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Abstract - This work presents a sensor-based fluid pipeline leak detection system using an Adaptive Neuro-Fuzzy Inference 

System (ANFIS). The implemented model consists of multiple flow sensors and pressure differentials, processed through a hybrid 

Neural Networks and Fuzzy Logic hybrid system. The network comprises five layers, with layer 1 being in charge of performing 

the membership function and layer 5 being part of the calculation of the exit rule. The system aims to detect and prevent fluid 

leakage in fluid passages by identifying changes in fluid flow and pressure differential. The results demonstrate that the ANFIS 

system can accurately detect leaks in the ducts, reaching 93.24 % of accuracy, indicating the percentage of correct predictions 

in the training set. Additionally, a validation set not part of the training was used for the model's generalisation ability. This data 

set allowed us to measure patterns and characteristics of the model with new and previously unseen data. 
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1. Introduction 
Fluid systems are crucial in different industrial 

environments, mobile machinery, and liquid supplies, driven 

by compressed air or general fluids in different conduits. 

However, detecting leaks in these systems represents a critical 

challenge since these leaks can cause anything from premature 

wear to very important resource losses, triggering complete 

system stoppage, which is problematic in large environments 

[1] [2]. The need to detect a leak more accurately becomes 

more relevant in Industry 4.0, where energy efficiency and the 

ability to diagnose faults are essential. In this sense, the 

combination of advanced techniques can offer a new approach 

to the early identification of leaks, safeguarding fluid systems 

[3]. For this reason, a database with different sensors is needed 

to help detect possible leaks in the ducts. These sensors have 

the potential to evaluate and analyze the state of the ducts, 

providing valuable information to create an adaptive neuro-

fuzzy inference network, which allows optimization in leak 

detection. Early detection of leaks in fluid system conduits is 

critical to conserving resources, reducing costs, and 

maintaining system efficiency. Combining detection methods 

with technology such as artificial intelligence reduces the time 

needed to locate leaks, thus mitigating the harmful effects of 

the system [4]. The present research focuses on the study and 

implementation of a multiple sensory system for the 

preventive diagnosis of leaks in fluid transport systems. 

Various methodologies have been investigated to increase the 

effectiveness and accuracy of leak detection, overcoming the 

limitations of conventional techniques. Piezoelectric and 

hydrophone sensors effectively detect leaks in fluid system 

conduits [5] [6]. These sensors use different methods to 

capture and analyze signals, each with specific conditions to 

improve the accuracy and speed of detecting fluid leaks. 

Techniques such as time inversion using negative pressure 

waves have been explored, where a monitoring system 

analyzes data for pressure variations and expansions 

associated with leaks in duct walls [5]. In addition, digital 

band-pass filters have been used to widen the signal-noise 

ratio and enable cross-correlation to be carried out in the 

frequency range, improving the detection of leaks in plastic 

ducts [6]. The pressure in the ducts is evaluated through 

different tests on the sensors that consider different parameters 

to acquire and process data. Negative pressure waves, 

associated with phenomena such as explosions or implosions, 

have been investigated to detect leaks when the pressure 

within the system falls below the atmospheric or reference 

pressure of a conduit [5]. On the other hand, when transient 

pressure waves of fluids generate sudden changes in pressure, 

they cause the flow to have wave-shaped variations, reaching 

peaks of high or low pressure [7]. One of the most current 

methods to process the data obtained is using non-biological 

methods, also called artificial neural networks (ANN), which 

stands out as a promising tool for improving leak detection. 

These networks can learn and adapt to the acquired 
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information, making them especially useful for detecting leaks 

in fluid systems [7]. A large database is needed to learn an 

ANN. For this, software such as the Environmental Protection 

Agency Network (EPANET) allows simulations of water flow 

in networks with supply under pressure [8]. Autoencoder 

integration of unsupervised machine learning models, such as 

autoencoder (AE) neural networks, learns from an imbalanced 

data set to classify conditions in the presence and absence of 

leaks in a supply network. This has improved the accuracy of 

detecting leaks in ducts in the monitored area range, 

considering multiple variables and data, including fluid 

pressure and signal noise [9]. Pneumatic systems automate 

production, but excessive energy consumption can indicate 

leaks. Energy efficiency is modeled by analyzing historical 

data and developing a predictive model to improve efficiency 

and detect possible leaks. Research on pneumatic strain 

energy accumulators also contributes to leak detection. An 

analytical model uses two-cylinder systems, recycling the 

primary cylinder to the secondary cylinder, which allows 

anomalies in air consumption to be detected. The applied 

model experimentally tests the system's efficiency with the 

accumulator, considering the volume relationship between 

cylinders and the behavior of the ideal gas. This methodology 

helps to identify efficiency losses related to leaks [10] [11]. 

Pneumatic parameters are analyzed to identify failures 

and leaks in fluid systems. The company Emerson Aventics 

develops monitoring systems that diagnose losses close to the 

source of waste through an automated monitoring process, 

continuous analysis, and data collection in valve cycles, air 

consumption and pressure stored in a Smart Pneumatics 

Monitor (SPM). These modern monitoring systems identify 

critical parameters through sensors, such as airflow, pressure, 

and temperature, saving time and resources. Being an 

improvement in cost reduction and better efficiency of flow 

systems [12]. Fluids such as compressed air in mobile 

machinery are complicated to detect due to their difficult 

location. Therefore, techniques are used in these types of 

systems, such as the unsupervised anomaly detection 

technique with the wavelet transform, which analyzes 

pressure fluctuations to identify possible leaks in the system, 

and a supervised machine learning algorithm is used to 

observe performance. The AE technique extracts and selects 

important features from unlabeled data before classifying it. 

Both techniques use machine learning, differing in their 

approach: Anomaly detection focuses on unlabeled data, 

while Autoencoder extracts relevant features. The choice 

between them depends on whether the data is labeled [3] [13]. 

The importance of identifying relevant parameters and 

optimizing the architecture of the ANNs is highlighted to 

improve the effectiveness of leak detection in different types 

of ducts. Furthermore, applications with the Venturi duct and 

Arduino stand out for their accessibility and economic 

reduction in continuous teaching methods according to 

Bernoulli's laws. The Venturino device is simple to build and 

configure with the POE (Predict, Observe, and Explain) 

methodology, demonstrating effectiveness for experiments at 

a reduced cost [14]. With today's technological advancement, 

variables and data can be processed quickly to solve problems. 

Thus, a hybrid algorithm is proposed that uses a fuzzy 

inference model CMAC (Cerebellum Model Articulation 

Controller), with fluid adaptation to evolving and real-time 

data sets. This algorithm requires simulated and real data, 

which is a more complete and complex method with artificial 

intelligence for better precision in predicting and detecting 

problems in non-linear systems, such as fluid movements in 

conduits or systems with dynamic movements [15]. In view of 

the above, this work will analyze the behavior of sensors in 

conjunction with the adaptive neuro-fuzzy inference applied 

in a duct with fluids. This is to find the optimal way to detect 

duct leaks with fluids. 

2. Methodology 
An air compressor will develop the system, with a 

pressure gauge coupled to its outlet and a PVC conduit. 

Pressure and flow sensors will be installed in this conduit, as 

well as a temperature and relative humidity sensor for their 

respective analysis. 

2.1. Electronic Components 

The detection and monitoring leaks in fluid conduits 

represent crucial aspects in numerous industries, from 

manufacturing to water resources management. In this 

context, selecting appropriate electronic components is 

important to ensure the detection system's effectiveness and 

accuracy. This article explicitly addresses the selection of 

pressure, flow, temperature, and relative humidity sensors for 

implementation in fluid conduit leak detection. This analysis 

seeks to identify the most suitable components for this 

application and understand their operation and capabilities to 

contribute to early and accurate leak detection. 

2.1.1. HK3022 0.5MPa Pressure Sensor 
The electronic devices that perform pressure 

measurements, as seen in Figure 1, known as pressure 

transducers or pressure sensors, are widely used in various 

processes within the industry. Its main function is to convert a 

physical measurement into an electrical signal. In this specific 

context, these devices convert the force applied per unit area 

(pressure) into a voltage value directly proportional to the 

magnitude of the pressure exerted. Changes in pressure could 

indicate the presence of a leak within the system. 

2.1.2. 1/2" Flow Sensor YF-S201 

As seen in Figure 2, this sensor operates on the principle 

of a rotating wheel stimulated by fluid flow inside a pipe. This 

wheel, equipped with magnets, induces a magnetic field that 

activates a Hall effect sensor. The wheel's rotation modifies 

this magnetic field, generating an electrical signal 

proportional to the rotation speed. This electrical signal is 

interpreted to quantify real-time fluid flow in the conduit. This 
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analog signal must be converted to digital by a microcontroller 

for its respective processing.  

2.1.3. SHT31 Temperature and Relative Humidity Sensor 
The SHT31 sensor, as shown in Figure 3, is based on 

capacitive technology and a platinum thermistor for accurately 

measuring both environmental parameters. For temperature 

measurement, the platinum thermistor experiences changes in 

its electrical resistance in response to temperature variations 

or fluctuations, resulting in accurate temperature readings 

through an internal electronic circuit. On the other hand, to 

measure relative humidity, the sensor uses a humidity-

sensitive polymer layer that expands or contracts depending 

on the ambient humidity, thus modifying the capacitance of an 

internal capacitor. This variation in capacitance is converted 

into accurate relative humidity readings. This will be very 

useful for calibrating the sensors. 

 
Fig. 1 Pressure sensor HK3022 0.5MPa 

 
Fig. 2 1/2" Flow Sensor YF-S201 

 
Fig. 3 SHT31 Temperature and relative humidity sensor 

2.2. Mechanical Components 

For the selection of components, it is essential to ensure 

the system's durability. These components have been chosen 

for their easy installation access and the ability to handle 

operating conditions, guaranteeing a constant and controlled 

fluid flow necessary for simulation under operating conditions 

and system evaluation. 

2.2.1. Einhell TC-AC 190/24/8 Air Compressor Installation 
In the developed system, an air compressor is installed, as 

seen in Figure 4, which was selected to align with the flow and 

pressure requirements of the system. The ability to provide a 

constant flow perfectly matches the specifications of the PVC 

conduit and sensors. 

2.2.2. PVC Conduit Connection 

The PVC conduit shown in Figure 5, connected to the 

outlet of the air compressor, serves as the main path for fluid 

flow. We have chosen a duct of appropriate size and thickness. 

Specifically, the tube has a measurement of ½” to withstand 

the air pressure without deformation. Also, the duct is the 

appropriate size for integrating the sensors, thus ensuring the 

system's integrity. 

 
Fig. 4 Einhell TC-AC 190/24/8 air compressor 

 
Fig. 5 ½" PVC conduit 
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Fig. 6 Arduino UNO board 

2.3. Mounting the Pressure and Flow Sensors 

2.3.1. HK3022 0.5MPa Pressure Sensor 

This sensor is installed at a critical point in the PVC 

conduit to measure real-time fluid pressure. Thus, ensuring the 

joints are well-sealed prevents leaks and provides accurate 

readings. 

2.3.2. 1/2" Flow Sensor YF-S201 
Located in line with the duct, this sensor measures the 

flow of fluid passing through the system. Its location lets the 

sensor be immersed entirely in the flow, guaranteeing accurate 

measurements. 

2.3.3. Integration of SHT31 Temperature and Relative 

Humidity Sensor 

This sensor is mounted near the PVC conduit, where it 

can accurately measure the temperature and relative humidity 

of the environment. The location allows environmental 

conditions to affect the sensor without external interference. 

2.3.4. Arduino UNO Board 

The Arduino Uno, equipped with the ATmega328P 

microcontroller, reads data from the flow and pressure sensors 

thanks to its analog and digital input capabilities (Figure 6). 

2.3.5. For 1/2" flow sensor YF-S201 

The Arduino Uno uses a digital input that detects pulses 

generated by this sensor. These pulses are counted using an 

interruption routine, allowing the fluid flow to be calculated 

according to the frequency of the pulses. 

2.3.6. For the HK3022 0.5MPa Pressure Sensor 

An analog input of the Arduino Uno is used for this 

sensor. The pressure sensor generates a voltage signal 

proportional to the measured pressure, which the Arduino's 

integrated ADC converts to a digital value. This digital value 

represents the applied pressure and is processed for analysis. 

2.4. Sensor Conversion and Calibration Process 

The sensors are connected to a microcontroller for data 

acquisition that will allow the conversion of the analog values 

that the sensors will provide to digital to use as training data 

for the ANFIS network. 

2.4.1. Measurement of Fluid Volume or Consumption 

Flow sensors are essential for obtaining accurate and 

reliable measurements of fluid flow. This involves 

establishing a precise relationship between the sensor output 

and the amount of fluid passing through the system. The flow 

rate 𝑄 is directly related to the ∆𝑃, measured by a manometer, 

during a ∆𝑡 (Equation 1). This pressure measurement helps in 

the results of systems that use compressed air or another fluid. 

                                 𝑄 =  
∆𝑃

∆𝑡
… "𝐹𝑙𝑜𝑤"                            (1) 

2.4.2. Flow Sensor Calibration 

To have a more accurate pulse measurement, the pulses 

generated by the sensor are captured using technology such as 

Arduino. Next, the pressure gauge will be used to measure the 

pressure variation as the fluid flows through the system, 

providing a reading of ∆𝑃. To calculate the conversion factor, 

K is calculated as seen in Equation 2 between the 

∆𝑃 measurement and the number of pulses 𝑛°𝑃 recorded by 

the sensor. 

                                         𝐾 =  
∆𝑃

𝑛°𝑃
                                        (2) 

This K factor converts sensor pulse readings into fluid 

flow units, ensuring consistent and accurate measurements. 

2.5. ANFIS Model 

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is 

a hybrid system combining two soft computing methods, such 

as fuzzy logic and neural networks, that apply evolutionary 

algorithms, effectively regulating the uncertainty and 

imprecision of problems. who need continuous learning 

regarding their environment.  

This hybrid system works with membership functions, 

which allows ANFIS to be adaptable, resistant to failures and 

capable of generalizing its fuzzy rules to approximate non-

linear functions, improving the flexibility and precision of the 

detection system [16] [17]. 

2.5.1. Architecture of the ANFIS Model 

The ANFIS model is an adaptive network that combines 

fixed and adjustable nodes. The architecture of this network is 

shown in Figure 7, which shows a multilayer network where 

each node performs a specific function on the input signals. 

The neuro-fuzzy system divides the structuring of prior 

knowledge into subsets that facilitate the reduction of the 

search space, using the backpropagation algorithm to adjust 

the fuzzy parameters.  

These subsets are called Membership Functions. The 

resulting system is similar to a first-order Takagi-Sugeno 

inference system, where the input-output relationship is linear 

and maintains its set of fuzzy If-Then rules. The ANFIS model 

consists of an adaptive neural network with five layers, each 

playing a specific role in the fuzzy inference process [18]. 
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Fig. 7 Adaptive ANFIS configuration for first order TS inference 

Layer 1: Membership Functions 

• The inputs to this layer are "xy" pairs of the system. 

• The individual output of each node is the degree of 

membership, which produces a value that indicates the 

extent to which the input satisfies the associated linguistic 

term (Equation 3). 

                                   𝑂𝑖
1 =  𝐴𝑖(𝑥)                               (3) 

Layer 2: Rule Nodes 

• Each node evaluates the degree of activation of the 

specific rule. 

• The nodes use a T-norm to simulate the "and" logic 

operation (Equation 4). 

𝑂𝑖
2 =  𝑊𝑖 =  𝐴𝑖(𝑥). 𝐵𝑖(𝑦), 𝑖 = 1, 2 …                         (4) 

Layer 3: Normalization 

• These nodes adjust the degree of activation to a common 

scale. 

• The output demonstrates the activation level normalized 

relative to the total number of activations (Equation 5). 

𝑂𝑖
3 =  Ŵ 𝑖 =  

𝑊𝑖

𝑊1+𝑊2
, 𝑖 = 1, 2 …                           (5) 

Layer 4: Parameters of the Consequent 

• The output of each node is calculated by multiplying the 

normalized activation degree by the specific output of 

each rule. 

• This layer's parameters, p, q and r, are adjustable and 

represent the coefficients of the linear functions in the 

consequent rules (Equation 6). 

𝑂𝑖
4 =  Ŵ 𝑖𝑓𝑖 =  Ŵ 𝑖(𝑝𝑖𝑥 +  𝑞𝑖𝑦 + 𝑟𝑖)                          (6) 

Layer 5: Aggregation 

• A single node in this layer computes the final output of 

the system as well as the sum of all the individual outputs 

of the previous nodes (Equation 7).  

                              𝑂𝑖
5 =  ∑ Ŵ 𝑖𝑓𝑖𝑖 =  

∑ 𝑊𝑖𝑓𝑖𝑖

∑ 𝑊𝑖𝑖
                      (7) 

2.5.2. Logical Description of the ANFIS Model  

The ANFIS model has the same function as a first-order 

Takagi-Sugeno (TS) inference system, which is based on the 

following fuzzy rules: 

𝑅𝑢𝑙𝑒 1: 𝐼𝑓 "𝑥" 𝑖𝑠 𝐴1 𝑎𝑛𝑑 "y" 𝑖𝑠 𝐵1 , 𝑡ℎ𝑒𝑛  
𝑓1 =  𝑝1𝑥 + 𝑞1𝑦 + 𝑟1  

 

𝑅𝑢𝑙𝑒 2: 𝐼𝑓 "𝑥" 𝑖𝑠 𝐴2 𝑎𝑛𝑑 "y" 𝑖𝑠 𝐵2 , 𝑡ℎ𝑒𝑛  
𝑓2 =  𝑝2𝑥 + 𝑞2𝑦 + 𝑟2  

As can be seen in Figure 8, 𝐴1,2 𝑦 𝐵1,2are the membership 

functions (fuzzy sets), 𝑝𝑖 , 𝑞𝑖and 𝑟𝑖, are adjustable parameters. 

 
Fig. 8 Adaptive ANFIS configuration for first order TS inference 
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The activation levels of each of the rules are calculated as 

𝑊𝑖 =  𝐴𝑖(𝑥). 𝐵𝑖(𝑦), 𝑖 = 1, 2 …, where the logical operator can 

be modeled by a t-norm. The control output of the model is 

obtained by normalizing these degrees of activation of the 

fuzzy rules and combining them linearly between the 

antecedent parameters of each rule: 

              𝑓𝑖 =  𝑝𝑖𝑥 +  𝑞𝑖𝑦 +  𝑟𝑖 , i =  1, 2 …                      (8) 

    Ŵ 1 𝑦 Ŵ 2 are the normalized values from 𝑊1 𝑦 𝑊2 [19]. 

2.5.3. Learning the ANFIS Model 

Learning in the ANFIS model is carried out through a 

hybrid approach that combines the following: 

Gradient Descent Algorithm 

To optimally adjust the antecedent parameters, which 

characterize the membership functions. 

Least Squares Algorithm 

To determine the linear parameters of the consequent, 

during each training cycle, a forward pass is carried out where 

the parameters of the membership functions are initialized, 

and the outputs of the nodes are calculated.  

Then, the parameters of the consequent are fitted using 

least squares. Subsequently, backward pass to adjust the 

antecedent parameters using the gradient descent algorithm 

[18]. 

 
Fig. 9 Block diagram of general system processing 

Reading of sensor signals 

Arduino Configuration 

Read data in Python 

Analog to Digital Data Conversion 
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2.5.4. ANFIS Model Training 

If-Then Rules 

In an ANFIS system with flow and pressure sensor inputs, 

“If-Then” rules relate these readings to the system outputs. 

Each rule follows the format "If (condition) Then 

(consequence)", such as "If the flow is high and the pressure 

is low, Then the output is (value)." These rules are generated 

and optimized from sensor data using machine learning, 

allowing uncertainty in the data to be managed and providing 

flexible and robust decision making. 

Hybrid Learning Method 

Learning in ANFIS involves using algorithms based on 

gradient descent to optimize the parameters of the antecedent 

and an algorithm based on least squares to determine the linear 

parameters of the consequent [18]. 

Forward or FeedForward step 

During this step, the parameters of the membership 

functions are initialized, the parameters of the membership 

functions are adjusted, and the input-output vectors are 

displayed. For each layer of the network, the outputs of the 

nodes are calculated, and the consequent parameters are 

determined using the least squares method. [19]. 

Backward Step 

The model parameters are adjusted based on the 

calculated error, which is the difference between the network 

output and the desired output. The backpropagation algorithm 

minimises this error by adjusting the parameters in the 

direction that reduces it. This adjustment is crucial for the 

model to learn and improve its accuracy in future predictions 

[19]. 

2.6. Computer System Implementation 

Two software options were considered for implementing 

the fluid leak detection system in ducts using ANFIS: 

MATLAB and Python. Both options offer significant 

advantages for system development and deployment. 

MATLAB: It is a programming and software development 

environment widely used in engineering and science. Provides 

an intuitive interface and powerful tools for data analysis, 

modeling, and simulation. The Fuzzy Toolbox Logic and the 

Neural Network Toolbox are particularly useful for ANFIS 

implementation. 

Python: It is a high-level programming language that has 

gained wide popularity in the scientific and engineering fields. 

Additionally, it offers a wide range of library and machine 

learning tools, including TensorFlow, Scikit-Fuzzy, and 

ANFIS, making it easy to implement and analyze fuzzy logic 

systems. 

2.6.1. Computational Development of the ANFIS Model 

The overall system (seen as a block diagram in Figure 9) 

will be implemented using Python, taking advantage of the 

advanced capabilities and tools available on the Google Colab 

platform. Data from the sensors will be collected using an 

Arduino board, which will serve as the data acquisition 

system. 

Software 

Python has been chosen due to its versatility and the 

availability of specialized libraries such as TensorFlow, 

Scikit-Fuzzy and a specific library for ANFIS. TensorFlow 

will provide the infrastructure necessary to build and train 

efficient neural networks. Scikit-Fuzzy will facilitate the 

design and manipulation of fuzzy logic systems, which are 

essential for implementing the ANFIS model, while the 

ANFIS library will integrate these components into a coherent 

and functional system. 

Development Platform 

Google Colab will be used as the development platform 

because it can work with large volumes of data and execute 

intensive computational processes in a collaborative 

environment. Colab offers access to accelerated hardware, 

such as TPUs, which accelerates the training of complex 

models and improves performance. Additionally, Colab 

facilitates integration with Google Drive, allowing efficient 

data management and real-time collaboration between 

researchers. 

Model Development 

The use of TensorFlow, which is an open-source library 

for machine learning across a range of tasks, also serves for 

the construction and training of neural networks, Scikit-Fuzzy 

for the management of fuzzy logic and the ANFIS library for 

the integration of these components into a coherent model. 

Training and Validation 

The data collected by the sensors will be used to train the 

ANFIS model. The model will be adjusted and validated using 

statistical techniques and data visualization tools. 

Data Analysis and Validation 

The data collected in the experimental tests will be 

analyzed to evaluate the accuracy and effectiveness of the 

ANFIS model in detecting leaks. Cross-validation techniques 

will be used to ensure the reliability of the model. The 

infrastructure provided by TensorFlow will allow the model 

parameters to be optimized and adjusted, improving its 

accuracy and efficiency. Scikit-Fuzzy will provide robust 

tools for manipulating and configuring fuzzy logic systems. 

3. Results and Discussions 
Different studies worldwide have shown that leak 

detection has substantially accelerated growth after the year 

2000 due to the concern of preserving the resources of the 

different fluids, evidencing the diversity in the approaches and 

techniques to develop new technologies to avoid losses of 
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these [2]. Among the countries with a wide distribution of 

these studies are China, the United States, England, and 

Canada, which demonstrate collaboration between them to 

mitigate the problem of duct leaks. Here, we present our 

results. 

3.1. Experimental Tests 

Once the ANFIS model was developed on the Google 

Colab platform, experimental tests were conducted using the 

selected equipment and electronic components. 

These tests included the following stages: 

3.1.1. Sensor Calibration 

Pressure and flow sensors were calibrated to ensure 

accuracy and reliability of readings. Calibration was 

performed using standard methods and reference equipment to 

ensure the accuracy of the data collected. 

3.1.2. Simulation of Operating Conditions 

Different operating conditions of the fluid system were 

simulated, including variations in flow and pressure, as well 

as the introduction of controlled leaks at the end of the conduit. 

3.1.3. Data Register 

Data from the sensors was recorded in real-time using a 

microcontroller that collected and transmitted the readings to 

a central database. This data included detailed information on 

the operating conditions and simulated leak events, in which 

approximately 300 samples were obtained between leaks and 

non-leaks. 

3.1.4. Evaluation of the ANFIS Model 

The recorded data was used to evaluate the ANFIS 

model's ability to detect and locate leaks in the system. The 

model's performance was analyzed in terms of accuracy, 

sensitivity, and specificity, comparing it with the results of 

traditional leak detection methods. In Figure 10, the duct 

system can be seen with the pressure sensor installed in such 

a way that it can detect the pressure inside the duct. 

 
Fig. 10 HK3022 sensor assembly 

 
Fig. 11 System assembly 

Next, in Figure 11, the system is installed with the YF-

S201 flow sensor and the HK 3022 0.5MPa pressure sensor. 

Both sensors will provide information in real-time in 

conjunction with the Arduino, and these values will be 

reflected in the serial monitor of the same Arduino Idle 

programming platform. These data are based on each sensor, 

respectively, in which flow values are provided, expressed in 

Liters/seconds (L/s) and pressure values expressed in pounds 

per square inch or its acronym in English (PSI). 

3.2. Data Analysis 

In this study, the data collected during the experimental 

tests were analysed using advanced statistical techniques and 

data visualization tools in Python. Data were obtained from 

pressure and fluid flow sensors installed in a conduit and 

recorded in an Excel spreadsheet. These data served as inputs 

for training the ANFIS network. The Pandas library was Used 

for data manipulation and cleaning. Pandas’ functions enabled 

efficient preprocessing, handling missing data, normalizing 

values, and preparing data for further analysis. The Matplotlib 

library was used to visualise detailed plots illustrating the 

distribution of the data, the relationships between the input 

variables (pressure and flow) and the system outputs, and to 

visualize the performance of the ANFIS model. The Scikit-

fuzzy library was used to define and graphically represent 

fuzzy membership functions, crucial in fuzzy inference 

systems such as ANFIS (Adaptive Neuro-Fuzzy Inference 

System), where they transform sharp inputs into fuzzy values 

used in the inference process. These functions allow the input 

space to be divided into regions characterized by fuzzy labels 

such as "low", "medium", and "high", applicable to flow and 

pressure. This is essential in ANFIS, modeling the uncertainty 

and vagueness inherent in real data. Membership functions 

were used to create input variables such as flow and pressure. 

Additionally, membership functions were graphically 

represented to understand better how entries are categorized 

in fuzzy terms. 
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The analysis process was carried out in several stages. 

First, data preprocessing was carried out, which included data 

cleaning, normalization, and segmentation of training and test 

sets. Then, using the preprocessed data, the ANFIS model was 

trained to identify pressure and flow reading patterns that 

indicate leaks. The accuracy and effectiveness of the ANFIS 

model were evaluated using the test data. These data underline 

that combining ANFIS with advanced data analysis 

techniques in Python is a powerful and efficient tool for 

accurate leak detection in fluid systems. This approach not 

only improves the speed and accuracy of the detection process 

but also offers significant advantages over conventional 

methods, thus promoting more effective and sustainable 

resource management. In Figure 12, the system is shown in 

operation. The pressure gauge is connected directly to the 

compressor's air outlet. It is connected to the duct with the 

sensors within the system, indicating that the duct and the 

sensors are already pressurized. The air compressor 

pressurizes the system at 20 psi, and this, being a hermetic 

system, presents no leak. In Figure 13, we can see how the 

values of the HK3022 pressure sensor are shown in real-time. 

 
Fig. 12 Implemented system 

 
Fig. 13 Series monitor with values under pressure 

It should be noted that these measurements are the 

product of the sensors calibrated together with the manometer 

at the entrance of the duct, as shown in Figure 14 since this 

provides us with a measurement of the pressure at the 

compressor's air outlet. Since this is a known value, we can 

correctly calibrate the sensors to obtain more precise 

measurements. Internally, the program has carried out a unit 

conversion because the pressure sensor gives us a 

measurement in MPa. After pressurizing the system, the plug 

at the end of the duct is progressively opened to simulate a 

leak within the system, as seen in Figure 15. 

 
Fig. 14 System with constant pressure 

 
Fig. 15 System with a fluid leak 
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Fig. 16 Sensor values when subjected to a leak 

Following this, it can be seen in Figure 16 that both 

sensors present alterations in their values because of the leak 

caused. These are the values reflected on the serial monitor. 

These values will be later stored in a database. 

3.3. Training with the ANFIS Network 

In Figures 17 and 18, part of the database with the values 

provided by the sensors extracted with the Arduino and the 

serial monitor can be seen, with and without a leak, 

respectively. These collected values were saved in an Excel 

file that was later converted to a file with a CSV extension for 

better data analysis within the ANFIS training. 

  
Fig. 17 Database when there is an anomaly 

 
Fig. 18 Database when there is no anomaly 

Once the data was obtained within the CSV file, the 

ANFIS network code was executed in the Google Colab 

environment, as seen in Figure 19, giving us the graphs of the 

membership functions of each sensor as results; these can be 

seen in Figures 20 and 21. Figure 20, which belongs to the 

membership functions of the flow sensor, indicates the ranges 

and values between work under normal conditions (without a 

leak) and when a leak occurs. 

It can be seen in Figure 20 that the green line indicates 

that the flow sensor, when subjected to a low incidence of 

leakage, does not show any alteration until 8 L/s, at which 

point the internal rotor blades that the sensor has begun to 

move. On the other hand, the blue line indicates that when 

starting with a leak in the system, the flow is detected slowly 

until it passes the 8 L/s threshold. As a result, the orange line 

gives us the optimal operating range for the flow sensor with 

respect to its measurements between 4 L/s and 12 L/s. 

 
Fig. 19 Database mounted in Google Colab 

 
Fig. 20 Membership functions for flow 
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Fig. 21 Membership functions for Pressure 

 
Fig. 22 First 25 epochs of training 

Likewise, the same interpretation of the membership 

functions of the flow sensor is fulfilled for the pressure sensor. 

In Figure 21, data is observed to interpret operation conditions 

without a leak (pressurized system) and the system's operation 

with a leak or alteration of pressure within the duct. Figure 21 

shows that when subjected to an initial pressure, the green line 

remains constant without anomalies up to 15 psi. From this 

point, it can be inferred that the probability that the system 

presents an anomaly increases. Likewise, the blue line 

indicates that the system starts with a leak that is subsequently 

corrected until it begins to pressurize at 15 psi; the orange line 

represents this pressure value. These methods were 

implemented to evaluate the stability of a pressurized system, 

showing the result of the pressure that remained constant in an 

optimal range of 10 to 20 psi, indicating an improved level of 

stability and observing a low percentage of anomalies. The 

training of the ANFIS network was carried out, considering 

that the parameter of the number of epochs and iterations is 

very important so that the effectiveness of the model 

converges to an optimal solution and that, if the epochs and 

iterations are low, the network does not learn enough and 

underfits the data increasing the margin of error. The number 

of epochs and iterations with which the model was initially 

tested was 25 epochs and 15 iterations each, being parameters 

that were too low for training the network and a problem for 

the accuracy of the training. One of the consequences is that 

learning converges to a point where there is no good 

similarity. Since the precision in the validation set after 

training is 61.2%, which varies with ±3% if it is retrained, this 

result suggests that the accuracy of recognition will be 

doubtful. For this reason, the ANFIS network is retrained by 

increasing the parameters of the number of epochs and the 

number of iterations, as shown in Figures 22 and 23. During 

this process, 100 epochs were carried out to adjust the ANFIS 

modeling parameters better. Each epoch worked on 

processing 33 iterations in 3 batches in training and thus was 

able to have a better observation regarding the results 

obtained. The average time per batch was 65 milliseconds, 

highlighting the speed of model processing in each training 

cycle. 

In Figure 23, after completing the 100 epochs, the 

stabilization of the training set loss was at 25.21 %. This 

indicates that the model learning did not overfit the training 

data, which is crucial in representing the closeness to the 

model predictions of the actual results during training. The 

accuracy achieved was 93.24 %, indicating that the 

predictions were 93.24 % correct in the training set. A 

validation set not part of the training was used to evaluate the 

model's generalization ability. This data set allows you to 

measure patterns and characteristics of the model with new 

and previously unseen data. The loss of the validation set 

stabilized at 21.43 %, indicating that good performance is 

maintained on unseen data, and the accuracy in the validation 

set was 94 %, these values being essential to measure the 

model's performance in generalising and predicting with new 

data.  

In Figure 24, the test set simulates real-world conditions; 

6 batches were processed with an average time of 4 

milliseconds, making the model lose 20.28 %, which 

indicates its average model error. This loss is a measure to see 

if the model predicts the expected result on the test data set. 

The lower this value is, the better the model's predictive 

ability on the test set. The model also achieved an accuracy of 

96.11 %. It should be noted that the accuracy of the training 

was lower than that of the tests. However, as the difference 

was minimal, it did not affect the ability of the model to 

generalize and make predictions, demonstrating a high 

capacity of the model to generalize previously unseen data. 

The results of the ANFIS model show a robust ability for 

anomaly classification. 
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Fig. 23 Last 100 training epochs 

 
Fig. 24 Training test set 

 
Fig. 25 Confusion or error matrix 

As seen in Figure 25, the confusion matrix is essential for 

evaluating the performance of the classification model. For 

our model, ANFIS showed 88 instances of class 0 (No Leak) 

well classified, 85 instances of class 1 (Leak) correctly 

classified, no instances of class 0 misclassified as 1 and 7 

instances of class 1 misclassified as 0. These results indicate a 

high performance in the classification of both classes, with 

few errors, especially in the no leak class. For a better 

observation regarding the confusion matrix, we have the 

following results: 

• True Negatives (TN): Cases correctly classified as No 

Leak are 88. 

• True positives (TP): Cases correctly classified as Leak are 

85. 

• False Positives (FP): Cases incorrectly classified as 

Leakage when they are actually Non-Leakage are 0. 

• False Negatives (FN): Cases incorrectly classified as No 

Leak when in reality they are Leak are 7. 

In Figure 26, the classification report is shown.  

 
Fig. 26 Classification report 

The precision for class 0 (No leak) was 93 %, and for class 

1 (leak) was 100 %, calculated using Equation 9. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 (𝑁𝑜 𝑙𝑒𝑎𝑘); 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (𝐿𝑒𝑎𝑘)  

𝐶𝑙𝑎𝑠𝑠 0 =  
88

88 + 7
= 0.93 

               𝐶𝑙𝑎𝑠𝑠 1 =  
85

85 + 0
= 1                                                (9) 

For the Recall (sensitivity), class 0 was 100 %, and class 

1 was 92 %, and these were calculated using Equation 10. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (𝑁𝑜𝐹𝑢𝑔𝑎); 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (𝐹𝑢𝑔𝑎)  

𝐶𝑙𝑎𝑠𝑒 0 =  
88

88 + 0
= 1.0 

                𝐶𝑙𝑎𝑠𝑒 1 =  
85

85 + 7
= 0.92                                          (10) 

For the F1-Score, both classes reached 96 %. For these, 

Equation 11 was used. 
 

𝐹1 − 𝑆 =  2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

𝐶𝑙𝑎𝑠𝑠 0 =  
0.93 𝑥 1.0

0.93 +  1.0
= 0.96 
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𝐶𝑙𝑎𝑠𝑠 1 =  2 𝑥 
1.0 𝑥 0.924

1.0+ 0.924
= 0.96                              (11) 

For the overall accuracy or precision, 96 % was reached. 

For the calculation, Equation 12 was used. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=  

85 + 88

85 + 88 + 0 + 7
= 0.96          (12) 

 

As seen in Figure 27, the evolution of the loss or error 

during the training and validation of the model is composed of 

the X axis, which is the total epochs, while the Y axis is the 

model loss, considering that the lower the loss, the better the 

performance. The blue curve refers to the loss of the training 

set, which decreases as training progresses, indicating that the 

model learns. It is observed in the orange curve that the loss in 

the validation set decreases, referring to an improvement in 

the generalization capacity of new data. 

We can separate the graph into 3 phases: initial, middle, 

and final. In the initial phase (0 – 20 epochs), both curves fall 

rapidly, indicating that the model captures relevant patterns in 

the data; in the middle phase (21 – 60 epochs), the decline of 

the curves is slow, demonstrating continuous improvement. In 

the final phase (61 – 100 epochs), both curves continue to 

decrease and remain close, converging at low values, 

suggesting a correct generalization without overfitting in the 

training and validation data. Figure 28 shows how the global 

accuracy evolves during model training and validation over 

100 epochs. The number of epochs is observed in the ability 

to make correct predictions.  

On the other hand, the orange curve shows the precision 

in the validation set, showing that the model also increases its 

ability to generalize to new data. In the initial phase (0 - 20 

epochs), both curves rise rapidly from 0.4 to 0.7, indicating 

rapid learning. During the middle phase (21 - 60 epochs), the 

accuracies continue to increase, although they present some 

fluctuations. Finally, in the final phase (61 - 100 epochs), both 

accuracies stabilize around 0.9, with minimal differences 

between the curves, suggesting a more refined fit and good 

generalization capacity of the model.  

When comparing the graphs of Figures 27 and 28, a 

consistency in the model's performance is noted: the loss 

decreases while the precision increases. Both graphs show that 

the model improves steadily and stabilizes towards the end of 

training. This analysis ensures that the model adequately fits 

the training data and makes accurate predictions on new data. 

Figure 29 highlights how the learning rate varies over 100 

training epochs. The X-axis represents the number of epochs, 

while the Y-axis shows the learning rate. This parameter 

controls the magnitude of the model weight updates. The blue 

curve illustrates how the learning rate decreases at certain 

points during training, indicating using a learning rate 

reduction strategy (learning rate decay). 

 
Fig. 27 Evolution of the error during training 

Fig. 28 Evolution of global precision or accuracy during training 

 
Fig. 29 Evolution of the learning rate 

In the initial phase (0 to 20 epochs), the learning rate starts 

high and remains constant, allowing the model to learn general 

patterns quickly. In the final phase (80 to 100 epochs), the 
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learning rate stabilizes at a low value (approximately 0.0015), 

allowing small fine adjustments and stabilization. Starting 

with a high learning rate facilitates rapid updates and efficient 

initial learning. Step reduction allows for fine adjustments and 

improved precision. Keeping a low learning rate at the end 

prevents large overfitting and allows for more precise 

adjustments. There are different models for machine learning, 

among which is the SVM model, which is useful for leak 

detection. The training and validation loss curves converge to 

zero, suggesting that the model does not overfit and effectively 

reconstructs original data [13]. In both the aforementioned 

work and ours cases, the loss curves decrease steadily during 

training, indicating continuous improvement in the model. 

Comparing the accuracy, both models show an accuracy 

greater than 90 % during training and validation, with minimal 

differences between the accuracy curves. This indicates that 

our model has no overfitting and excellent generalization 

ability. Our study highlights the effectiveness of combining 

multiple signals to improve model accuracy and demonstrate 

that the model can be trained, maintaining high accuracy in 

detecting anomalies. The use of pressure and flow sensors is 

effective, and the accuracy is comparable to that reported in 

previous studies using advanced machine learning models.  

4. Conclusion 
This study demonstrated that the implemented system 

achieved 96 % overall accuracy in classifying fluid losses in 

ducts. In addition, the error's evolution during the model's 

training and validation is presented, which demonstrated 

continuous improvement and suggested a correct 

generalization without overfitting in the training and 

validation data. In conclusion, the proposed system presents a 

promising and efficient approach for detecting fluid losses in 

ducts using Adaptive Neuro-Fuzzy Inference. This system 

could be implemented in pipeline monitoring systems, which 

would allow the early identification of fluid losses and the 

implementation of the corresponding repairs, thus reducing 

resource waste and environmental impact. In view of the study 

presented, the analysis showed that the system was able to 

adapt to groups of data in real-time, so it would be interesting 

to implement the system on a real-time platform for use in the 

real world, considering the use of components of higher 

quality and a faster microcontroller for their respective 

analysis. In addition, it would be important to analyze the 

economic viability of implementing the proposed system in 

different scenarios to determine its impact on the efficiency 

and costs of pipeline operation. 
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