IoT devices. IoT malware threats have been 

rapidly increasing. IoT device attacks are typically not 

sophisticated, but they are sneaky, so users are not aware that 

their gadgets are being abused. More than 120,000 different 

malware variants of IoT malware seen in 2017, targeted IoT 

devices in the first half of 2018, according to the Kaspersky 

Lab IoT report [3]. A risky trend is continuing with the 

exponential growth of malware targeting IoT devices. Less 

than 2% of new malware varieties, however, differ in their 

coding from known malware [4]. It shows that the majority 

of malware variants from the same family share functionality 

to some extent, which is a crucial foundation for malware 

classification. Accurately identifying and categorizing the 

rapidly multiplying IoT malware variants is crucial.  

Research has been done on virus detection by feature 

learning and classification in an attempt to reduce the harm 

caused by malware infection by shielding IoT devices against 

new and unique malware attacks [5, 6]. The process of 

detecting malware is usually divided into two phases by 

studies: analysis and detection [7]. Malware characteristics 

were obtained during the analysis stage. The detection step is 

conducted to search for malware in the content that was 

inspected after the malware analysis. Malware can be 

prevented from infecting further IoT devices by recognizing 

known, unknown, and variant IoT malware using malware 

analysis and detection tools. In this research, a novel deep 
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learning framework, IoT Malware Detection and 

Classification based on Squirrel Search Algorithm and 

Convolutional Neural Network (IMD-SSACNN), is 

proposed. The framework integrates the SSA, a nature-

inspired optimization method, with a Convolutional Neural 

Network (CNN) to improve malware detection and 

classification efficiency. The SSA is used to optimize 

hyperparameters, ensuring that the CNN model achieves high 

accuracy and minimal false positives in detecting and 

categorizing IoT malware. By leveraging the SSA’s ability to 

explore and exploit the search space dynamically, the 

proposed model can effectively adapt to the diverse and 

evolving nature of malware in IoT systems. The CNN, 

known for its strong feature extraction capabilities, enhances 

the classification performance, making the model robust in 

distinguishing between benign and malicious IoT traffic.  

This article suggests a dynamic IoT malware detection 

system and Classification based on a Squirrel Search 

Algorithm and Convolutional Neural Network (IMD-

SSACNN). To simplify malware classification models and 

satisfies the security and defense requirements of various 

platforms. The suggested dynamic analysis in order to 

identify the IoT malware through a continuous analysis of 

malware behavior. Dynamic analysis tools are used to obtain 

the disassembled binary files in a virtual environment. Later, 

it was converted into image files for malware analysis. The 

remainder of the piece is organized as follows: In Section 2, 

the research approaches for assessing and recognizing IoT 

malware are examined. Section 3 describes the IMD-

SSACNN presented in the paper. In Section 4, the suggested 

model's performance evaluation is discussed. The paper's 

findings and recommendations for additional research are 

provided in Section 5. 

2. Related Works 
This section is a survey of the literature on IoT malware 

detection. Given a summary of the current DL-based 

approaches for IoT malware classification. Vasan et al. [8] 

have suggested a novel architecture based on ensemble 

Convolutional Neural Networks (CNNs) that are capable of 

effectively detecting malware that is both packed and 

unpacked. A set of CNN architectures enables the extraction 

of features with higher quality than conventional techniques. 

According to experimental findings, IMCEC is especially 

suited for malware detection. It might be able to achieve low 

false alarm rates and high detection accuracy using malware 

raw-input. The outcome shows over 99% accuracy for 

malware that has been unpacked and over 98% accuracy for 

malware that has been packed. A novel malware-detection 

model employing opcode sequences and a convolutional 

recurrent neural network is presented by Jeon et al. [9]. An 

executable file is seen statistically as a collection of 

sequential machine codes. First, it has been covered how to 

use opcode sequences to look for malware theoretically. The 

Area Under the Curve (AUC) of the suggested model was 

0.99, its True Positive Rate (TPR) was 95%, and its 

malware-detection accuracy was 96%. Kuang et al. [10] 

suggest a unique deep neural network-based approach for 

detecting visual malware. First, samples of executable files 

are gathered and disassembled using technology to create 

bytes and ASM files. After that, the samples are further 

transformed into three-channel RGB images by employing 

data augmentation and visualization methods to extract high-

dimensional intrinsic features from the data samples. 

Giacomo Iadarola et al. [11] describe a technique that uses an 

explainable deep learning model created by the authors to 

detect malware on Android and identify families, which 

relies on the representation of the application in terms of the 

photographs used as input.  

Furthermore, this study demonstrates how the analyst 

might take explainability into account when evaluating 

various models. Averaging accuracy between 0.96 and 0.97, 

this model examined 8446 Android samples from six 

separate malware families and one additional family of 

trusted samples. Transformers on raw binaries for real-time 

malware categorization were studied by Lu et al. [12]. Two 

models that interpret the binary in two distinct ways are put 

forth in order to do malware categorization. In order to 

handle the raw data as a byte sequence, they suggested by 

using SeqConvAttn. Observed the latency for classification 

increases quadratically with the length of the input sequence, 

subsequently introduced ImgConvAttn. This low-latency 

substitute model employs Vision Transformer for malware 

classification using preprocessed images. 

 The two combined models into a two-stage framework 

that takes the file size into account in order to effectively 

utilize both models. The MalFSM framework is proposed by 

Kong et al. [13]. The machine learning classification is 

effectively applied and achieves a good accuracy rate after 

reducing the 735 opcode features in the Kaggle dataset to 16 

using the feature selection approach. Then, fuse on metadata 

features (the number of file lines and file size) for a total of 

18 features and evaluate the chosen features to examine the 

relationship between the malicious samples' opcode features. 

The extensive tests applied to the Microsoft Kaggle malware 

dataset demonstrates that the maximum classification 

accuracy of MalFSM achieved 98.6% and the classification 

time is only 7.76 s. 

Table 1. An overview of earlier research on anomaly detection 

S.No. Reference Model Accuracy 

1 [8] ECNN 99% 

2 [9] 

Convolutional 

Recurrent Neural 

Network (CRNN) 

96% 

3 [10] SERLA 98% 

4 [11] Grad-CAM 97% 

5 [12] ImgConvAttn 93.42% 

6 [13] MalFSM 98.6% 
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3. Proposed Methodology  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

    
Fig. 1 Proposed SSACNN based malware detection architecture

This study addresses the challenge of IoT malware 

classification through the analysis of IoT malware binaries. 

Because IoT devices lack secure protocols and security 

standards, they are more vulnerable to malware assaults. As a 

result, protecting data in Internet of Things networks is a 

difficult but necessary undertaking. IoT-malware byte 

sequences are examined in the paper. For the experiment, 

byte sequence is taken into consideration as a characteristic 

because it can be built into a detection model with little 

computational complexity and is platform-independent. In 

this research, the IoT malware is classified using the L based 

approach that can identify and classify IoT malware families 

in order to address the limitations mentioned above. The goal 

is to create and evaluate a classification technique that 

increases overall classification accuracy by combining many 

modalities and proactively discovering characteristics from 

different malware binary representations. The proposed 

malware classification model is described in the section. The 

section goes into great detail on the dataset used for the 

research, data preparation, the suggested SSACNN approach, 

and experimental design. The working steps of the proposed 

SSACNN architecture on malware detection are illustrated in 

Figure 1. 

3.1. Dataset 

The BIG15 dataset is utilized for experimentation and 

assessment of the suggested technique. Microsoft makes this 

dataset available on the Kaggle platform for competition 

purposes. Microsoft offers this for competition purposes. 

There are two sets of it, each with 10868 training samples 

and 10873 test samples, totaling 21,741 different malware 

kinds [14]. This dataset takes up approximately half a 

terabyte when it is uncompressed. In this experiment, just the 

train data are used; the test sample lacks labels. A class, an 

integer that designates one of nine potential malware family 

names, and an id, a hash value of 20 characters that serves as 

the file's unique identity, are both present in every malware 

file. The number of instances for each malware class of the 

BIG 15 dataset is illustrated in Table 2. Without the PE 

header, each sample of malware is just a raw hexadecimal 

representation of the file's binary data. A metadata 

representation is additionally included, which contains 

information on function calls, embedded text, etc., that was 

collected using a disassembler tool. The work focuses on 

using deep learning approaches to classify malware based on 

the content of raw binary files. 

Table 2. Number of instances in the dataset for each malware class 

Class Number of Instances 

Ramnit 1541 

Lollipop 2478 

Kelihos_ver3 2942 

Vundo 475 

Simda 42 

Tracur 751 

Kelihos_ver1 398 

Obfuscator.ACY 1228 

Gatak 1013 
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3.2. Data Pre-processing and Feature Extraction 

Deep learning has the benefit over other machine 

learning approaches in that it may be used on raw data 

without the need for explicit feature engineering in a 

particular area. The objective is to effectively categorize 

malware without requiring specialized knowledge or time-

consuming procedures to find and extract malware 

signatures. This serves as a major motivator for the work. 

For the deep learning strategy to parallelize the computation 

for training and testing the models, each file must have a 

specified size. On the other hand, malware can exist in a 

variety of file sizes. In addition to being the same size, the 

deep learning approaches need that the size be restricted 

from a computational standpoint in order to keep the model 

training procedure feasible with standard hardware. To 

preserve as much of the original structure as possible because 

the deep learning algorithms are built to identify and detect 

similar patterns and structures in malware file data, even 

while padding and truncation have been employed to 

standardize the file size. 

3.3. Image Data Generation from Byte Data 

Before the resizing and normalization, byte files are 

converted into image data. Malware is represented as binary 

or assembly mnemonics at the machine level. Byte files [15], 

which are effectively compiled binaries, serve as malware 

representations. With the aid of programmers like Interactive 

Disassembler, the compiled binary must first be transformed 

into equivalent mnemonic sequences as the first stage in the 

categorization process (IDA). Then, mnemonics are 

transformed into hexadecimal digit combinations and 

combined, as illustrated in Figure 2. Then, set the image's 

preset width and height to 1024x1 to ensure that hexadecimal 

sequences are represented appropriately in pixels. Such an 

image had 2 hexadecimal digits per pixel, each of which 

represented a byte. Later, this image was scaled using 

conventional bicubic interpolation to match the SSACNN 

input channel size. 

3.4. Resizing and Normalization 

Due to the input size's flexibility, it can be adjusted to fit 

the algorithms employed in this study. For data 

normalization, the min-max scaling strategy is used in 

addition to regular scaling [16]. Normalization keeps the 

model from becoming stale and is essential for learning on 

neural networks. The following is a definition of a Min-Max 

Scalar (MMS). 

𝑀𝑀𝑆 =
𝐷𝑆 − 𝐷𝑆𝑚𝑖𝑛

𝐷𝑆𝑚𝑎𝑥 − 𝐷𝑆𝑚𝑖𝑛

                     (1) 

     𝐷𝑆 signifies a data sample within a column, whereas 

DSmin  and DSmax indicate the minimum and maximum 

data samples in that column. Post Min-Max normalization, 

the values reside inside the range [0, 1], which is sometimes 

a preferred attribute for input [16].  

Fig. 2 Steps involved in byte into image conversion 

The data surrounding a mean with a single standard 

deviation are standardized by traditional scaling, given by the 

following equation 

𝑐𝑠 =
𝐷𝑆 − 𝜇

𝜎
                  (2) 

3.5. Autoencoder 

An autoencoder is an artificial neural network designed 

to identify a data representation. Its principal application is in 

dimensionality reduction. They may acquire fundamental 

data representations and how to revert these representations 

to the original data. 

An autoencoder has three fundamental components: 

• The objective of encoding architecture is to reduce the 

dimensionality of incoming data. It often manifests as 

layers with a reduced number of nodes. 

• Subordinate representation of data subsequent to its 

traversal through the encoding framework. 

• A growing quantity of layers in a decoding architecture 

is employed to transform data from a low-level 

representation to its original form. 

L1 and L2 weight regularization coefficients are 

incorporated into the loss function to enhance generalization 

in autoencoder training. Regularization is a fundamental 

machine learning principle. Its goal is to prevent overfitting 

of the model. It is utilized in the cost function minimization 

process. To minimize the costs of L1 regularization, sums of 

weights are added to them. As a result, it generates incredibly 

sparse matrices with plenty of zeros. In contrast, the cost 
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function is combined with the weights' sum and square in the 

L2 regularization. The cost function additionally employs L2 

regularization to prevent overfitting. 

4. Feature Extraction 
Convolutional layers of CNNs are trained with 

convolutional autoencoders to achieve feature extraction. 

The original byte data are utilized to train two Convolutional 

Autoencoders (CAE). The original encoded data from the 

first encoder is input into the second autoencoder. For fine-

tuning, two completely linked layers of a CNN are employed 

as convolution layers, with the pre-trained encoding layers 

from CAE. The optimal model state with the lowest log loss 

for validation data is saved throughout fine-tuning. 

Following training, the best model is applied to the entire 

dataset (train, validation, and test) to produce nine 

probabilities for each malware sample as features. 

4.1. Squirrel Search Algorithm  

SSA is one of the more sophisticated Swarm Intelligence 

(SI) models developed using squirrel foraging behavior [17]. 

The SSO approach is developed by flying squirrel's foraging 

activity and a successful method for migration involved 

using small animals. A squirrel may be simulated in a multi-

dimensional search area while looking for food in a 

population-based scheme with many squirrels. Different 

parameters are assigned to different places of squirrels in the 

SSA technique. Individual squirrels also shift their locations 

in order to find the best option. Some of the significant 

elements of SSA are population sizes 𝑃_𝑆, maximum 

iteration value 𝐼𝑚𝑥, likelihood of predator presence 𝑃𝑝, 

decision variables value 𝑑, gliding constants 𝑔, scaling 

factors 𝐹, and upper and lower limits to decision variables 

𝐹𝐿𝑆𝑢 and 𝐹𝐿𝑆𝑙. A random position for the squirrel is 

loaded from the search space. 

𝐹𝐿𝑆𝑎,𝑏 = 𝐹𝐿𝑆𝐿 + 𝑟() ∗ (𝐹𝐿𝑆𝑢 − 𝐹𝐿𝑆𝐿),

𝑎 = 1,2, ⋯ , 𝑃𝑆 𝑎𝑛𝑑 𝑏 = 1,2, ⋯ , 𝑑       (3) 

       Where rand () designates an arbitrary value in the range 

[0, 1], a squirrel position's fitness measure 𝑓𝑚 =
𝑓𝑚1𝑓𝑚2, 𝑓𝑚𝑃−𝑠 was processed by substituting FF for the 

decision variable: Next, the fitness measure of a squirrel 

position is used to assess the quality of food sources as 

follows:  

[𝑠𝑜𝑟𝑡𝑒𝑑𝑓𝑚, 𝑠𝑜𝑟𝑡𝑒𝑑𝑖𝑛𝑑𝑒𝑥] = 𝑠(𝑓)                         (4) 

The array is sorted ascending after recording the fitness 

values of each flying squirrel's position. Food supplies were 

organized and included hickory trees, regular trees, and oak 

trees (acorn nuts). The hickory nut tree (𝐹𝐿𝑆ℎ𝑛) was thought 

to be the best food source (lowest fitness), followed by acorn 

nut trees (𝐹𝐿𝑆𝑎𝑛), and the remaining trees are known as 

"regular trees" (𝐹𝐿𝑆𝑛𝑡). As previously mentioned, there are 

three potential consequences when flying squirrels engage in 

dynamic foraging. In all instances, it is believed that in the 

absence of predators, the flying squirrel glides and efficiently 

forages the forest for its chosen sustenance; nevertheless, 

when a predator is present, it becomes vigilant and must 

undertake a swift, aimless search for a concealment location. 

This mathematical model may represent dynamic foraging 

activity. 

• Scenario 1-Flying squirrels may move from acorn nut 

trees to hickory nut trees (FlSan). The new position of 

the squirrel may be determined as follows: 

• Flying squirrels have the potential to migrate from acorn 

nut trees (𝐹𝑙𝑆𝑎𝑛) to hickory nut trees. In this case, the 

following is how to find the new squirrel position: 

𝐹𝐿𝑆𝑎𝑛
𝑡+1

= {
𝐹𝐿𝑆𝑎𝑛

𝑡+1 + 𝑅𝑔𝑑 × 𝑔 × (𝐹𝐿𝑆ℎ𝑛
𝑡 − 𝐹𝐿𝑆𝑎𝑛

𝑡 ) 𝑁1 ≥ 𝑃𝑝 

𝑅𝐿                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (5𝑎) 

In this context, RL denotes the random location, 𝐹𝑆ℎ𝑛 

indicates the position of the flying squirrel that has arrived at 

the hickory nut tree,  𝑅𝑔𝑑 represents the random gliding 

distance, and 𝑡 signifies the current iteration. The glide 

constant 𝑔 within the mathematical model facilitates the 

equilibrium between exploration and exploitation. The value 

significantly influences the performance of the proposed 

algorithm. The value of 𝑔 is established at 1.9 in the present 

study, determined through thorough analysis.  

• Scenario 2: To fulfil their daily energy needs, flying 

squirrels residing in regular trees (𝐹𝑆𝑛𝑡) may migrate in 

proximity to acorn nut trees. The following are newly 

identified locations for squirrels: 

𝐹𝐿𝑆𝑛𝑡
𝑡+1

= {
𝐹𝐿𝑆𝑛𝑡

𝑡 + 𝑅𝑔𝑑 × 𝑔 × (𝐹𝐿𝑆𝑎𝑛
𝑡 − 𝐹𝐿𝑆𝑛𝑡

𝑡 ) 𝑁2 ≥ 𝑃𝑝 

𝑅𝐿                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
          (5𝑏) 

• Scenario 3: In situations where food availability 

decreases, certain squirrels that have been foraging on 

acorn nuts from prevalent tree species may transition to 

hickory nut trees, allowing them to store hickory nuts for 

future use. The following locations for squirrels have 

been identified: 

𝐹𝐿𝑆𝑛𝑡
𝑡+1

= {
𝐹𝐿𝑆𝑛𝑡

𝑡 + 𝑅𝑔𝑑 × 𝑔 × (𝐹𝐿𝑆ℎ𝑛
𝑡 − 𝐹𝐿𝑆𝑛𝑡

𝑡 ) 𝑁3 ≥ 𝑃𝑝 

𝑅𝐿                                                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (5𝑐) 

      𝑁1, 𝑁2 𝑎𝑛𝑑 𝑁3 are the random values between [0, 1]. 

Flying squirrel foraging habits are influenced by the season, 

which changes often. The trapping is therefore eliminated in 

the local ideal outcome as a result of the implementation of 

the seasonal observation. The minimum value and seasonal 

constant 𝑆𝑛𝑐 can be expressed as follows: 

𝑆𝑛𝑐𝑐
𝑡 = √∑(𝐹𝐿𝑆𝑎𝑛,𝑘

𝑡 − 𝐹𝐿𝑆ℎ𝑛,𝑘)
2

𝑑

𝑘=1

, 𝑡

= 1,2,3                                                          (6) 
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𝑆𝑐𝑚𝑛 =
10𝐸 − 6

365𝐼/(𝐼𝑚𝑛)/2.5
                       (7) 

As the winter season increases 𝑆𝑛𝑐𝑐
𝑡 < 𝑆𝑐𝑚𝑛, the 

squirrel loses its capacity for exploration, and the manner of 

looking for food sources and sites changes: 

𝐹𝐿𝑆𝑛𝑡
𝑛𝑒𝑤 = 𝐹𝐿𝑆𝐿 + 𝐿(𝑑) × (𝐹𝐿𝑆𝑢 − 𝐹𝐿𝑆𝐿)                       (8) 

The Lévy distribution is now used to transform the 

global search into an improved technique: 

𝐿(𝑥) = 0.01 ×
𝑑𝑟𝑖 × 𝛼

|𝑑𝑟𝑗|
1/𝛿

                     (9) 

Where 𝛿 is a constant in the current work assumed to be 

1.5, 𝑑𝑟𝑖  and 𝑑𝑟𝑗 are two randomly distributed values in the 

range [0, 1], and is calculated as: 

𝛼 = (
Г(1 + 𝛿) × 𝑠𝑖𝑛 (

𝜋𝛿
2

)

Г (
1 + 𝛿

2
) × 𝛿 × 2

(
𝛿−1

2
)
)

1/𝛿

                 (10) 

Where Г(𝑥)𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 (𝑥 − 1) 

4.2. CNN 

The CNN classifier was developed to lower the 

classification error rate caused by other feature extraction 

techniques that lacked the CNN method's level of robustness. 

This section describes the CNN and its intricate algorithm 

process. The layers of this classifier are to create a network 

of neurons depending on the dataset's relevant properties 

during the classifier's training phase. To extract the class 

label of the testing image frame, this computes the separation 

between the training set and the testing feature vector during 

the testing instance. The CNN is composed of three main 

layers: the fully connected layer, the max-pooling layer, and 

the convolutional layer.  

During the CNN training phase, these layers were 

mostly engaged in the two main types of propagation, which 

are forward propagation and backward propagation. The 

feature's importance is evaluated using one of these two 

propagations, and the distance's compliance with the 

permissible range is ascertained using the other. That 

includes the mathematical model to express the network 

setup based on the input feature matrix and a hidden layer of 

NN. With the help of these five layers, CNN trains its 

features and predicts how relevant they will be.  

This was considered for the dataset's training case for 

the input patterns of image frames. By determining the 

shortest path between the training feature set and the testing 

vector, the feature vector was subsequently verified from the 

intricate pattern during testing and was able to predict the 

class. The completely networked layer represents CNN's 

categorized output and is a part of the output stage. In order 

to create the small patches in CNN, the convoluted 

image frames have to be reassembled into a number of pre-

defined blocks. The length of the features that need to be 

classified determines the size of the patch separation. 

4.2.1. CNN Classifier Training Utilizing SSA 

The utilization of the "back propagation" method 

exclusively for training a Neural Network (NN) may result in 

the solution being confined to a "local" optimum. The SSA 

optimization algorithm is utilized to identify the optimal 

solution by executing multiple cycles to address this issue.    

This article analyses the SSA method for achieving optimal 

weight initialization in CNN classifiers. The SSA search 

agents determine the weights of the "CNN" classifier through 

the use of actual numerical values.  

The initial real integers are utilized to encode the three 

convolutional masks. The final actual value functions as the 

"seed measure" for the Random Number Generator (RNG), 

which is employed to initialize the CNN. Additionally, the 

'CNN' classifier undergoes training exclusively through the 

back-propagation method for a minimum of Q1 epochs. 

Training the CNN classifier using the back-propagation 

technique significantly reduces the risk of data overfitting. 

The conventional feed-forward artificial neural network is 

also referred to as the back-propagation technique.  

The back propagation method is employed to train the 

network, achieving the A1 epochs metric, which is 

considered the fitness value of the SSA search agent. This 

study investigates a specific set of weight initializations to 

identify the optimal weight initialization that results in an 

enhanced solution utilizing the SSA algorithm. To identify a 

solution that is more likely to represent the "global" optimal.  

To utilize the gradient descent algorithm to enhance the 

search process and effectively identify the local optimum 

within a specified weight initialization basin. The advantage 

of employing the "gradient descent" method lies in its ability 

to decrease the time required to identify the "local" optimum 

from the "weight initializations" utilizing the SSA algorithm 

(basins). This process can reduce the number of candidates, 

known as "initial weights," that the SSA must evaluate to 

identify the "local" optimum. Algorithm 1 demonstrates the 

SSACNN working architecture. 

Algorithm 1: SSACNN 

Initialize the SSA population. 

Calculate the SSA search agents' fitness metric and  

use it to establish a "CNN" classifier. 

Execution of SSA for a number of different cycles  

using equations (1-4). 

Calculate the final population of SSA. 

Initialize CNN classifiers using the final SSA population. 

Combine CNN classifier outputs (evidences) from SSA 

agents. 
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4.2.2. Experimental Results  

       The experiments designed to determine whether the 

hybrid framework for malware classification is effective are 

presented. In this section, the BIG15 dataset is used to 

compare the outcomes of the proposed model's performance 

analysis. Models are taught and assessed according to their 

intrinsic behavior and classification proficiency.  

To preserve class distribution, stratified splitting was 

employed to partition the BIG15 dataset into a 75% training 

set and a 25% testing set, thereafter training the model. The 

metrics used for the evaluations are precision, recall, F-

measure and Accuracy. 

Precision (P) 

Its definition is the ratio of real positive, relevant 

occurrences to all retrieved instances. It is supplied by: 

𝑃 =
𝑇𝑃

TP + FP  
                   (11)  

Precision is a critical metric for evaluating the 

proportion of correctly identified positive instances relative 

to the total number of instances classified as positive. It is 

particularly important in scenarios where minimizing false 

positives is a priority. In this study, the CNN model achieved 

a precision of 98.39%, whereas the SSACNN model 

outperformed it with a precision of 99.18%. The improved 

precision of the SSACNN model demonstrates its 

effectiveness in reducing false positives, making it a more 

reliable classifier in this context. 

Recall (R) 

      The sensitivity, as it is often known, is the proportion of 

accurately anticipated positive cases to the total number of 

positive events. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

TP +  FN
                (12) 

 

Recall, also known as sensitivity, measures the ability of 

a model to correctly identify all relevant instances (true 

positives) within the dataset. The recall for the CNN model 

was observed to be 98.57%, while the SSACNN model 

demonstrated superior performance with a recall of 99.28%. 

This higher recall indicates that the SSACNN model is more 

capable of detecting true positives, making it particularly 

effective in identifying positive instances without missing 

significant portions of the relevant data.

  

Fig. 3 Class distribution of microsoft malware dataset 

0

500

1000

1500

2000

2500

3000

n
u

m
b

er
 o

f 
in

st
a

n
ce

s

Class Distribution



V. S. Jeyalakshmi & Krishnan Nallaperumal / IJETT, 72(10), 306-315, 2024 

 

313 

Accuracy 

       It is the ratio of the number of correctly predicted 

examples to all of the dataset's instances. It is provided by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

TP + TN + FP + FN
                     (13)      

Accuracy measures the overall correctness of the model 

by calculating the proportion of true results (both true 

positives and true negatives) among the total number of 

instances. The CNN model achieved an accuracy of 98.47%, 

while the SSACNN model yielded a notably higher accuracy 

of 99.16%. This significant improvement in accuracy reflects 

the SSACNN model's enhanced ability to classify instances 

correctly, demonstrating its potential as a robust classifier for 

this specific application.  

 F-Measure 

      A harmonic mean of precision and recall is called an F-

measure. 

       𝑓 = 2 ∗ (
𝑃∗𝑅

𝑃+𝑅
)                    (14) 

The F-measure, or F1-score, provides a harmonic mean 

of precision and recall, offering a balanced assessment of a 

model's performance. It is especially useful when there is an 

uneven class distribution. In the experiments, the CNN 

model exhibited an F1-score of 98.33%, whereas the 

SSACNN model achieved a higher F1-score of 99.16%.  

 

This further validates the superiority of the SSACNN 

model in balancing both precision and recall, ensuring 

consistent classification accuracy across different classes. 

Table 3. Performance Evaluation result for CNN and SSACNN 

Models Precision Recall F-measure Accuracy 

CNN 98.39 98.57 98.33 98.47 

SSACNN 99.18 99.28 99.16 99.16 

 

 
Fig. 4 Performance metrics value comparison report 

 
Fig. 5 SSACNN train and test accuracy 

 

 
Fig. 6 SSACNN train and test loss 

 
Fig. 7 Accuracy comparison with Existing works 
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A preliminary CNN model is constructed to classify 

malware issues, utilizing the Adam optimizer and categorical 

cross-entropy loss function across 100 epochs. Figures 3 

depict the class distribution of the BIG15 dataset. Figure 4 

depicts the accuracy and loss for the test and training 

datasets, respectively, over each epoch. Table 3 gives the 

performance evaluation results for CNN and SSACNN. 

Likewise, the proposed SSACNN was trained and evaluated 

using identical parameter settings, resulting in the accuracy 

and loss values depicted in Figures 5 and 6. 

 

Six models' evaluation performances are shown, along 

with comparative data, using the Microsoft BIG15 dataset. 

As can be seen, the suggested model had the best accuracy, 

scoring 99.16%. Figure 7 shows the accuracy comparison 

with prior works.  It is challenging to assess the effectiveness 

of deep learning algorithms based solely on classification 

accuracy. Therefore, the link between the anticipated and 

actual values of the classifier is divided using a confusion 

matrix known as an error matrix to define the performance 

index, which is used to measure the performance of the 

classifier.  

4.2.3. Discussion 

The SSACNN (Squirrel Search Algorithm 

Convolutional Neural Network) model has demonstrated 

remarkable effectiveness in detecting and classifying IoT 

malware. Its superiority over traditional CNN models is 

evident from the significantly improved performance 

metrics, which reflect the advantages of incorporating the 

Squirrel Search Algorithm (SSA) for weight initialization 

and optimization. This section outlines key reasons why the 

SSACNN model is highly effective for IoT malware 

detection. 

1. Enhanced Detection Accuracy: The SSACNN model 

achieves a notable accuracy of 99.16%, which is higher 

than the conventional CNN's accuracy of 98.47%. This 

improvement underscores the effectiveness of the SSA 

in optimizing the CNN’s weights and convolutional 

layers, which leads to better identification and 

classification of malware patterns in IoT environments. 

Given the evolving and sophisticated nature of IoT 

malware, such high accuracy is crucial for minimizing 

false alarms and missed detections. 

2. Reduction in False Positives and False Negatives: 

Precision and recall are two critical measures in malware 

detection, as they reflect the model’s ability to avoid 

false positives and false negatives, respectively. The 

SSACNN model achieved a precision of 99.18%, which 

signifies that it accurately identifies malware without 

wrongly classifying benign IoT traffic as malicious. 

Additionally, the high recall value of 99.28% shows that 

the model can effectively detect malware present in the 

dataset, reducing the risk of missing actual threats. This 

balanced performance is key in IoT environments, where 

the trade-off between over-detection and under-detection 

is sensitive. 

3. Improved Generalization with Optimal Weight 

Initialization: One of the core challenges in training deep 

learning models like CNNs is the initialization of 

weights. In the traditional CNN approach, improper 

weight initialization may lead to the model being 

trapped in local optima, limiting its generalization 

capability. The SSACNN model addresses this issue by 

using the SSA to explore and find better initial weight 

configurations. By doing so, it ensures that the CNN 

begins with a set of weights that are closer to the global 

optimum, thereby improving its ability to generalize 

across various types of malware, especially in highly 

diverse and dynamic IoT environments. 

4. Efficient Training and Reduced Overfitting: The 

utilization of SSA alongside the back-propagation 

method also contributes to the overall efficiency of the 

model’s training process. While back-propagation 

effectively tunes the weights to minimize error, SSA 

optimizes the initial weights, allowing the model to 

converge faster and with fewer epochs. Furthermore, the 

combination of SSA and CNN mitigates overfitting—a 

common problem in IoT malware detection—by 

ensuring that the model does not become overly biased 

toward the training data. This makes SSACNN more 

robust when applied to unseen malware samples. 

5. Adaptability to Complex and Evolving IoT Threats: The 

complex and constantly evolving nature of IoT malware 

poses a significant challenge for traditional detection 

systems. The SSA’s global search capability allows the 

SSACNN model to adapt more effectively to variations 

in malware patterns, even as new threats emerge. The 

dynamic optimization process of SSA ensures that the 

CNN is well-prepared to handle the wide diversity of 

malware types and their continuous evolution in IoT 

ecosystems. 

6. Scalability for Large IoT Networks: Given the vast 

number of connected devices in IoT environments, 

scalability is a crucial factor for any malware detection 

system. The SSACNN model, with its improved 

initialization and reduced training complexity, is well-

suited for deployment across large-scale IoT networks. It 

can process and analyze vast amounts of data in real-

time, making it an efficient solution for monitoring and 

securing IoT devices against potential malware attacks. 

5. Conclusion  
The research presents a unique hybrid framework for 

malware classification that integrates computer vision and 

deep learning, aiming to rectify the deficiencies in current 
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malware variant classification methods. The framework 

includes the classification of distinguishing characteristics 

derived from malware binaries in image format, and features 

are extracted using a convolutional further classified with the 

proposed SSACNN classifier. The present model achieved 

99.16% in detecting the IoT malwares on the Microsoft 

malware dataset. The results of experiments comparing the 

model's performance with those of conventional CNN and 

SSACNN further demonstrate the model's strong detection 

performance.  

In order to further enhance the effectiveness of the 

detection component, feature extraction and classification 

algorithms are refined with transfer learning to forecast more 

unlabeled data.  
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