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Abstract - The article examines the solution for the route constructing problem for a mobile robot using the BRRT (Biased 

Randomized Routing Table) and A*(H-BRRT) algorithms with the A*(A-star) optimizer. The use of such approaches allows to 

achieve the effective development of technological innovations based on mobile robots. A Python program was developed 

using the PhCham development environment to implement these algorithms. A study assessed the impact of changing basic 

parameters, such as the number of iterations and the movement step of the BRRT and A* algorithms, on the efficiency 

indicators of constructing a route for moving mobile robots. The study includes an analysis of execution time, length of the 

resulting route, route smoothness (number of turns), environmental complexity, overall route reliability and stability, and the 

ability to effectively deal with degenerate cases to develop technological innovation. The presented experimental results allow 

us to evaluate the effectiveness and applicability of the BRRT and A* algorithms for constructing optimal routes for a mobile 

robot in various environmental conditions. The obtained tracking results demonstrate the significant advantages of the 

developed H-BRRT algorithm for large maps with a size of 5000x5000 pixels compared to other algorithms developed for 

maps significantly smaller. The planning hour in the fragmented H-BRRT is extremely small, amounting to 0.000011 seconds, 

which significantly outweighs the effectiveness of other methods, where this indicator varies from 4.9 to 18.6 seconds. Wanting 

to expand, H-BRRT demonstrates the largest route – 24077.0 meters- determined by the map's scale and the advances to the 

route at great distances. Other methods, such as TG-BRRT and CW-TG-BRRT, show good results in terms of doubling down 

on small maps but sacrifice the calculation speed to the new H-BRRT. 

Keywords - Mobile robot, Route planning, Algorithm BRRT, Algorithm A*, Optimization, Manufacturing innovation, Effective 

development, Industrial innovation. 

1. Introduction 
In the era of technology and automation continuous 

development, the question of choosing algorithms for 

constructing movement routes for mobile robots (mobile 

systems) and studying the effectiveness of their work is 

becoming key in autonomous systems development. This is 

due to the need to introduce technological innovations into 

production for the purposes of effective and sustainable 

development [1-5]. The study of methods for selecting 

algorithms for autonomous systems aims to increase the 

efficiency and accuracy of robot movement, which is crucial 

for their successful implementation in various areas of 

human activity. In the context of developing autonomous 

robots capable of operating in various scenarios, research 

into the selection of appropriate algorithms is an integral 

step. This ensures an increase in the safety and efficiency of 

robotic systems and contributes to the creation of more 

flexible and adaptive solutions for a wide range of tasks as 

individual elements for implementing technological 

innovations [6,7]. One of the promising directions in this 

area is the study of the BRRT (Bi-directional Rapidly 

exploring Random Tree) algorithm with the A*(A-star) 

optimizer for constructing the route of a mobile robot 

movement [8,9]. This approach represents a symbiosis 

between motion planning methods and the efficiency of 

random search algorithms.  

https://www.internationaljournalssrg.org/
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Thus, the relevance of such research is due to the rapid 

development of robotics and the need to create more 

intelligent and independent autonomous systems. Moreover, 

such systems must successfully navigate in complex 

scenarios and large-sized corresponding terrain maps used 

for such movement. Autonomous robots play a key role in 

many areas, from manufacturing and logistics of various 

sizes to medical research and security [10]. The dimensions 

of such areas, where the routes of mobile systems movement 

are compiled, can vary from several meters to several 

hundred meters, both vertically and horizontally. As a rule, 

existing developments operate in sizes 10x10, 30x30, and 

sometimes 100x100 [11,12].  

The nodal points of such maps represent a certain 

configuration of the terrain map. Moreover, such nodal 

points can be located at different distances, not necessarily in 

units of measurement of the overall size of the area map. 

Then, these nodal points represent certain pixels of the 

terrain map configuration. However, even in this case, 

developers operate with a configuration of terrain maps of no 

more than several hundred pixels horizontally and vertically 

[13]. At the same time, the concept of such nodal points of 

the terrain map plays a decisive role in the study of 

appropriate algorithms for constructing movement routes of 

mobile systems (robots).  

At the same time, the methods of the BRRT algorithm 

based on the A* optimizer make it possible to improve the 

accuracy and speed of planning complex and large routes, 

thereby ensuring more efficient functioning of autonomous 

systems. Consequently, the main goal of this work is to 

construct a route for a mobile robot based on the BRRT and 

A*(H-BRRT) algorithms for large-sized maps of the area to 

analyze and study such a symbiosis of algorithms for 

constructing a route for a mobile robot. 

2. Related Works 
W. Li et al. studied using the CC-BRRT algorithm for 

path planning for a mobile robot [14]. The CC-BRRT 

algorithm significantly improves the bidirectional fast 

extended random tree algorithm, offering an efficient 

solution to its convergence problem. The main advantages 

include using the center circle sampling strategy and the 

target offset strategy, which can reduce the number of search 

nodes and speed up the algorithm's convergence [14]. 

However, it should be noted that the CC-BRRT algorithm 

may require complex parameter tuning to achieve its most 

efficient performance. This may be a disadvantage when 

using it in practice. In addition, there may be problems with 

sensitivity to initial conditions and the risk of getting stuck in 

local minima, especially in complex scenarios. B. G. Jhong 

and M. Y. Chen proposed a navigation algorithm for motion 

planning of two-wheeled mobile robots, which has several 

advantages [15]. First, using bidirectional RRT algorithms 

with a path trimming and smoothing mechanism allows for 

obtaining a collision-free path with continuity of direction to 

the destination.  

Secondly, speed planning based on the trapezoidal speed 

profile provides efficient control of linear and angular 

velocities, and the approximation method helps reduce the 

position error of the endpoint of the displacement curve, 

ensuring trajectory continuity [15]. Among the 

disadvantages, it is worth noting that the implementation of 

the algorithm may require complex parameter settings and 

high computing power, especially when working in real-

time.  

In addition, it is necessary to consider possible 

limitations on energy consumption and positioning accuracy, 

which may affect the algorithm's efficiency in real 

conditions. M. Korkmaz and A. Durdu consider improving 

the time to reach a task point and the efficiency of task 

performance of a mobile robot. As a result of various 

algorithm comparisons, it was shown that the A* algorithm 

provides the shortest path, but its time efficiency is low [16]. 

On the other hand, the PRM algorithm is time efficient and 

provides the length of possible movement close to the 

shortest path. Thus, the PRM algorithm may be the most 

suitable path-planning method for real-time mobile robots, 

considering the time and quality of the path. 

The work by Y. Zhang and Du Gong conducted a study 

of the S-BRRT* algorithm, which improves global path 

planning under constraints [4]. Introducing a bidirectional 

spanning tree into the basic RRT* and considering non-

holonomic constraints makes it more adaptive to different 

scenarios. The proposed new path shortening strategies and 

the use of a cubic Bezier curve for smoothness provide the 

most optimal and feasible moving trajectories [17]. However, 

it should be noted that implementing the S-BRRT* algorithm 

may require significant computational resources, especially 

in complex scenarios. Additionally, you must consider the 

potential difficulties in tuning algorithm parameters for 

optimal performance in different environments. However, 

experimental results on various scenes confirm the stability 

and improvement of the trajectory length of the S-BRRT* 

algorithm. 

A study by X. Shu et al. proposed using the Locally 

Guided Multiple Bi-RRT* (LGM-BRRT*) method, 

significantly improving path planning in clustered 

environments with narrow aisles [18]. Unlike other Bi-RRT* 

based variants, LGM-BRRT* provides more efficient 

memory and time usage due to an improved bridge test and 

search strategy based on local guidance [18]. However, it 

should be noted that implementing LGM-BRRT* may 

require a certain degree of careful tuning to achieve the 

required performance in different scenarios. Additionally, in 

some cases, additional processing power may be required to 

provide a fast solution, especially in complex cluster 
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environments, making it more difficult to implement. In the 

work by the authors, P. Wang et al. it is proposed an adaptive 

bidirectional A* algorithm that represents a significant 

improvement in path planning for robots in 3D environments 

[19]. Unlike the standard A* algorithm, it adapts to variable 

conditions in the 3D environment and uses bidirectional 

search to find the optimal path [19]. It is worth noting that 

the adaptive bidirectional A* algorithm has a number of 

disadvantages that should be considered. When working in 

complex 3D environments with many obstacles, the 

algorithm may encounter problems processing large amounts 

of data, which can lead to increased path planning time. 

Additionally, the algorithm may be less effective when the 

plan needs to be updated frequently due to changing 

environmental or task conditions. It is also worth considering 

that the adaptive bidirectional A* algorithm may require 

more complex configuration and support, especially to work 

effectively in different scenarios. 

The work by C. Wang and X. Yang proposed an 

improved Q-learning algorithm, which represents a 

significant improvement in the dynamic planning of obstacle 

avoidance routes for mobile agents [7]. Introducing a priority 

weight into the Q-learning algorithm improves its value 

estimation and increases its convergence speed and accuracy. 

This is especially important in complex interactive 

environments where other algorithms may encounter local 

optimization problems [20]. Despite the significant 

advantages, the improved Q-learning algorithm also has 

some disadvantages. One of the main disadvantages is that 

the algorithm requires a significant amount of training data to 

achieve high performance, which can be problematic in real-

world scenarios with limited access to data.  

In addition, the algorithm may encounter overfitting 

problems, especially if the learning parameters are not 

configured correctly or if the structure of the environment 

changes greatly. This can lead to a loss of the generalization 

ability of the algorithm and a decrease in its performance on 

new data. The examples discussed above are for planning the 

path of robot movement, operating with terrain maps no 

larger than two to three hundred pixels in size. This 

necessitates the study of the most effective algorithms, 

among which the symbiosis of BRRT and A*(H-BRRT) can 

be highlighted on large terrain maps. Here, it is suggested 

that a 5000x5000 pixel may be considered. This choice is 

due to the fact that such a map allows the building of a route 

for the mobile system (robot) movement both for production 

and for open areas where the corresponding robots are used. 

So, the key research lies in creating a practical algorithm 

for determining the routes of mobile robots in large and 

foldable environments to correct numerical obstacles. As a 

rule, the original methods are limited by computational 

resources and do not provide the necessary accuracy and 

adaptability to great minds. The goal is to develop an 

optimized approach that will allow speed and precision to 

plan routes on large maps, increasing the productivity of 

autonomous systems. 

3. Research Gap 
Optimization or efficiency is often used in the reviewed 

works, which necessitates some clarification. In this work, 

the following in the form of a certain process will be meant 

by the efficiency of a mobile robot movement in a certain 

route or such movement optimization. First, it is the process 

of finding the best path or route from one point to another, 

considering certain criteria (travel time, distance of travel, 

etc.) or restrictions (for example, completing a path without 

collisions in the allotted time).  

In other words, the goal of such a procedure (achieving 

its efficiency or optimization) may include minimizing the 

consumption of time, energy or other resources, as well as 

taking into account various factors such as obstacles on the 

way, speed of movement, safety, etc. [21-23]. In the 

framework of this research, the following key optimization 

(efficiency) parameters will be used: the number of iterations 

for constructing a route and the step size when constructing a 

BRRT tree. This choice is based on the fact that these 

parameters can affect the following parameters of robot 

movement: 

The number of iterations allows: 

• Achieve efficiency and optimization of route moving 

time and movement accuracy. At the same time, 

increasing the number of iterations can improve the 

accuracy of route construction, but it will also increase 

the computation time. On the other hand, too few 

iterations can lead to an incomplete and suboptimal 

route; 

• Achieve management efficiency in a complex 

environment. For example, in more complex 

environments, more iterations may be required to find a 

route due to the greater number of possible paths and 

obstacles; 

The step size allows: 

• Optimization of the movement speed and convergence 

of the algorithm used. Increasing the step size can speed 

up the route-finding process, but there is a risk of 

missing optimal paths or encountering obstacles. A 

small step size may improve the accuracy of collision-

free movement but will slow down the search for the 

desired route; 

• Optimal control in a complex environment. In more 

complex environments, a smaller step size may be 

preferable to allow the robot to navigate around 

obstacles more accurately. 

The optimization (efficiency) parameters considered for 

determining the route of a mobile robot's movement are key 
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but not exhaustive in various specific cases. Therefore, such 

parameters will be considered: route completion time, route 

length, route smoothness (number of turns), environmental 

complexity (number of obstacles), and overall route 

reliability and stability. In some way, these parameters are 

derived from the key ones: the number of iterations for 

constructing a route and the step size when constructing a 

BRRT tree. 

4. Formalization of the Problem of 

Constructing a Route for a Mobile Robot Based 

on The Brrt And A* Algorithms 
Let denote by 𝐺 - a graph that is a map of the 

environment, where the vertices of such a graph are various 

points (control marks of movement), and the edges are 

connections between them (possible paths of movement).  𝑉 

– a set of graph vertices representing the points of the mobile 

robot movement on a specific area map; 𝐸 – a set of graph 

edges representing possible transitions between control 

points of the robot’s movement. 𝑞𝑠𝑡𝑎𝑟𝑡 and 𝑞𝑔𝑜𝑎𝑙  are the 

starting and ending points of the robot’s movement, 

respectively. 

In this case, the robot configuration, its unique position 

and orientation in space will be in accordance with 𝑉 and 𝐸 

will be meant. Let us introduce the movement cost function 

(𝐶𝑜𝑠𝑡(𝑞𝑖 , 𝑞𝑗)). This mathematical model describes costs as 

distance, energy, time and environmental conditions or costs 

when moving from one robot configuration  𝑞𝑖 to another at a 

point 𝑞𝑗. In the context of route planning for an autonomous 

mobile robot, this function plays an important role in 

determining the optimal path and can be represented in the 

following way: 

𝐶𝑜𝑠𝑡(𝑞𝑖 , 𝑞𝑗) = 𝑤1 ⋅ 𝑑(𝑞𝑖 , 𝑞𝑗) + 𝑤2 ⋅ 𝑐𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑗),       (1) 

Where:  

𝑑(𝑞𝑖 , 𝑞𝑗) – distance metric between configurations 𝑞𝑖 

and 𝑞𝑗 representing the moving length; 

𝑐𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑗) – a cost function that takes into account the 

cost of time, energy or other resources to avoid an obstacle, 

as well as the number of them on the way from 𝑞𝑖 to 𝑞𝑗; 

𝑤1 and 𝑤2 – weighting factors that can be adjusted to 

control the impact of each component on the overall cost. 

Function (1) demonstrates that the cost of movement 

depends on the length of the distance during movement and 

the presence of obstacles. Let us present a model as a 

heuristic function (𝐻𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑔𝑜𝑎𝑙)) for estimating the cost 

of achieving the final configuration 𝑞𝑔𝑜𝑎𝑙  from the current 

configuration 𝑞𝑖. In this case, the heuristic function must be 

fast to evaluate and provide a feasible (lower) estimate of the 

path's cost between two configurations. From this study's 

point of view, this metric measures the direct distance 

between two points in space (in this case, it is the Euclidean 

distance). Thus, it helps speed up pathfinding by guiding the 

algorithm towards areas where the path is expected to be 

most optimal. The formalization of such a function is given 

below: 

𝐻𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑔𝑜𝑎𝑙) = ‖𝑞𝑖 − 𝑞𝑔𝑜𝑎𝑙‖,                  (2) 

Where:  

‖𝑞1 − 𝑞𝑔𝑜𝑎𝑙‖ – Euclidean distance between points in 

configuration space. This roughly estimates how far the 

current configuration is off the target. 

One of the function (𝐻𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑔𝑜𝑎𝑙)) restrictions is that 

it must be acceptable by estimation, not overestimate the cost 

of the path and guarantee the correct operation of the A* 

algorithm [24]. Let us represent through 𝑓(𝑞𝑖) the combined 

cost function for a vertex using the A* algorithm. This 

function combines the cost of the path from the start vertex 

to the current vertex (𝑔(𝑞𝑖)) and a heuristic estimate of the 

cost from the current vertex to the final target vertex (ℎ(𝑞𝑖)). 
The representation of this function is as follows: 

𝑓(𝑞𝑖) = 𝑔(𝑞𝑖) + ℎ(𝑞𝑖),                         (3) 

Where:  

(𝑔(𝑞𝑖)) – the cost of the path from the initial vertex to 

the current vertex 𝑞𝑖. Typically represents the accumulated 

cost of moving from the starting vertex to the current vertex. 

As the algorithm runs, this cost is updated as the graph 𝐺 

expands. In particular, the cost for each vertex is calculated 

as the sum of the cost to the current vertex and the heuristic 

estimate of the cost to the goal. When updating the cost for a 

vertex, if the new cost is less than the previous one (that is, 

the most optimal path is found), then the vertex is added to 

the open list for further consideration; 

(ℎ(𝑞𝑖)) – a heuristic estimate of the cost from the 

current vertex 𝑞𝑖 to the final target vertex, with the restriction 

that this is the cost of reaching the target vertex from the 

current vertex, and, as a rule, it is an approximate 

(acceptable) estimate that does not overestimate the real cost. 

Expression (3) allows us to select vertices to expand the 

description of the terrain map. Those with a lower combined 

cost 𝑓(𝑞𝑖) are the first. This ensures that the search is 

directed towards the least expensive paths and speeds up the 

algorithm's convergence. 

It should be noted. Using the A* algorithm allows us to 

minimize the total cost 𝑓(𝑞𝑖), which means finding the 

optimal path from the initial vertex to the target vertex. Now, 

the initialization of robot route planning will be described. 

This initialization involves creating two trees 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙  

(for the starting and ending configurations of the robot's 

movement) and defining a set of vertices 𝑉. Moreover, each 

vertex 𝜐 ∈ 𝑉 represents a unique configuration of the robot in 

space, consisting of a grid of points. The tree 𝑇𝑠𝑡𝑎𝑟𝑡  is 

initialized with a single vertex corresponding to the initial 
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Configuration 𝑞𝑠𝑡𝑎𝑟𝑡, and may be represented in next way: 

𝑇𝑠𝑡𝑎𝑟𝑡 = {𝜐𝑠𝑡𝑎𝑟𝑡},                                (4) 

Where:  

𝜐𝑠𝑡𝑎𝑟𝑡 – vertex corresponding 𝑞𝑠𝑡𝑎𝑟𝑡. 

The tree 𝑇𝑔𝑜𝑎𝑙  is initialized by one vertex corresponding 

to the final configuration 𝑞𝑔𝑜𝑎𝑙 , and may be represented in 

next way: 

𝑇𝑔𝑜𝑎𝑙 = {𝜐𝑔𝑜𝑎𝑙},                                     (5) 

Where:  

𝜐𝑔𝑜𝑎𝑙  – vertex corresponding to the final configuration 

𝑞𝑔𝑜𝑎𝑙 . 

For a more specific description of how the initial values 

of trees 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙  are set using the operation of adding 

vertices, let us imagine that each vertex in the tree describes 

an object with certain characteristics, such as: 

𝑉𝑒𝑟𝑡𝑒𝑥: 𝜐 = (𝑞, 𝑝𝑎𝑟𝑒𝑛𝑡),                          (6) 

Where:  

𝑞 – robot configuration corresponding to a given vertex; 

𝑝𝑎𝑟𝑒𝑛𝑡 – a reference to a parent vertex - a vertex that 

generates other vertices (except for the initial vertex). 

Then, the operation of adding a vertex to a tree 𝑇𝑠𝑡𝑎𝑟𝑡  
can be described as follows: 

𝑇𝑠𝑡𝑎𝑟𝑡.𝐴𝑑𝑑𝑁𝑜𝑑𝑒(𝜐𝑠𝑡𝑎𝑟𝑡),                      (7) 

Where:  

𝜐𝑠𝑡𝑎𝑟𝑡 = (𝑞𝑠𝑡𝑎𝑟𝑡 , 𝑛𝑢𝑙𝑙) The initial vertex 𝜐𝑠𝑡𝑎𝑟𝑡 contains 

the initial Configuration 𝑞𝑠𝑡𝑎𝑟𝑡and does not have a parent 

since it is the initial vertex. 

Adding a vertex to a tree 𝑇𝑔𝑜𝑎𝑙  can be described as 

follows:  

𝑇𝑔𝑜𝑎𝑙.𝐴𝑑𝑑𝑁𝑜𝑑𝑒(𝜐𝑔𝑜𝑎𝑙),                     (8) 

Where:  

𝜐𝑔𝑜𝑎𝑙 = (𝑞𝑔𝑜𝑎𝑙 , 𝑛𝑢𝑙𝑙), that is, the final vertex 𝜐𝑔𝑜𝑎𝑙  

contains the final configuration 𝑞𝑔𝑜𝑎𝑙 .  

Thus, the add vertex operation (7, 8) creates a vertex 

object with the specified characteristics and adds it to the 

corresponding tree. A parent reference to 𝑛𝑢𝑙𝑙 indicates that 

it is the starting or ending vertex and does not have a parent 

in the given context. 

The vertex search and selection loop in the BRRT 

algorithm is an iterative process in which the algorithm seeks 

to expand the trees 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙  in the direction of a 

random vertex belonging to the robot's configuration space. 

This can be represented as choosing a random configuration 

from the configuration space 𝑞𝑟𝑎𝑛𝑑 ∈ 𝑉. 

Let us find the nearest vertices in each tree for the 

current random configuration 𝑞𝑟𝑎𝑛𝑑, which may be 

represented as the following entry: 

𝑞𝑛𝑒𝑎𝑟_𝑠𝑡𝑎𝑟𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞𝑖∈𝑇𝑠𝑡𝑎𝑟𝑡 С𝑝𝑟𝑖𝑐𝑒 (𝑞𝑖𝑞𝑟𝑎𝑛𝑑),         (9) 

𝑞𝑛𝑒𝑎𝑟_𝑔𝑜𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞𝑖∈𝑇𝑔𝑜𝑎𝑙 С𝑝𝑟𝑖𝑐𝑒 (𝑞𝑖𝑞𝑟𝑎𝑛𝑑),       (10) 

Where:  

𝑞𝑛𝑒𝑎𝑟_𝑠𝑡𝑎𝑟𝑡 – this is the closest vertex in the tree 𝑇𝑠𝑡𝑎𝑟𝑡  to 

a random configuration 𝑞𝑟𝑎𝑛𝑑, found by minimizing the cost 

function; 

𝑞𝑛𝑒𝑎𝑟_𝑔𝑜𝑎𝑙  – is the closest vertex in the tree 𝑇𝑔𝑜𝑎𝑙  to a 

random configuration 𝑞𝑟𝑎𝑛𝑑, found by minimizing the cost 

function; 

𝑇𝑠𝑡𝑎𝑟𝑡  – is a tree whose initial vertex corresponds to the 

initial configuration 𝑞𝑠𝑡𝑎𝑟𝑡, and each subsequent vertex is 

added as the tree expands towards random configuration; 

𝑇𝑔𝑜𝑎𝑙  – is a tree whose final vertex corresponds to the 

initial configuration 𝑞𝑠𝑡𝑎𝑟𝑡; 
𝐶𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑟𝑎𝑛𝑑) – the cost function measures the 

distance between vertices 𝑞𝑖 and current random 

configuration 𝑞𝑟𝑎𝑛𝑑.  

Let us expand the tree in this direction 𝑞𝑟𝑎𝑛𝑑. For this, it 

is proposed that the Function  [25] be used, which acts as an 

expansion of the current vertex towards another 

configuration. It generates a new vertex in the tree, which is 

close to a random configuration. It may be represented as 

follows: 

𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 = 𝐸𝑥𝑡𝑒𝑛𝑑(𝑞𝑛𝑒𝑎𝑟_𝑠𝑡𝑎𝑟𝑡 , 𝑞𝑟𝑎𝑛𝑑),         (11) 

𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙 = 𝐸𝑥𝑡𝑒𝑛𝑑(𝑞𝑛𝑒𝑎𝑟_𝑔𝑜𝑎𝑙 , 𝑞𝑟𝑎𝑛𝑑),       (12) 

Where:  

𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 , 𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙  –  new vertex resulting from trees 

𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙  expansion respectively; 

𝑞𝑛𝑒𝑎𝑟_𝑠𝑡𝑎𝑟𝑡 – current closest vertex in the tree 𝑇𝑠𝑡𝑎𝑟𝑡  to a 

random configuration; 

𝑞𝑛𝑒𝑎𝑟_𝑔𝑜𝑎𝑙  – current closest vertex in the tree 𝑇𝑔𝑜𝑎𝑙  to a 

random configuration; 

𝑞𝑟𝑎𝑛𝑑 – a random configuration to which it is planned to 

expand the current vertex. 

The next step is to check whether the new vertex 

collides with environmental obstacles. Collision testing 

involves assessing whether a new vertex 𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 or 

𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙  is consistent with a safe location in the 

environment. Let us say that a collision function takes a 

robot's configuration 𝑞 as input and returns a boolean value: 

true if the configuration is collision-free and false otherwise 

[26]. 
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𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑞𝑛𝑒𝑤),                       (13) 

Where:  

𝑞𝑛𝑒𝑤 – a new vertex resulting from expanding the 

current vertex towards a random configuration. 

Let us check whether the new vertex collides with 

obstacles in the environment; if there is no collision, add a 

new vertex to the corresponding tree: 

𝑇𝑠𝑡𝑎𝑟𝑡.𝐴𝑑𝑑𝑁𝑜𝑑𝑒(𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡),                  (14) 

𝑇𝑔𝑜𝑎𝑙.𝐴𝑑𝑑𝑁𝑜𝑑𝑒(𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙),                     (15) 

Where:  

𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙  – a tree representing a set of vertices 

describing the space of robot configurations, starting from 

the initial configuration 𝑞𝑠𝑡𝑎𝑟𝑡 and the final configuration 

𝑞𝑔𝑜𝑎𝑙 , respectively; 

𝐴𝑑𝑑𝑁𝑜𝑑𝑒 – function to add a new vertex 𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 and 

𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙  to trees 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙  respectively [27]; 

𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 and 𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙  – represents the robot 

configuration resulting from expanding the current nearest 

vertex in the direction of a random configuration  

Next, it is necessary to check the connection, that is, 

whether the new vertex is connected to the trees 𝑇𝑠𝑡𝑎𝑟𝑡  and 

𝑇𝑔𝑜𝑎𝑙  for this, the following expression will be used: 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 =
𝐶ℎ𝑒𝑘𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑔𝑜𝑎𝑙 , 𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 , 𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙), (16) 

Where:  

𝐶ℎ𝑒𝑘𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 – a function that checks for a 

connection between trees 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙 , returns a boolean 

value: 𝑡𝑟𝑢𝑒 if a connection between trees is found, 𝑓𝑎𝑙𝑠𝑒 

otherwise [28].  

This function evaluates whether it can connect tree 

𝑇𝑠𝑡𝑎𝑟𝑡  and tree 𝑇𝑔𝑜𝑎𝑙  through new vertices 𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 and 

𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙  . The result 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 indicates whether the 

connection was successful or not, which influences the 

further progress of the pathfinding algorithm. 

To form a route and extract the optimal path using the 

A* algorithm on a combined graph, it is denoted: via 𝐺𝑠𝑡𝑎𝑟𝑡 
and 𝐺𝑔𝑜𝑎𝑙  the combined graphs from trees 𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙 , 

respectively, into a common graph 𝐺𝑡𝑜𝑡𝑎𝑙. The union occurs 

by adding an edge between the nearest vertices in the trees 

𝑇𝑠𝑡𝑎𝑟𝑡  and 𝑇𝑔𝑜𝑎𝑙 . The formation of a state graph 𝐺𝑡𝑜𝑡𝑎𝑙 

represents a state space that includes vertices from both trees 

and the edges between them. For each edge 𝐺𝑡𝑜𝑡𝑎𝑙 in the 

graph, determine the cost of moving between the 

corresponding vertices as the distance between the vertices in 

the robot configuration space. Let us apply the A* algorithm 

to the graph 𝐺𝑡𝑜𝑡𝑎𝑙 to find the optimal path from the initial 

configuration 𝑞𝑠𝑡𝑎𝑟𝑡 to the final configuration 𝑞𝑔𝑜𝑎𝑙 . The A* 

algorithm uses a heuristic function to find a path efficiently, 

taking into account both the cost to the vertex (along the path 

already traversed) and the heuristic estimate from the current 

vertex to the target vertex. The formalized representation of 

the A* algorithm and path extraction may be denoted as 

follows: 

𝑓(𝑛) = 𝑔(𝑛) − ℎ(𝑛),                           (17) 

Where:  

𝑔(𝑛) – the cost of the path from the initial vertex to the 

vertex 𝑛, 

ℎ(𝑛) – heuristic cost estimation from the vertex 𝑛 to the 

goal vertex. 

To extract the optimal path, imagine a sequence of 

vertices 𝑃, in the next way: 

𝑃 = {𝜐1, 𝜐2, . . . , 𝜐𝑘},                           (18) 

Where:  

𝜐𝑖 – vertex in the sequence 𝑃 represents the state of the 

robot configuration space at a certain stage of movement 

along the optimal path; 

𝑘 – the index indicates the optimal path length and the 

number of stages that must be passed from the initial 

configuration to the final one. 

The path is retrieved in reverse order. This order ensures 

the correct sequence of movements for the robot from the 

starting point to the target: 

𝑞𝑠𝑡𝑎𝑟𝑡 , 𝑞𝑖 , 𝑞𝑖−1, . . . , 𝑞𝑔𝑜𝑎𝑙 ,                               (19) 

Where:  

𝑞𝑠𝑡𝑎𝑟𝑡 – starting point of the path; 

𝑞𝑖 and 𝑞𝑖−1 – represents the robot configuration at a 

point in time 𝑖; 
𝑞𝑔𝑜𝑎𝑙  – the final peak of the path. 

Thus, the combined graph, route generation and optimal 

path extraction using the A* algorithm on this graph allows 

us to find an effective route for the robot to move from the 

initial configuration to the target. 

5. Separate Fragments of Software 

Implementation in Constructing the Route of 

Movement of a Mobile Robot and a Description 

of the Features of Their Application 
To check the correctness of the reasoning, a program has 

been developed to simulate the work of constructing the 

route of movement of a mobile robot using the object-

oriented Python language in the PhCham 2022.2.3 

development environment. PhCham's core choice offers 
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greater integration capabilities with Python and support for 

object-oriented programming, which is important for 

research in the robotics field. This framework will also 

provide efficient processing of large data sets and 

visualization, suitable for testing algorithms on large-scale 

maps. 

Fragments of software implementations are given below: 

First, the basic settings are set: environment parameters, 

start and end points and parameters of the BRRT and A* 

algorithm. These values specify the parameters for finding a 

path between the starting point (start_point) and the ending 

point (goal_point) on a 5000x5000 pixel area map. The 

num_iterations parameter determines the number of 

iterations of the algorithm, which affects the time to find the 

optimal path: 

width = 100, 

height = 100.   

start_point = (10, 10) # starting point coordinates 𝑞𝑠𝑡𝑎𝑟𝑡, 
goal_point = (5000, 5000) # final point coordinates 

𝑞𝑔𝑜𝑎𝑙 , 

num_iterations = 500 # – this parameter determines how 

often the algorithm will repeat the search process, expanding 

the tree. More iterations can lead to a deeper exploration of 

the state space and, ideally, more accurate determination of 

the optimal route. However, too many iterations can lead to 

excessive execution time of the algorithm, 

step_size = 10.0 # – this parameter determines the step 

length by which the algorithm expands the current tree at 

each iteration. A larger step size may speed up the search 

process but may also result in missing the most optimal paths 

or even the inability to avoid obstacles. Let us describe the 

generation of obstacles in the form of blocks of size 10x10. 

This approach helps to understand how the robot can be 

interfered with by obstacles of a certain size and shape, 

which is one of the basic restrictions taken into account when 

planning a path: 

np.random.seed(42)  

num_obstacles = 20 

obstacles = [(np.random.randint(0, width - 10), 

np.random.randint(0, height - 10)) for _ in 

range(num_obstacles)] 

Let us create a function to check collisions with 

obstacles. This function checks if the point is inside any 

obstacle on the map. It takes the coordinates of a point and 

checks for their presence in the list of obstacles, represented 

as pairs of coordinates of the upper left corner of each 10x10 

block. If the point is inside an obstacle, the function returns 

False, indicating a collision with the obstacle. Otherwise, if 

the point is not inside any obstacles, the function returns 

True, which means there are no collisions. This function 

influences the research results by allowing the path planning 

algorithm to take into account obstacles and avoid them 

when finding the optimal path for the mobile robot: 

def is_collision_free(point): 

    for obstacle in obstacles: 

        if obstacle[0] <= point[0] < obstacle[0] + 10 and 

obstacle[1] <= point[1] < obstacle[1] + 10: 

            return False 

    return True 

let us create a function to build a route using the BRRT 

algorithm. This function builds a route for a mobile robot 

using the BRRT (Bidirectional Rapidly exploring Random 

Tree) algorithm. It starts at a starting point and iteratively 

adds new points to the tree until it reaches a given number of 

iterations. Each new point is selected randomly within the 

map. Then, the closest point in the tree is found for each new 

point, and a step size (step_size) is applied to it to determine 

the new point. The collision check for obstacles 

(is_collision_free) ensures that a new point is not added to 

the tree if it is inside an obstacle. This process continues until 

the endpoint is reached or until enough iterations have been 

explored: 

def build_rrt(start, goal, num_iterations, step_size): 

    tree = [start] 

    for _ in range(num_iterations): 

        random_point = np.random.rand(2) * 

np.array([width, height]) 

        nearest_point_index = 

np.argmin([np.linalg.norm(np.array(random_point) - 

np.array(point)) for point in tree]) 

        nearest_point = tree[nearest_point_index] 

        new_point = nearest_point + step_size * 

(random_point - nearest_point) 

        new_point = tuple(new_point) 

        if is_collision_free(new_point): 

            tree.append(new_point) 

    return tree 

This algorithm influences the results of the study, 

allowing you to find routes for a mobile robot, taking into 

account obstacles and optimizing the path based on a random 

selection of points and expanding the tree in the direction of 

these points, 

let us create a function to optimize the route using A*. 

This function creates a graph of the BRRT route points and 

adds edges between successive points with weights equal to 

the distance between them. Then, to optimize the route, the 

A* algorithm is used, which finds the shortest path from the 

starting point to the ending point on the constructed graph: 

def optimize_path(rrt_tree, start, goal): 

    graph = nx.Graph() 

    for point in rrt_tree: 

        graph.add_node(point) 

    for i in range(len(rrt_tree) - 1): 

        graph.add_edge(rrt_tree[i], rrt_tree[i + 1], 
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weight=np.linalg.norm(np.array(rrt_tree[i]) - 

np.array(rrt_tree[i + 1]))) 

This affects the results of the study, as it allows us to 

improve the route found by BRRT by exploring alternative 

paths and choosing the most optimal one, taking into account 

the cost of moving between points. Using A* allows us to 

find a shorter and more efficient path, which can be critical 

for the operation of a mobile robot in real-time 

let us add the starting and ending points to the graph. 

Adding start and end points to the graph allows us to 

consider these points when finding the optimal path. The 

starting and ending points become part of the graph, and the 

A* algorithm will consider them when finding a path from 

the starting point to the ending point. This guarantees that the 

found path will start at the starting point and end at the final 

point, which is important for the problem of path planning 

for a mobile robot: 

    graph.add_node(start) 

    graph.add_node(goal) 

Adding start and end points also affects the exploration 

results because they become part of the state space the 

algorithm must explore. This helps ensure the completeness 

of the state space exploration and find the optimal path, 

taking into account the specific conditions of the starting and 

ending points; 

Check the presence of connections between the starting 

and ending points and points of the route constructed by the 

BRRT algorithm in the graph. If there is no connection, then 

it is added, taking into account the distance between the 

points. This influences the study results because it ensures 

that the start and end points are associated with the route, 

ensuring that the path is planned correctly. It also considers 

the specific conditions of the starting and ending points. This 

is important for the practical implementation of the possible 

path of a mobile robot: 

    if not nx.has_path(graph, start, rrt_tree[0]): 

        graph.add_edge(start, rrt_tree[0], 

weight=np.linalg.norm(np.array(start) - 

np.array(rrt_tree[0]))) 

    if not nx.has_path(graph, rrt_tree[-1], goal): 

        graph.add_edge(rrt_tree[-1], goal, 

weight=np.linalg.norm(np.array(rrt_tree[-1]) - 

np.array(goal))) 

Let us create a function to evaluate solutions to problems 

with degenerate cases. This function is intended to evaluate 

the ability of the BRRT algorithm to cope with degenerate 

cases, such as the presence of narrow passages or complex 

obstacle structures that can make path construction difficult. 

It takes as input the constructed BRRT tree and the optimal 

path and then analyzes how successfully the algorithm coped 

with such complexities: 

def evaluate_handling_degenerate_cases(rrt_tree, 

optimal_path): 

This influences the study results, allowing the 

algorithm's reliability and efficiency to be assessed in various 

scenarios. The evaluation results can help improve the 

algorithm for more successful applications in real-world 

settings where degenerate cases may be common. An 

example of an assessment is that the fewer turns in the 

optimal path, the better. This assessment evaluates the 

optimal path based on the number of turns, considering that 

fewer turns indicate a simpler and more efficient route. This 

approach allows us to evaluate the “smoothness” of the path 

and its suitability for moving a mobile robot. This is 

important because more difficult paths with many turns may 

be less efficient and take longer to complete: 

    optimal_turns = count_turns(optimal_path) 

    return optimal_turns 

Such an assessment can help optimize path planning by 

favoring easier paths with fewer turns when choosing the 

optimal route. This can be especially useful in situations 

where the speed or energy efficiency of the robot's 

movement is important, 

Visualize the starting ending points and obstacles. 

Visualization allows us to present the initial data and 

conditions of the path planning problem for a mobile robot. 

This is important for analyzing and understanding the path 

search space, as well as for visual monitoring of the correct 

operation of planning algorithms: 

plt.scatter(*start_point, color='green', marker='o', 

label='Start') 

plt.scatter(*goal_point, color='red', marker='o', 

label='Goal') 

for obstacle in obstacles: 

    plt.Rectangle((obstacle[0], obstacle[1]), 10, 10, 

color='black', alpha=0.5) 

Visualization helps to see the location of the start and 

end points relative to obstacles, which can be important for 

determining the complexity of a path planning problem. It 

also helps to track path changes during optimization and 

evaluate its effectiveness visually. In general, visualization 

helps better understand the problem and results of the study, 

making them more accessible and understandable Route 

construction. This code builds a route using the BRRT 

algorithm from the starting point to the ending point. Route 

construction allows us to evaluate the algorithm's ability to 

find paths in difficult conditions, considering obstacles. The 

route results can be used to analyze the effectiveness of the 

algorithm and its ability to avoid obstacles: 

rrt_tree = build_rrt(start_point, goal_point, 

num_iterations, step_size) 
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This affects the results of the study because the quality 

of the constructed route directly reflects the performance and 

reliability of the algorithm. The research could be more 

successful if the most optimal and safe route could be 

constructed. Also, the route results can be used to compare 

with other path planning algorithms and evaluate their 

effectiveness, route optimization.  

This code optimizes the constructed route using the A* 

algorithm. Optimization allows us to improve the BRRT 

algorithm's original route, considering the cost of moving 

between points and possible alternative paths. The result of 

optimization is a shorter and more efficient path from the 

starting point to the final point: 

optimal_path, execution_time = optimize_path(rrt_tree, 

start_point, goal_point) 

This influences the study results because the optimized 

path can be more efficient and safer for the mobile robot to 

move. Also, optimization results can be used to compare 

with the original route and evaluate the effectiveness of path 

planning algorithms. In addition, optimization execution time 

can be an important indicator of the algorithm's performance 

under real-world operating conditions. Visualization of the 

route. This code visualizes the constructed route of the 

BRRT algorithm as lines connecting successive route points. 

Visualizing a route allows us to visually assess its quality, 

such as its straightness, avoidance of obstacles and overall 

structure. This is important for analyzing the operation of the 

algorithm and checking the correctness of the route 

construction: 

for i in range(len(rrt_tree) - 1): 

    plt.plot([rrt_tree[i][0], rrt_tree[i + 1][0]], 

[rrt_tree[i][1], rrt_tree[i + 1][1]], color='blue', alpha=0.5) 

Route visualization can also help to identify potential 

problems in the constructed route, such as unnecessary loops 

or unwanted detours. This allows us to improve the path 

planning algorithm and create more optimal routes for the 

mobile robot. In addition, visualization can be used to 

visually present research results and demonstrate the 

algorithm's operation to other users or specialists, 

Let us visualize the optimal route. This code visualizes 

the optimal route after optimisation using the A* algorithm. 

Visualization of the optimal route allows us to evaluate the 

optimisation quality and compare it with the original route 

built by the BRRT algorithm. This is important for assessing 

the effectiveness of path planning algorithms and choosing 

the most suitable one for specific tasks: 

for i in range(len(optimal_path) - 1): 

    plt.plot([optimal_path[i][0], optimal_path[i + 1][0]], 

[optimal_path[i][1], optimal_path[i + 1][1]], color='green', 

linewidth=2) 

The optimal route visualisation also helps you visually 

compare it with the original route and evaluate the 

improvements achieved due to optimization. This can be 

useful for analyzing the performance of an algorithm and 

identifying its advantages and disadvantages. In addition, 

visualization helps to visualize the study's results and draw 

conclusions about its success. 

Assessment of such criteria as the complexity of the 

environment, reliability and stability of the RRT (Rapidly 

exploring Random Tree) tree, and assessment of the 

processing of degenerative cases. This code evaluates various 

criteria that may influence the results of a path planning 

study for a mobile robot. Environmental complexity 

assessment allows us to evaluate how complex the conditions 

the robot must navigate are. This is important for 

understanding the requirements of a path planning algorithm 

and its ability to avoid obstacles.  

Assessing the reliability and stability of an RRT tree 

allows us to evaluate how reliable and stable the constructed 

tree is, which is the basis for path finding. This allows us to 

evaluate the performance of the BRRT algorithm and its 

ability to find optimal paths under various conditions. 

Evaluating the handling of degenerative cases evaluates how 

well a path planning algorithm can handle complex 

scenarios, such as situations where the path passes through 

narrow passages or contains redundant loops. This is 

important for assessing the versatility and effectiveness of 

the algorithm in various scenarios: 

environment_complexity = 

evaluate_environment_complexity(obstacles) 

reliability_and_stability = 

evaluate_reliability_and_stability(rrt_tree) 

degenerate_cases_evaluation = 

evaluate_handling_degenerate_cases(rrt_tree, optimal_path) 

These assessments influence the study results because 

they allow us to evaluate the quality of the path planning 

algorithms in various conditions and draw conclusions about 

their applicability and effectiveness. 

6. Experimental Studies and Evaluation of the 

Brrt Algorithm with A* Optimization for 

Constructing a Route for a Mobile Robot  
The research was carried out based on the hardware 

component with the following parameters: CPU Intel(R) 

Core(TM) i5-9300H CPU @ 2.40GHz, RAM DDR 16.0 GB, 

GPU NVideo GeForce GTX1660TI and Intel(R) UHD 

Graphics 630, HDD SSD NVMe Micron_2200_MTFD and 

Toshiba MQ04ABF100. OS Windows 10 Pro 64-bit.  

First of all, it was analyzed the influence of changing the 

basic parameters (number of iterations (𝑁𝑖𝑡𝑒𝑟) and movement 

step (𝑀𝑠𝑡𝑒𝑝)) of the BRRT and A* algorithm on performance 

evaluation indicators such as execution time, length of the 
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resulting route, smoothness of the route (number of turns), 

complexity of the environment, assessing overall reliability 

and stability and assessing the resolution of problems with 

degenerate cases. Execution time – allows us to evaluate the 

speed of algorithms in real time.  

A faster algorithm may be preferable in tasks that 

require rapid response to environmental changes. The length 

of the resulting route allows us to evaluate the optimality of 

the found path. A short path is usually preferred because it 

requires less time and resources. The smoothness of the route 

(number of turns) evaluates the convenience and safety of the 

route for a mobile robot to travel through. A less tortuous 

route may be preferable for mobile robots, especially at high 

speeds. 

Environmental complexity – assesses the influence of 

environmental conditions on the passability of the route 

(multiple and moving obstacles, narrow passages and 

complex routes, the presence of “traps” and dangerous 

zones). This is important for algorithms that must avoid 

obstacles efficiently. Assessing overall reliability and 

stability allows one to evaluate the robustness of algorithms 

to various conditions (changes in the environment, changes 

in the types and structure of obstacles) and ensure their 

reliable operation in various scenarios.  

The Degenerate Case Resolution Assessment assesses 

the ability of algorithms to efficiently handle complex 

scenarios (with many obstacles, degenerate cases in the path 

graph, and an unstable positioning signal) and ensure correct 

operation even under non-standard conditions. Provided that 

the coordinates of the starting and ending points are the same 

in all experiments, the results are presented in graphs in 

Figure 1, and performance assessment indicators are given in 

Table 1. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1 Graphs for constructing optimized routes for different basic 

parameters (number of iterations and movement steps): a) 𝑵𝒊𝒕𝒆𝒓 = 100, 

𝑴𝒔𝒕𝒆𝒑=30; b) 𝑵𝒊𝒕𝒆𝒓 = 100, 𝑴𝒔𝒕𝒆𝒑=60; c) 𝑵𝒊𝒕𝒆𝒓 = 10, 𝑴𝒔𝒕𝒆𝒑=30;  d) 𝑵𝒊𝒕𝒆𝒓 = 

50, 𝑴𝒔𝒕𝒆𝒑= 60 
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Table 1. Indicators for assessing the effectiveness of optimized routes for moving a mobile robot for different basic parameters 𝑵𝒊𝒕𝒆𝒓 and 𝑴𝒔𝒕𝒆𝒑 

Performance Evaluation Indicators 

Basic parameters (number of iterations and movement step) 

𝑵𝒊𝒕𝒆𝒓=100 

𝑴𝒔𝒕𝒆𝒑=30 

𝑵𝒊𝒕𝒆𝒓=100 

𝑴𝒔𝒕𝒆𝒑=60 

𝑵𝒊𝒕𝒆𝒓=10 

𝑴𝒔𝒕𝒆𝒑=30 

𝑵𝒊𝒕𝒆𝒓= 50 

𝑴𝒔𝒕𝒆𝒑=60 

Execution time (s) 0.000999 0.000997 0.000011 0.000997 

Received route length 

(conventional units) 
156151.2 312407.5 24077.0 152154.9 

Smoothness of the route 

(number of turns)* 
100 100 10 50 

Environmental complexity 20 20 20 20 

Overall reliability and stability* 101 101 11 51 

Assessing the resolution of problems with degenerate cases* 100 100 10 50 
* – The lower the value obtained, the higher the score for the result obtained 

Based on the obtained results of modeling optimized 

routes for moving mobile robots with different basic 

parameters (number of iterations and movement step) for the 

developed planning method, the following conclusions can 

be drawn (Figure 1 and Table 1): 

• The execution time generally remains relatively low for 

all parameter options (about 0.001 seconds), which 

indicates the speed of the proposed route planning 

method; 

• Increasing the number of iterations and the moving step 

leads to a slight increase in execution time, which is 

logical since a larger number of iterations and/or a larger 

step require more computing resources; 

• It is noticeable that an increase in the number of 

iterations and the movement step leads to an increase in 

the length of the route. This may be because more 

iterations and/or a larger stride may allow the algorithm 

to explore more space and thus find longer paths; 

• The number of rotations generally increases with the 

number of iterations and the movement step. This is 

because more iterations and/or larger strides may result 

in more complex and "suboptimal" paths that involve 

more turns; 

• The complexity of the environment is measured by the 

number of obstacles (num_obstacles = 20). In this study, 

it is constant for various experimental options when 

changing parameters: the number of iterations (𝑁𝑖𝑡𝑒𝑟) 

and the movement step (𝑀𝑠𝑡𝑒𝑝); 

• Overall reliability and stability generally remain high for 

all parameter options. This may indicate that the 

algorithm does a good job of constructing stable routes; 

• The score for resolving problems with degenerate cases 

also remains high for all parameter options. This may 

indicate that the algorithm can successfully cope with 

various scenarios and inherent features. 

7. Comparative Analysis 
Let us analyze and compare the resulting indicators for 

assessing the effectiveness of optimized routes for different 

basic parameters 𝑁𝑖𝑡𝑒𝑟  and 𝑀𝑠𝑡𝑒𝑝 in comparison with other 

algorithms; the comparison results are shown in Table 2. 

Table 2. Comparison of individual performance indicators of optimized 

routes with other algorithms 

Algorithm Planning time [s] Path length [m] 

RRT [29] 17.3 22.6 

CW-RRT [29] 18.6 21.4 

BRRT [29] 8.7 21.5 

TG-BRRT [29] 10.7 20.2 

CW-TG-BRRT [29] 4.9 21.0 

H-BRRT [29] 6.3 19.0 

H-BRRT (developed)* 0.000011 24077.0 
* – The map size is 5000x5000 conventional units (pixels). Compared to 

analogs RRT, CW-RRT, TG-BRRT, CW-TG-BRRT, and H-BRRT the map 

size is 10x10 meters 

When comparing the developed H-BRRT with 

analogues (Table 2), the following conclusions can be drawn: 

• Planning time in H-BRRT (the developed approach) 

shows a significant superiority in planning time overall 

analogues. Its planning time is only 0.000011 seconds, 

while its analogs are much higher, for example, CW-

TG-BRRT - 4.9 seconds. This indicates the high 

efficiency and speed of the developed algorithm; 

• The path length of the developed H-BRRT is 24077 

meters, which seems abnormally large compared to 

analogues; it should be taken into account that the 

developed algorithm works with a map of 5000x5000 

pixels, while analogues work with maps of 10x10 

meters. Thus, the path length in pixels can be 

comparable to the path length of analogs in meters, and 

this value should not be considered as a disadvantage but 

rather as a feature of working with different map scales. 

 

Thus, the developed H-BRRT demonstrates significant 

advantages in planning time over its analogues, which makes 

it a promising choice for route planning problems on large, 

high-resolution maps. At the same time, the H-BRRT 

algorithm ensures a balanced result with equal accuracy and 

efficiency compared to popular algorithms, such as CC-

BRRT, S-BRRT* [29]. The research showed that, while 

equal to the classic A* algorithm, new algorithms can be 

more effective on large maps due to search optimization and 

node minimization. The prote CC-BRRT algorithm may be 
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more effective in smaller and less complex scenarios, and the 

adaptive A* will optimise 3D environments. Thus, the 

novelty of the robot lies in the combined BRRT and A* 

algorithms for effective planning of the route of a mobile 

robot on large maps, which significantly expands the 

capabilities of these algorithms in folding environments. The 

proposed combination of algorithms demonstrated stable 

results in minds, while other methods reveal improved 

processing speed and adaptability to various scenarios. 

8. Limitations, Future Work and Practical 

Applications 
The study examined the capabilities of the BRRT and 

A*(H-BRRT) algorithms on large terrain maps. One of the 

key limitations is the high need for computing resources to 

work with large map sizes (5000x5000 pixels) and the 

complexity of the route structure, which affects the 

performance and speed of calculations. Therefore, an 

important goal of future research is to reduce the resource 

intensity of the algorithms without losing the accuracy of 

route construction. A promising direction is also the 

adaptation of these algorithms to work in conditions with a 

variable or dynamic environment. However, the study results 

have significant potential for practical use in various 

industries. The BRRT and A*(H-BRRT) algorithms can be 

applied to planning routes for autonomous robots at 

industrial enterprises in logistics and security. Such robots 

can effectively use routes to optimize logistics processes or 

survey the territory. The research provides a solid foundation 

for developing autonomous systems capable of adapting to 

complex and changing working environments, which is 

especially relevant for large-scale production and work in 

spacious or difficult terrain. 

9. Conclusion 
The work considers the symbiosis of the BRRT and A* 

algorithms for constructing the movement path for a mobile 

robot. This approach is implemented and tested in Python 

using the PhCham development environment. Experimental 

data showed that changing the basic parameters (number of 

iterations and moving steps) significantly impacts the 

efficiency of route construction. The execution time of the 

algorithms remains quite low for all parameter options, 

which indicates the high speed of the proposed route 

planning method. However, increasing the number of 

iterations and the movement step leads to a slight increase in 

execution time due to greater consumption of computing 

resources. Increasing the number of iterations and the 

movement step also leads to an increase in the length of the 

route and the number of turns. This is because algorithms 

have more space to explore and can find longer more 

complex paths. Environmental complexity, measured by the 

number of obstacles, remains relatively constant across 

different parameter options. The overall reliability and 

stability of routes also remain high, and the symbiosis of 

algorithms successfully copes with degenerate cases and 

various scenarios. 

Thus, the study results allow us to conclude that the 

BRRT and A* algorithms are highly effective and applicable 

for constructing optimal routes for a mobile robot in various 

environmental conditions. However, the research revealed 

new issues that could become the basis for future work and 

potential applications. One such issue is the optimization of 

the BRRT and A* algorithms for work in a dynamic 

environment where obstacles can change their position. In 

addition, the task of adapting the proposed approach to work 

on 3D maps remains open, which will require additional 

research on computational efficiency. The solution of these 

issues forms the basis of subsequent research. This will allow 

the proposed algorithms to be used in more complex 

conditions, for example, for autonomous work or performing 

various tasks in multi-level environments. 
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