
International Journal of Engineering Trends and Technology Volume 72 Issue 11, 294-306, November 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I11P129 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Building a Route for a Mobile Robot Based on the BRRT

and A*(H-BRRT) Algorithms for the Effective

Development of Technological Innovations

Amer Abu-Jassar1, Hassan Al-Sukhni2, Yasser Al-Sharo3, Svitlana Maksymova4, Vladyslav Yevsieiev4, Vyacheslav

Lyashenko5

1Department of Computer Science, College of Computer Sciences and Informatics, Amman Arab University, Amman, Jordan.
2Department of Computer and Cyber Security, Faculty of Information Technology, Jadara University, Jordan.

3Faculty of Information Technology, Department of Cyber Security, Ajloun National University, Jordan.
4CITAR Department of Kharkiv National University of Radio Electronics, Kharkiv, Ukraine.

5MST Department of Kharkiv National University of Radio Electronics, Kharkiv, Ukraine.

1Corresponding Author : a.abujassar@aau.edu.jo

Received: 27 August 2024 Revised: 05 November 2024 Accepted: 15 November 2024 Published: 29 November 2024

Abstract - The article examines the solution for the route constructing problem for a mobile robot using the BRRT (Biased

Randomized Routing Table) and A*(H-BRRT) algorithms with the A*(A-star) optimizer. The use of such approaches allows to

achieve the effective development of technological innovations based on mobile robots. A Python program was developed

using the PhCham development environment to implement these algorithms. A study assessed the impact of changing basic

parameters, such as the number of iterations and the movement step of the BRRT and A* algorithms, on the efficiency

indicators of constructing a route for moving mobile robots. The study includes an analysis of execution time, length of the

resulting route, route smoothness (number of turns), environmental complexity, overall route reliability and stability, and the

ability to effectively deal with degenerate cases to develop technological innovation. The presented experimental results allow

us to evaluate the effectiveness and applicability of the BRRT and A* algorithms for constructing optimal routes for a mobile

robot in various environmental conditions. The obtained tracking results demonstrate the significant advantages of the

developed H-BRRT algorithm for large maps with a size of 5000x5000 pixels compared to other algorithms developed for

maps significantly smaller. The planning hour in the fragmented H-BRRT is extremely small, amounting to 0.000011 seconds,

which significantly outweighs the effectiveness of other methods, where this indicator varies from 4.9 to 18.6 seconds. Wanting

to expand, H-BRRT demonstrates the largest route – 24077.0 meters- determined by the map's scale and the advances to the

route at great distances. Other methods, such as TG-BRRT and CW-TG-BRRT, show good results in terms of doubling down

on small maps but sacrifice the calculation speed to the new H-BRRT.

Keywords - Mobile robot, Route planning, Algorithm BRRT, Algorithm A*, Optimization, Manufacturing innovation, Effective

development, Industrial innovation.

1. Introduction
In the era of technology and automation continuous

development, the question of choosing algorithms for

constructing movement routes for mobile robots (mobile

systems) and studying the effectiveness of their work is

becoming key in autonomous systems development. This is

due to the need to introduce technological innovations into

production for the purposes of effective and sustainable

development [1-5]. The study of methods for selecting

algorithms for autonomous systems aims to increase the

efficiency and accuracy of robot movement, which is crucial

for their successful implementation in various areas of

human activity. In the context of developing autonomous

robots capable of operating in various scenarios, research

into the selection of appropriate algorithms is an integral

step. This ensures an increase in the safety and efficiency of

robotic systems and contributes to the creation of more

flexible and adaptive solutions for a wide range of tasks as

individual elements for implementing technological

innovations [6,7]. One of the promising directions in this

area is the study of the BRRT (Bi-directional Rapidly

exploring Random Tree) algorithm with the A*(A-star)

optimizer for constructing the route of a mobile robot

movement [8,9]. This approach represents a symbiosis

between motion planning methods and the efficiency of

random search algorithms.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

295

Thus, the relevance of such research is due to the rapid

development of robotics and the need to create more

intelligent and independent autonomous systems. Moreover,

such systems must successfully navigate in complex

scenarios and large-sized corresponding terrain maps used

for such movement. Autonomous robots play a key role in

many areas, from manufacturing and logistics of various

sizes to medical research and security [10]. The dimensions

of such areas, where the routes of mobile systems movement

are compiled, can vary from several meters to several

hundred meters, both vertically and horizontally. As a rule,

existing developments operate in sizes 10x10, 30x30, and

sometimes 100x100 [11,12].

The nodal points of such maps represent a certain

configuration of the terrain map. Moreover, such nodal

points can be located at different distances, not necessarily in

units of measurement of the overall size of the area map.

Then, these nodal points represent certain pixels of the

terrain map configuration. However, even in this case,

developers operate with a configuration of terrain maps of no

more than several hundred pixels horizontally and vertically

[13]. At the same time, the concept of such nodal points of

the terrain map plays a decisive role in the study of

appropriate algorithms for constructing movement routes of

mobile systems (robots).

At the same time, the methods of the BRRT algorithm

based on the A* optimizer make it possible to improve the

accuracy and speed of planning complex and large routes,

thereby ensuring more efficient functioning of autonomous

systems. Consequently, the main goal of this work is to

construct a route for a mobile robot based on the BRRT and

A*(H-BRRT) algorithms for large-sized maps of the area to

analyze and study such a symbiosis of algorithms for

constructing a route for a mobile robot.

2. Related Works
W. Li et al. studied using the CC-BRRT algorithm for

path planning for a mobile robot [14]. The CC-BRRT

algorithm significantly improves the bidirectional fast

extended random tree algorithm, offering an efficient

solution to its convergence problem. The main advantages

include using the center circle sampling strategy and the

target offset strategy, which can reduce the number of search

nodes and speed up the algorithm's convergence [14].

However, it should be noted that the CC-BRRT algorithm

may require complex parameter tuning to achieve its most

efficient performance. This may be a disadvantage when

using it in practice. In addition, there may be problems with

sensitivity to initial conditions and the risk of getting stuck in

local minima, especially in complex scenarios. B. G. Jhong

and M. Y. Chen proposed a navigation algorithm for motion

planning of two-wheeled mobile robots, which has several

advantages [15]. First, using bidirectional RRT algorithms

with a path trimming and smoothing mechanism allows for

obtaining a collision-free path with continuity of direction to

the destination.

Secondly, speed planning based on the trapezoidal speed

profile provides efficient control of linear and angular

velocities, and the approximation method helps reduce the

position error of the endpoint of the displacement curve,

ensuring trajectory continuity [15]. Among the

disadvantages, it is worth noting that the implementation of

the algorithm may require complex parameter settings and

high computing power, especially when working in real-

time.

In addition, it is necessary to consider possible

limitations on energy consumption and positioning accuracy,

which may affect the algorithm's efficiency in real

conditions. M. Korkmaz and A. Durdu consider improving

the time to reach a task point and the efficiency of task

performance of a mobile robot. As a result of various

algorithm comparisons, it was shown that the A* algorithm

provides the shortest path, but its time efficiency is low [16].

On the other hand, the PRM algorithm is time efficient and

provides the length of possible movement close to the

shortest path. Thus, the PRM algorithm may be the most

suitable path-planning method for real-time mobile robots,

considering the time and quality of the path.

The work by Y. Zhang and Du Gong conducted a study

of the S-BRRT* algorithm, which improves global path

planning under constraints [4]. Introducing a bidirectional

spanning tree into the basic RRT* and considering non-

holonomic constraints makes it more adaptive to different

scenarios. The proposed new path shortening strategies and

the use of a cubic Bezier curve for smoothness provide the

most optimal and feasible moving trajectories [17]. However,

it should be noted that implementing the S-BRRT* algorithm

may require significant computational resources, especially

in complex scenarios. Additionally, you must consider the

potential difficulties in tuning algorithm parameters for

optimal performance in different environments. However,

experimental results on various scenes confirm the stability

and improvement of the trajectory length of the S-BRRT*

algorithm.

A study by X. Shu et al. proposed using the Locally

Guided Multiple Bi-RRT* (LGM-BRRT*) method,

significantly improving path planning in clustered

environments with narrow aisles [18]. Unlike other Bi-RRT*

based variants, LGM-BRRT* provides more efficient

memory and time usage due to an improved bridge test and

search strategy based on local guidance [18]. However, it

should be noted that implementing LGM-BRRT* may

require a certain degree of careful tuning to achieve the

required performance in different scenarios. Additionally, in

some cases, additional processing power may be required to

provide a fast solution, especially in complex cluster

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

296

environments, making it more difficult to implement. In the

work by the authors, P. Wang et al. it is proposed an adaptive

bidirectional A* algorithm that represents a significant

improvement in path planning for robots in 3D environments

[19]. Unlike the standard A* algorithm, it adapts to variable

conditions in the 3D environment and uses bidirectional

search to find the optimal path [19]. It is worth noting that

the adaptive bidirectional A* algorithm has a number of

disadvantages that should be considered. When working in

complex 3D environments with many obstacles, the

algorithm may encounter problems processing large amounts

of data, which can lead to increased path planning time.

Additionally, the algorithm may be less effective when the

plan needs to be updated frequently due to changing

environmental or task conditions. It is also worth considering

that the adaptive bidirectional A* algorithm may require

more complex configuration and support, especially to work

effectively in different scenarios.

The work by C. Wang and X. Yang proposed an

improved Q-learning algorithm, which represents a

significant improvement in the dynamic planning of obstacle

avoidance routes for mobile agents [7]. Introducing a priority

weight into the Q-learning algorithm improves its value

estimation and increases its convergence speed and accuracy.

This is especially important in complex interactive

environments where other algorithms may encounter local

optimization problems [20]. Despite the significant

advantages, the improved Q-learning algorithm also has

some disadvantages. One of the main disadvantages is that

the algorithm requires a significant amount of training data to

achieve high performance, which can be problematic in real-

world scenarios with limited access to data.

In addition, the algorithm may encounter overfitting

problems, especially if the learning parameters are not

configured correctly or if the structure of the environment

changes greatly. This can lead to a loss of the generalization

ability of the algorithm and a decrease in its performance on

new data. The examples discussed above are for planning the

path of robot movement, operating with terrain maps no

larger than two to three hundred pixels in size. This

necessitates the study of the most effective algorithms,

among which the symbiosis of BRRT and A*(H-BRRT) can

be highlighted on large terrain maps. Here, it is suggested

that a 5000x5000 pixel may be considered. This choice is

due to the fact that such a map allows the building of a route

for the mobile system (robot) movement both for production

and for open areas where the corresponding robots are used.

So, the key research lies in creating a practical algorithm

for determining the routes of mobile robots in large and

foldable environments to correct numerical obstacles. As a

rule, the original methods are limited by computational

resources and do not provide the necessary accuracy and

adaptability to great minds. The goal is to develop an

optimized approach that will allow speed and precision to

plan routes on large maps, increasing the productivity of

autonomous systems.

3. Research Gap
Optimization or efficiency is often used in the reviewed

works, which necessitates some clarification. In this work,

the following in the form of a certain process will be meant

by the efficiency of a mobile robot movement in a certain

route or such movement optimization. First, it is the process

of finding the best path or route from one point to another,

considering certain criteria (travel time, distance of travel,

etc.) or restrictions (for example, completing a path without

collisions in the allotted time).

In other words, the goal of such a procedure (achieving

its efficiency or optimization) may include minimizing the

consumption of time, energy or other resources, as well as

taking into account various factors such as obstacles on the

way, speed of movement, safety, etc. [21-23]. In the

framework of this research, the following key optimization

(efficiency) parameters will be used: the number of iterations

for constructing a route and the step size when constructing a

BRRT tree. This choice is based on the fact that these

parameters can affect the following parameters of robot

movement:

The number of iterations allows:

• Achieve efficiency and optimization of route moving

time and movement accuracy. At the same time,

increasing the number of iterations can improve the

accuracy of route construction, but it will also increase

the computation time. On the other hand, too few

iterations can lead to an incomplete and suboptimal

route;

• Achieve management efficiency in a complex

environment. For example, in more complex

environments, more iterations may be required to find a

route due to the greater number of possible paths and

obstacles;

The step size allows:

• Optimization of the movement speed and convergence

of the algorithm used. Increasing the step size can speed

up the route-finding process, but there is a risk of

missing optimal paths or encountering obstacles. A

small step size may improve the accuracy of collision-

free movement but will slow down the search for the

desired route;

• Optimal control in a complex environment. In more

complex environments, a smaller step size may be

preferable to allow the robot to navigate around

obstacles more accurately.

The optimization (efficiency) parameters considered for

determining the route of a mobile robot's movement are key

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

297

but not exhaustive in various specific cases. Therefore, such

parameters will be considered: route completion time, route

length, route smoothness (number of turns), environmental

complexity (number of obstacles), and overall route

reliability and stability. In some way, these parameters are

derived from the key ones: the number of iterations for

constructing a route and the step size when constructing a

BRRT tree.

4. Formalization of the Problem of

Constructing a Route for a Mobile Robot Based

on The Brrt And A* Algorithms
Let denote by 𝐺 - a graph that is a map of the

environment, where the vertices of such a graph are various

points (control marks of movement), and the edges are

connections between them (possible paths of movement). 𝑉

– a set of graph vertices representing the points of the mobile

robot movement on a specific area map; 𝐸 – a set of graph

edges representing possible transitions between control

points of the robot’s movement. 𝑞𝑠𝑡𝑎𝑟𝑡 and 𝑞𝑔𝑜𝑎𝑙 are the

starting and ending points of the robot’s movement,

respectively.

In this case, the robot configuration, its unique position

and orientation in space will be in accordance with 𝑉 and 𝐸

will be meant. Let us introduce the movement cost function

(𝐶𝑜𝑠𝑡(𝑞𝑖 , 𝑞𝑗)). This mathematical model describes costs as

distance, energy, time and environmental conditions or costs

when moving from one robot configuration 𝑞𝑖 to another at a

point 𝑞𝑗. In the context of route planning for an autonomous

mobile robot, this function plays an important role in

determining the optimal path and can be represented in the

following way:

𝐶𝑜𝑠𝑡(𝑞𝑖 , 𝑞𝑗) = 𝑤1 ⋅ 𝑑(𝑞𝑖 , 𝑞𝑗) + 𝑤2 ⋅ 𝑐𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑗), (1)

Where:

𝑑(𝑞𝑖 , 𝑞𝑗) – distance metric between configurations 𝑞𝑖

and 𝑞𝑗 representing the moving length;

𝑐𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑗) – a cost function that takes into account the

cost of time, energy or other resources to avoid an obstacle,

as well as the number of them on the way from 𝑞𝑖 to 𝑞𝑗;

𝑤1 and 𝑤2 – weighting factors that can be adjusted to

control the impact of each component on the overall cost.

Function (1) demonstrates that the cost of movement

depends on the length of the distance during movement and

the presence of obstacles. Let us present a model as a

heuristic function (𝐻𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑔𝑜𝑎𝑙)) for estimating the cost

of achieving the final configuration 𝑞𝑔𝑜𝑎𝑙 from the current

configuration 𝑞𝑖. In this case, the heuristic function must be

fast to evaluate and provide a feasible (lower) estimate of the

path's cost between two configurations. From this study's

point of view, this metric measures the direct distance

between two points in space (in this case, it is the Euclidean

distance). Thus, it helps speed up pathfinding by guiding the

algorithm towards areas where the path is expected to be

most optimal. The formalization of such a function is given

below:

𝐻𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑔𝑜𝑎𝑙) = ‖𝑞𝑖 − 𝑞𝑔𝑜𝑎𝑙‖, (2)

Where:

‖𝑞1 − 𝑞𝑔𝑜𝑎𝑙‖ – Euclidean distance between points in

configuration space. This roughly estimates how far the

current configuration is off the target.

One of the function (𝐻𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑔𝑜𝑎𝑙)) restrictions is that

it must be acceptable by estimation, not overestimate the cost

of the path and guarantee the correct operation of the A*

algorithm [24]. Let us represent through 𝑓(𝑞𝑖) the combined

cost function for a vertex using the A* algorithm. This

function combines the cost of the path from the start vertex

to the current vertex (𝑔(𝑞𝑖)) and a heuristic estimate of the

cost from the current vertex to the final target vertex (ℎ(𝑞𝑖)).
The representation of this function is as follows:

𝑓(𝑞𝑖) = 𝑔(𝑞𝑖) + ℎ(𝑞𝑖), (3)

Where:

(𝑔(𝑞𝑖)) – the cost of the path from the initial vertex to

the current vertex 𝑞𝑖. Typically represents the accumulated

cost of moving from the starting vertex to the current vertex.

As the algorithm runs, this cost is updated as the graph 𝐺

expands. In particular, the cost for each vertex is calculated

as the sum of the cost to the current vertex and the heuristic

estimate of the cost to the goal. When updating the cost for a

vertex, if the new cost is less than the previous one (that is,

the most optimal path is found), then the vertex is added to

the open list for further consideration;

(ℎ(𝑞𝑖)) – a heuristic estimate of the cost from the

current vertex 𝑞𝑖 to the final target vertex, with the restriction

that this is the cost of reaching the target vertex from the

current vertex, and, as a rule, it is an approximate

(acceptable) estimate that does not overestimate the real cost.

Expression (3) allows us to select vertices to expand the

description of the terrain map. Those with a lower combined

cost 𝑓(𝑞𝑖) are the first. This ensures that the search is

directed towards the least expensive paths and speeds up the

algorithm's convergence.

It should be noted. Using the A* algorithm allows us to

minimize the total cost 𝑓(𝑞𝑖), which means finding the

optimal path from the initial vertex to the target vertex. Now,

the initialization of robot route planning will be described.

This initialization involves creating two trees 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑔𝑜𝑎𝑙

(for the starting and ending configurations of the robot's

movement) and defining a set of vertices 𝑉. Moreover, each

vertex 𝜐 ∈ 𝑉 represents a unique configuration of the robot in

space, consisting of a grid of points. The tree 𝑇𝑠𝑡𝑎𝑟𝑡 is

initialized with a single vertex corresponding to the initial

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

298

Configuration 𝑞𝑠𝑡𝑎𝑟𝑡, and may be represented in next way:

𝑇𝑠𝑡𝑎𝑟𝑡 = {𝜐𝑠𝑡𝑎𝑟𝑡}, (4)

Where:

𝜐𝑠𝑡𝑎𝑟𝑡 – vertex corresponding 𝑞𝑠𝑡𝑎𝑟𝑡.

The tree 𝑇𝑔𝑜𝑎𝑙 is initialized by one vertex corresponding

to the final configuration 𝑞𝑔𝑜𝑎𝑙 , and may be represented in

next way:

𝑇𝑔𝑜𝑎𝑙 = {𝜐𝑔𝑜𝑎𝑙}, (5)

Where:

𝜐𝑔𝑜𝑎𝑙 – vertex corresponding to the final configuration

𝑞𝑔𝑜𝑎𝑙 .

For a more specific description of how the initial values

of trees 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑔𝑜𝑎𝑙 are set using the operation of adding

vertices, let us imagine that each vertex in the tree describes

an object with certain characteristics, such as:

𝑉𝑒𝑟𝑡𝑒𝑥: 𝜐 = (𝑞, 𝑝𝑎𝑟𝑒𝑛𝑡), (6)

Where:

𝑞 – robot configuration corresponding to a given vertex;

𝑝𝑎𝑟𝑒𝑛𝑡 – a reference to a parent vertex - a vertex that

generates other vertices (except for the initial vertex).

Then, the operation of adding a vertex to a tree 𝑇𝑠𝑡𝑎𝑟𝑡
can be described as follows:

𝑇𝑠𝑡𝑎𝑟𝑡.𝐴𝑑𝑑𝑁𝑜𝑑𝑒(𝜐𝑠𝑡𝑎𝑟𝑡), (7)

Where:

𝜐𝑠𝑡𝑎𝑟𝑡 = (𝑞𝑠𝑡𝑎𝑟𝑡 , 𝑛𝑢𝑙𝑙) The initial vertex 𝜐𝑠𝑡𝑎𝑟𝑡 contains

the initial Configuration 𝑞𝑠𝑡𝑎𝑟𝑡and does not have a parent

since it is the initial vertex.

Adding a vertex to a tree 𝑇𝑔𝑜𝑎𝑙 can be described as

follows:

𝑇𝑔𝑜𝑎𝑙.𝐴𝑑𝑑𝑁𝑜𝑑𝑒(𝜐𝑔𝑜𝑎𝑙), (8)

Where:

𝜐𝑔𝑜𝑎𝑙 = (𝑞𝑔𝑜𝑎𝑙 , 𝑛𝑢𝑙𝑙), that is, the final vertex 𝜐𝑔𝑜𝑎𝑙

contains the final configuration 𝑞𝑔𝑜𝑎𝑙 .

Thus, the add vertex operation (7, 8) creates a vertex

object with the specified characteristics and adds it to the

corresponding tree. A parent reference to 𝑛𝑢𝑙𝑙 indicates that

it is the starting or ending vertex and does not have a parent

in the given context.

The vertex search and selection loop in the BRRT

algorithm is an iterative process in which the algorithm seeks

to expand the trees 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑔𝑜𝑎𝑙 in the direction of a

random vertex belonging to the robot's configuration space.

This can be represented as choosing a random configuration

from the configuration space 𝑞𝑟𝑎𝑛𝑑 ∈ 𝑉.

Let us find the nearest vertices in each tree for the

current random configuration 𝑞𝑟𝑎𝑛𝑑, which may be

represented as the following entry:

𝑞𝑛𝑒𝑎𝑟_𝑠𝑡𝑎𝑟𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞𝑖∈𝑇𝑠𝑡𝑎𝑟𝑡 С𝑝𝑟𝑖𝑐𝑒 (𝑞𝑖𝑞𝑟𝑎𝑛𝑑), (9)

𝑞𝑛𝑒𝑎𝑟_𝑔𝑜𝑎𝑙 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑞𝑖∈𝑇𝑔𝑜𝑎𝑙 С𝑝𝑟𝑖𝑐𝑒 (𝑞𝑖𝑞𝑟𝑎𝑛𝑑), (10)

Where:

𝑞𝑛𝑒𝑎𝑟_𝑠𝑡𝑎𝑟𝑡 – this is the closest vertex in the tree 𝑇𝑠𝑡𝑎𝑟𝑡 to

a random configuration 𝑞𝑟𝑎𝑛𝑑, found by minimizing the cost

function;

𝑞𝑛𝑒𝑎𝑟_𝑔𝑜𝑎𝑙 – is the closest vertex in the tree 𝑇𝑔𝑜𝑎𝑙 to a

random configuration 𝑞𝑟𝑎𝑛𝑑, found by minimizing the cost

function;

𝑇𝑠𝑡𝑎𝑟𝑡 – is a tree whose initial vertex corresponds to the

initial configuration 𝑞𝑠𝑡𝑎𝑟𝑡, and each subsequent vertex is

added as the tree expands towards random configuration;

𝑇𝑔𝑜𝑎𝑙 – is a tree whose final vertex corresponds to the

initial configuration 𝑞𝑠𝑡𝑎𝑟𝑡;
𝐶𝑝𝑟𝑖𝑐𝑒(𝑞𝑖 , 𝑞𝑟𝑎𝑛𝑑) – the cost function measures the

distance between vertices 𝑞𝑖 and current random

configuration 𝑞𝑟𝑎𝑛𝑑.

Let us expand the tree in this direction 𝑞𝑟𝑎𝑛𝑑. For this, it

is proposed that the Function [25] be used, which acts as an

expansion of the current vertex towards another

configuration. It generates a new vertex in the tree, which is

close to a random configuration. It may be represented as

follows:

𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 = 𝐸𝑥𝑡𝑒𝑛𝑑(𝑞𝑛𝑒𝑎𝑟_𝑠𝑡𝑎𝑟𝑡 , 𝑞𝑟𝑎𝑛𝑑), (11)

𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙 = 𝐸𝑥𝑡𝑒𝑛𝑑(𝑞𝑛𝑒𝑎𝑟_𝑔𝑜𝑎𝑙 , 𝑞𝑟𝑎𝑛𝑑), (12)

Where:

𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 , 𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙 – new vertex resulting from trees

𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑔𝑜𝑎𝑙 expansion respectively;

𝑞𝑛𝑒𝑎𝑟_𝑠𝑡𝑎𝑟𝑡 – current closest vertex in the tree 𝑇𝑠𝑡𝑎𝑟𝑡 to a

random configuration;

𝑞𝑛𝑒𝑎𝑟_𝑔𝑜𝑎𝑙 – current closest vertex in the tree 𝑇𝑔𝑜𝑎𝑙 to a

random configuration;

𝑞𝑟𝑎𝑛𝑑 – a random configuration to which it is planned to

expand the current vertex.

The next step is to check whether the new vertex

collides with environmental obstacles. Collision testing

involves assessing whether a new vertex 𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 or

𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙 is consistent with a safe location in the

environment. Let us say that a collision function takes a

robot's configuration 𝑞 as input and returns a boolean value:

true if the configuration is collision-free and false otherwise

[26].

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

299

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑞𝑛𝑒𝑤), (13)

Where:

𝑞𝑛𝑒𝑤 – a new vertex resulting from expanding the

current vertex towards a random configuration.

Let us check whether the new vertex collides with

obstacles in the environment; if there is no collision, add a

new vertex to the corresponding tree:

𝑇𝑠𝑡𝑎𝑟𝑡.𝐴𝑑𝑑𝑁𝑜𝑑𝑒(𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡), (14)

𝑇𝑔𝑜𝑎𝑙.𝐴𝑑𝑑𝑁𝑜𝑑𝑒(𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙), (15)

Where:

𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑔𝑜𝑎𝑙 – a tree representing a set of vertices

describing the space of robot configurations, starting from

the initial configuration 𝑞𝑠𝑡𝑎𝑟𝑡 and the final configuration

𝑞𝑔𝑜𝑎𝑙 , respectively;

𝐴𝑑𝑑𝑁𝑜𝑑𝑒 – function to add a new vertex 𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 and

𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙 to trees 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑔𝑜𝑎𝑙 respectively [27];

𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 and 𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙 – represents the robot

configuration resulting from expanding the current nearest

vertex in the direction of a random configuration

Next, it is necessary to check the connection, that is,

whether the new vertex is connected to the trees 𝑇𝑠𝑡𝑎𝑟𝑡 and

𝑇𝑔𝑜𝑎𝑙 for this, the following expression will be used:

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 =
𝐶ℎ𝑒𝑘𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛(𝑇𝑠𝑡𝑎𝑟𝑡 , 𝑇𝑔𝑜𝑎𝑙 , 𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 , 𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙), (16)

Where:

𝐶ℎ𝑒𝑘𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 – a function that checks for a

connection between trees 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑔𝑜𝑎𝑙 , returns a boolean

value: 𝑡𝑟𝑢𝑒 if a connection between trees is found, 𝑓𝑎𝑙𝑠𝑒

otherwise [28].

This function evaluates whether it can connect tree

𝑇𝑠𝑡𝑎𝑟𝑡 and tree 𝑇𝑔𝑜𝑎𝑙 through new vertices 𝑞𝑛𝑒𝑤_𝑠𝑡𝑎𝑟𝑡 and

𝑞𝑛𝑒𝑤_𝑔𝑜𝑎𝑙 . The result 𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 indicates whether the

connection was successful or not, which influences the

further progress of the pathfinding algorithm.

To form a route and extract the optimal path using the

A* algorithm on a combined graph, it is denoted: via 𝐺𝑠𝑡𝑎𝑟𝑡
and 𝐺𝑔𝑜𝑎𝑙 the combined graphs from trees 𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑔𝑜𝑎𝑙 ,

respectively, into a common graph 𝐺𝑡𝑜𝑡𝑎𝑙. The union occurs

by adding an edge between the nearest vertices in the trees

𝑇𝑠𝑡𝑎𝑟𝑡 and 𝑇𝑔𝑜𝑎𝑙 . The formation of a state graph 𝐺𝑡𝑜𝑡𝑎𝑙

represents a state space that includes vertices from both trees

and the edges between them. For each edge 𝐺𝑡𝑜𝑡𝑎𝑙 in the

graph, determine the cost of moving between the

corresponding vertices as the distance between the vertices in

the robot configuration space. Let us apply the A* algorithm

to the graph 𝐺𝑡𝑜𝑡𝑎𝑙 to find the optimal path from the initial

configuration 𝑞𝑠𝑡𝑎𝑟𝑡 to the final configuration 𝑞𝑔𝑜𝑎𝑙 . The A*

algorithm uses a heuristic function to find a path efficiently,

taking into account both the cost to the vertex (along the path

already traversed) and the heuristic estimate from the current

vertex to the target vertex. The formalized representation of

the A* algorithm and path extraction may be denoted as

follows:

𝑓(𝑛) = 𝑔(𝑛) − ℎ(𝑛), (17)

Where:

𝑔(𝑛) – the cost of the path from the initial vertex to the

vertex 𝑛,

ℎ(𝑛) – heuristic cost estimation from the vertex 𝑛 to the

goal vertex.

To extract the optimal path, imagine a sequence of

vertices 𝑃, in the next way:

𝑃 = {𝜐1, 𝜐2, . . . , 𝜐𝑘}, (18)

Where:

𝜐𝑖 – vertex in the sequence 𝑃 represents the state of the

robot configuration space at a certain stage of movement

along the optimal path;

𝑘 – the index indicates the optimal path length and the

number of stages that must be passed from the initial

configuration to the final one.

The path is retrieved in reverse order. This order ensures

the correct sequence of movements for the robot from the

starting point to the target:

𝑞𝑠𝑡𝑎𝑟𝑡 , 𝑞𝑖 , 𝑞𝑖−1, . . . , 𝑞𝑔𝑜𝑎𝑙 , (19)

Where:

𝑞𝑠𝑡𝑎𝑟𝑡 – starting point of the path;

𝑞𝑖 and 𝑞𝑖−1 – represents the robot configuration at a

point in time 𝑖;
𝑞𝑔𝑜𝑎𝑙 – the final peak of the path.

Thus, the combined graph, route generation and optimal

path extraction using the A* algorithm on this graph allows

us to find an effective route for the robot to move from the

initial configuration to the target.

5. Separate Fragments of Software

Implementation in Constructing the Route of

Movement of a Mobile Robot and a Description

of the Features of Their Application
To check the correctness of the reasoning, a program has

been developed to simulate the work of constructing the

route of movement of a mobile robot using the object-

oriented Python language in the PhCham 2022.2.3

development environment. PhCham's core choice offers

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

300

greater integration capabilities with Python and support for

object-oriented programming, which is important for

research in the robotics field. This framework will also

provide efficient processing of large data sets and

visualization, suitable for testing algorithms on large-scale

maps.

Fragments of software implementations are given below:

First, the basic settings are set: environment parameters,

start and end points and parameters of the BRRT and A*

algorithm. These values specify the parameters for finding a

path between the starting point (start_point) and the ending

point (goal_point) on a 5000x5000 pixel area map. The

num_iterations parameter determines the number of

iterations of the algorithm, which affects the time to find the

optimal path:

width = 100,

height = 100.

start_point = (10, 10) # starting point coordinates 𝑞𝑠𝑡𝑎𝑟𝑡,
goal_point = (5000, 5000) # final point coordinates

𝑞𝑔𝑜𝑎𝑙 ,

num_iterations = 500 # – this parameter determines how

often the algorithm will repeat the search process, expanding

the tree. More iterations can lead to a deeper exploration of

the state space and, ideally, more accurate determination of

the optimal route. However, too many iterations can lead to

excessive execution time of the algorithm,

step_size = 10.0 # – this parameter determines the step

length by which the algorithm expands the current tree at

each iteration. A larger step size may speed up the search

process but may also result in missing the most optimal paths

or even the inability to avoid obstacles. Let us describe the

generation of obstacles in the form of blocks of size 10x10.

This approach helps to understand how the robot can be

interfered with by obstacles of a certain size and shape,

which is one of the basic restrictions taken into account when

planning a path:

np.random.seed(42)

num_obstacles = 20

obstacles = [(np.random.randint(0, width - 10),

np.random.randint(0, height - 10)) for _ in

range(num_obstacles)]

Let us create a function to check collisions with

obstacles. This function checks if the point is inside any

obstacle on the map. It takes the coordinates of a point and

checks for their presence in the list of obstacles, represented

as pairs of coordinates of the upper left corner of each 10x10

block. If the point is inside an obstacle, the function returns

False, indicating a collision with the obstacle. Otherwise, if

the point is not inside any obstacles, the function returns

True, which means there are no collisions. This function

influences the research results by allowing the path planning

algorithm to take into account obstacles and avoid them

when finding the optimal path for the mobile robot:

def is_collision_free(point):

 for obstacle in obstacles:

 if obstacle[0] <= point[0] < obstacle[0] + 10 and

obstacle[1] <= point[1] < obstacle[1] + 10:

 return False

 return True

let us create a function to build a route using the BRRT

algorithm. This function builds a route for a mobile robot

using the BRRT (Bidirectional Rapidly exploring Random

Tree) algorithm. It starts at a starting point and iteratively

adds new points to the tree until it reaches a given number of

iterations. Each new point is selected randomly within the

map. Then, the closest point in the tree is found for each new

point, and a step size (step_size) is applied to it to determine

the new point. The collision check for obstacles

(is_collision_free) ensures that a new point is not added to

the tree if it is inside an obstacle. This process continues until

the endpoint is reached or until enough iterations have been

explored:

def build_rrt(start, goal, num_iterations, step_size):

 tree = [start]

 for _ in range(num_iterations):

 random_point = np.random.rand(2) *

np.array([width, height])

 nearest_point_index =

np.argmin([np.linalg.norm(np.array(random_point) -

np.array(point)) for point in tree])

 nearest_point = tree[nearest_point_index]

 new_point = nearest_point + step_size *

(random_point - nearest_point)

 new_point = tuple(new_point)

 if is_collision_free(new_point):

 tree.append(new_point)

 return tree

This algorithm influences the results of the study,

allowing you to find routes for a mobile robot, taking into

account obstacles and optimizing the path based on a random

selection of points and expanding the tree in the direction of

these points,

let us create a function to optimize the route using A*.

This function creates a graph of the BRRT route points and

adds edges between successive points with weights equal to

the distance between them. Then, to optimize the route, the

A* algorithm is used, which finds the shortest path from the

starting point to the ending point on the constructed graph:

def optimize_path(rrt_tree, start, goal):

 graph = nx.Graph()

 for point in rrt_tree:

 graph.add_node(point)

 for i in range(len(rrt_tree) - 1):

 graph.add_edge(rrt_tree[i], rrt_tree[i + 1],

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

301

weight=np.linalg.norm(np.array(rrt_tree[i]) -

np.array(rrt_tree[i + 1])))

This affects the results of the study, as it allows us to

improve the route found by BRRT by exploring alternative

paths and choosing the most optimal one, taking into account

the cost of moving between points. Using A* allows us to

find a shorter and more efficient path, which can be critical

for the operation of a mobile robot in real-time

let us add the starting and ending points to the graph.

Adding start and end points to the graph allows us to

consider these points when finding the optimal path. The

starting and ending points become part of the graph, and the

A* algorithm will consider them when finding a path from

the starting point to the ending point. This guarantees that the

found path will start at the starting point and end at the final

point, which is important for the problem of path planning

for a mobile robot:

 graph.add_node(start)

 graph.add_node(goal)

Adding start and end points also affects the exploration

results because they become part of the state space the

algorithm must explore. This helps ensure the completeness

of the state space exploration and find the optimal path,

taking into account the specific conditions of the starting and

ending points;

Check the presence of connections between the starting

and ending points and points of the route constructed by the

BRRT algorithm in the graph. If there is no connection, then

it is added, taking into account the distance between the

points. This influences the study results because it ensures

that the start and end points are associated with the route,

ensuring that the path is planned correctly. It also considers

the specific conditions of the starting and ending points. This

is important for the practical implementation of the possible

path of a mobile robot:

 if not nx.has_path(graph, start, rrt_tree[0]):

 graph.add_edge(start, rrt_tree[0],

weight=np.linalg.norm(np.array(start) -

np.array(rrt_tree[0])))

 if not nx.has_path(graph, rrt_tree[-1], goal):

 graph.add_edge(rrt_tree[-1], goal,

weight=np.linalg.norm(np.array(rrt_tree[-1]) -

np.array(goal)))

Let us create a function to evaluate solutions to problems

with degenerate cases. This function is intended to evaluate

the ability of the BRRT algorithm to cope with degenerate

cases, such as the presence of narrow passages or complex

obstacle structures that can make path construction difficult.

It takes as input the constructed BRRT tree and the optimal

path and then analyzes how successfully the algorithm coped

with such complexities:

def evaluate_handling_degenerate_cases(rrt_tree,

optimal_path):

This influences the study results, allowing the

algorithm's reliability and efficiency to be assessed in various

scenarios. The evaluation results can help improve the

algorithm for more successful applications in real-world

settings where degenerate cases may be common. An

example of an assessment is that the fewer turns in the

optimal path, the better. This assessment evaluates the

optimal path based on the number of turns, considering that

fewer turns indicate a simpler and more efficient route. This

approach allows us to evaluate the “smoothness” of the path

and its suitability for moving a mobile robot. This is

important because more difficult paths with many turns may

be less efficient and take longer to complete:

 optimal_turns = count_turns(optimal_path)

 return optimal_turns

Such an assessment can help optimize path planning by

favoring easier paths with fewer turns when choosing the

optimal route. This can be especially useful in situations

where the speed or energy efficiency of the robot's

movement is important,

Visualize the starting ending points and obstacles.

Visualization allows us to present the initial data and

conditions of the path planning problem for a mobile robot.

This is important for analyzing and understanding the path

search space, as well as for visual monitoring of the correct

operation of planning algorithms:

plt.scatter(*start_point, color='green', marker='o',

label='Start')

plt.scatter(*goal_point, color='red', marker='o',

label='Goal')

for obstacle in obstacles:

 plt.Rectangle((obstacle[0], obstacle[1]), 10, 10,

color='black', alpha=0.5)

Visualization helps to see the location of the start and

end points relative to obstacles, which can be important for

determining the complexity of a path planning problem. It

also helps to track path changes during optimization and

evaluate its effectiveness visually. In general, visualization

helps better understand the problem and results of the study,

making them more accessible and understandable Route

construction. This code builds a route using the BRRT

algorithm from the starting point to the ending point. Route

construction allows us to evaluate the algorithm's ability to

find paths in difficult conditions, considering obstacles. The

route results can be used to analyze the effectiveness of the

algorithm and its ability to avoid obstacles:

rrt_tree = build_rrt(start_point, goal_point,

num_iterations, step_size)

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

302

This affects the results of the study because the quality

of the constructed route directly reflects the performance and

reliability of the algorithm. The research could be more

successful if the most optimal and safe route could be

constructed. Also, the route results can be used to compare

with other path planning algorithms and evaluate their

effectiveness, route optimization.

This code optimizes the constructed route using the A*

algorithm. Optimization allows us to improve the BRRT

algorithm's original route, considering the cost of moving

between points and possible alternative paths. The result of

optimization is a shorter and more efficient path from the

starting point to the final point:

optimal_path, execution_time = optimize_path(rrt_tree,

start_point, goal_point)

This influences the study results because the optimized

path can be more efficient and safer for the mobile robot to

move. Also, optimization results can be used to compare

with the original route and evaluate the effectiveness of path

planning algorithms. In addition, optimization execution time

can be an important indicator of the algorithm's performance

under real-world operating conditions. Visualization of the

route. This code visualizes the constructed route of the

BRRT algorithm as lines connecting successive route points.

Visualizing a route allows us to visually assess its quality,

such as its straightness, avoidance of obstacles and overall

structure. This is important for analyzing the operation of the

algorithm and checking the correctness of the route

construction:

for i in range(len(rrt_tree) - 1):

 plt.plot([rrt_tree[i][0], rrt_tree[i + 1][0]],

[rrt_tree[i][1], rrt_tree[i + 1][1]], color='blue', alpha=0.5)

Route visualization can also help to identify potential

problems in the constructed route, such as unnecessary loops

or unwanted detours. This allows us to improve the path

planning algorithm and create more optimal routes for the

mobile robot. In addition, visualization can be used to

visually present research results and demonstrate the

algorithm's operation to other users or specialists,

Let us visualize the optimal route. This code visualizes

the optimal route after optimisation using the A* algorithm.

Visualization of the optimal route allows us to evaluate the

optimisation quality and compare it with the original route

built by the BRRT algorithm. This is important for assessing

the effectiveness of path planning algorithms and choosing

the most suitable one for specific tasks:

for i in range(len(optimal_path) - 1):

 plt.plot([optimal_path[i][0], optimal_path[i + 1][0]],

[optimal_path[i][1], optimal_path[i + 1][1]], color='green',

linewidth=2)

The optimal route visualisation also helps you visually

compare it with the original route and evaluate the

improvements achieved due to optimization. This can be

useful for analyzing the performance of an algorithm and

identifying its advantages and disadvantages. In addition,

visualization helps to visualize the study's results and draw

conclusions about its success.

Assessment of such criteria as the complexity of the

environment, reliability and stability of the RRT (Rapidly

exploring Random Tree) tree, and assessment of the

processing of degenerative cases. This code evaluates various

criteria that may influence the results of a path planning

study for a mobile robot. Environmental complexity

assessment allows us to evaluate how complex the conditions

the robot must navigate are. This is important for

understanding the requirements of a path planning algorithm

and its ability to avoid obstacles.

Assessing the reliability and stability of an RRT tree

allows us to evaluate how reliable and stable the constructed

tree is, which is the basis for path finding. This allows us to

evaluate the performance of the BRRT algorithm and its

ability to find optimal paths under various conditions.

Evaluating the handling of degenerative cases evaluates how

well a path planning algorithm can handle complex

scenarios, such as situations where the path passes through

narrow passages or contains redundant loops. This is

important for assessing the versatility and effectiveness of

the algorithm in various scenarios:

environment_complexity =

evaluate_environment_complexity(obstacles)

reliability_and_stability =

evaluate_reliability_and_stability(rrt_tree)

degenerate_cases_evaluation =

evaluate_handling_degenerate_cases(rrt_tree, optimal_path)

These assessments influence the study results because

they allow us to evaluate the quality of the path planning

algorithms in various conditions and draw conclusions about

their applicability and effectiveness.

6. Experimental Studies and Evaluation of the

Brrt Algorithm with A* Optimization for

Constructing a Route for a Mobile Robot
The research was carried out based on the hardware

component with the following parameters: CPU Intel(R)

Core(TM) i5-9300H CPU @ 2.40GHz, RAM DDR 16.0 GB,

GPU NVideo GeForce GTX1660TI and Intel(R) UHD

Graphics 630, HDD SSD NVMe Micron_2200_MTFD and

Toshiba MQ04ABF100. OS Windows 10 Pro 64-bit.

First of all, it was analyzed the influence of changing the

basic parameters (number of iterations (𝑁𝑖𝑡𝑒𝑟) and movement

step (𝑀𝑠𝑡𝑒𝑝)) of the BRRT and A* algorithm on performance

evaluation indicators such as execution time, length of the

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

303

resulting route, smoothness of the route (number of turns),

complexity of the environment, assessing overall reliability

and stability and assessing the resolution of problems with

degenerate cases. Execution time – allows us to evaluate the

speed of algorithms in real time.

A faster algorithm may be preferable in tasks that

require rapid response to environmental changes. The length

of the resulting route allows us to evaluate the optimality of

the found path. A short path is usually preferred because it

requires less time and resources. The smoothness of the route

(number of turns) evaluates the convenience and safety of the

route for a mobile robot to travel through. A less tortuous

route may be preferable for mobile robots, especially at high

speeds.

Environmental complexity – assesses the influence of

environmental conditions on the passability of the route

(multiple and moving obstacles, narrow passages and

complex routes, the presence of “traps” and dangerous

zones). This is important for algorithms that must avoid

obstacles efficiently. Assessing overall reliability and

stability allows one to evaluate the robustness of algorithms

to various conditions (changes in the environment, changes

in the types and structure of obstacles) and ensure their

reliable operation in various scenarios.

The Degenerate Case Resolution Assessment assesses

the ability of algorithms to efficiently handle complex

scenarios (with many obstacles, degenerate cases in the path

graph, and an unstable positioning signal) and ensure correct

operation even under non-standard conditions. Provided that

the coordinates of the starting and ending points are the same

in all experiments, the results are presented in graphs in

Figure 1, and performance assessment indicators are given in

Table 1.

(a)

(b)

(c)

(d)

Fig. 1 Graphs for constructing optimized routes for different basic

parameters (number of iterations and movement steps): a) 𝑵𝒊𝒕𝒆𝒓 = 100,

𝑴𝒔𝒕𝒆𝒑=30; b) 𝑵𝒊𝒕𝒆𝒓 = 100, 𝑴𝒔𝒕𝒆𝒑=60; c) 𝑵𝒊𝒕𝒆𝒓 = 10, 𝑴𝒔𝒕𝒆𝒑=30; d) 𝑵𝒊𝒕𝒆𝒓 =

50, 𝑴𝒔𝒕𝒆𝒑= 60

-500

500

1500

2500

3500

4500

5500

-500 500 1500 2500 3500 4500

w
id

th
 (

co
n

v
en

to
in

a
l

u
n

it
s)

length (conventoinal units)

Optimized BRRT Path Planning+A*

Star

Goal

Start

-1000

0

1000

2000

3000

4000

5000

6000

-1000 0 1000 2000 3000 4000 5000 6000

w
id

th
 (

co
n

v
en

to
in

a
l

u
n

it
s)

length (conventoinal units)

Optimized BRRT Path Planning+A*

Goal

Start

0

1000

2000

3000

4000

5000

6000

-1000 0 1000 2000 3000 4000 5000 6000

w
id

th
 (

co
n

v
en

to
in

a
l

u
n

it
s)

length (conventoinal units)

Optimized BRRT Path Planning+A*

Goal

Start

-1000

0

1000

2000

3000

4000

5000

6000

-2000 0 2000 4000 6000

w
id

th
 (

co
n

v
en

to
in

a
l

u
n

it
s)

length (conventoinal units)

Optimized BRRT Path Planning+A*

Goal

Start

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

304

Table 1. Indicators for assessing the effectiveness of optimized routes for moving a mobile robot for different basic parameters 𝑵𝒊𝒕𝒆𝒓 and 𝑴𝒔𝒕𝒆𝒑

Performance Evaluation Indicators

Basic parameters (number of iterations and movement step)

𝑵𝒊𝒕𝒆𝒓=100

𝑴𝒔𝒕𝒆𝒑=30

𝑵𝒊𝒕𝒆𝒓=100

𝑴𝒔𝒕𝒆𝒑=60

𝑵𝒊𝒕𝒆𝒓=10

𝑴𝒔𝒕𝒆𝒑=30

𝑵𝒊𝒕𝒆𝒓= 50

𝑴𝒔𝒕𝒆𝒑=60

Execution time (s) 0.000999 0.000997 0.000011 0.000997

Received route length

(conventional units)
156151.2 312407.5 24077.0 152154.9

Smoothness of the route

(number of turns)*
100 100 10 50

Environmental complexity 20 20 20 20

Overall reliability and stability* 101 101 11 51

Assessing the resolution of problems with degenerate cases* 100 100 10 50
* – The lower the value obtained, the higher the score for the result obtained

Based on the obtained results of modeling optimized

routes for moving mobile robots with different basic

parameters (number of iterations and movement step) for the

developed planning method, the following conclusions can

be drawn (Figure 1 and Table 1):

• The execution time generally remains relatively low for

all parameter options (about 0.001 seconds), which

indicates the speed of the proposed route planning

method;

• Increasing the number of iterations and the moving step

leads to a slight increase in execution time, which is

logical since a larger number of iterations and/or a larger

step require more computing resources;

• It is noticeable that an increase in the number of

iterations and the movement step leads to an increase in

the length of the route. This may be because more

iterations and/or a larger stride may allow the algorithm

to explore more space and thus find longer paths;

• The number of rotations generally increases with the

number of iterations and the movement step. This is

because more iterations and/or larger strides may result

in more complex and "suboptimal" paths that involve

more turns;

• The complexity of the environment is measured by the

number of obstacles (num_obstacles = 20). In this study,

it is constant for various experimental options when

changing parameters: the number of iterations (𝑁𝑖𝑡𝑒𝑟)

and the movement step (𝑀𝑠𝑡𝑒𝑝);

• Overall reliability and stability generally remain high for

all parameter options. This may indicate that the

algorithm does a good job of constructing stable routes;

• The score for resolving problems with degenerate cases

also remains high for all parameter options. This may

indicate that the algorithm can successfully cope with

various scenarios and inherent features.

7. Comparative Analysis
Let us analyze and compare the resulting indicators for

assessing the effectiveness of optimized routes for different

basic parameters 𝑁𝑖𝑡𝑒𝑟 and 𝑀𝑠𝑡𝑒𝑝 in comparison with other

algorithms; the comparison results are shown in Table 2.

Table 2. Comparison of individual performance indicators of optimized

routes with other algorithms

Algorithm Planning time [s] Path length [m]

RRT [29] 17.3 22.6

CW-RRT [29] 18.6 21.4

BRRT [29] 8.7 21.5

TG-BRRT [29] 10.7 20.2

CW-TG-BRRT [29] 4.9 21.0

H-BRRT [29] 6.3 19.0

H-BRRT (developed)* 0.000011 24077.0
* – The map size is 5000x5000 conventional units (pixels). Compared to

analogs RRT, CW-RRT, TG-BRRT, CW-TG-BRRT, and H-BRRT the map

size is 10x10 meters

When comparing the developed H-BRRT with

analogues (Table 2), the following conclusions can be drawn:

• Planning time in H-BRRT (the developed approach)

shows a significant superiority in planning time overall

analogues. Its planning time is only 0.000011 seconds,

while its analogs are much higher, for example, CW-

TG-BRRT - 4.9 seconds. This indicates the high

efficiency and speed of the developed algorithm;

• The path length of the developed H-BRRT is 24077

meters, which seems abnormally large compared to

analogues; it should be taken into account that the

developed algorithm works with a map of 5000x5000

pixels, while analogues work with maps of 10x10

meters. Thus, the path length in pixels can be

comparable to the path length of analogs in meters, and

this value should not be considered as a disadvantage but

rather as a feature of working with different map scales.

Thus, the developed H-BRRT demonstrates significant

advantages in planning time over its analogues, which makes

it a promising choice for route planning problems on large,

high-resolution maps. At the same time, the H-BRRT

algorithm ensures a balanced result with equal accuracy and

efficiency compared to popular algorithms, such as CC-

BRRT, S-BRRT* [29]. The research showed that, while

equal to the classic A* algorithm, new algorithms can be

more effective on large maps due to search optimization and

node minimization. The prote CC-BRRT algorithm may be

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

305

more effective in smaller and less complex scenarios, and the

adaptive A* will optimise 3D environments. Thus, the

novelty of the robot lies in the combined BRRT and A*

algorithms for effective planning of the route of a mobile

robot on large maps, which significantly expands the

capabilities of these algorithms in folding environments. The

proposed combination of algorithms demonstrated stable

results in minds, while other methods reveal improved

processing speed and adaptability to various scenarios.

8. Limitations, Future Work and Practical

Applications
The study examined the capabilities of the BRRT and

A*(H-BRRT) algorithms on large terrain maps. One of the

key limitations is the high need for computing resources to

work with large map sizes (5000x5000 pixels) and the

complexity of the route structure, which affects the

performance and speed of calculations. Therefore, an

important goal of future research is to reduce the resource

intensity of the algorithms without losing the accuracy of

route construction. A promising direction is also the

adaptation of these algorithms to work in conditions with a

variable or dynamic environment. However, the study results

have significant potential for practical use in various

industries. The BRRT and A*(H-BRRT) algorithms can be

applied to planning routes for autonomous robots at

industrial enterprises in logistics and security. Such robots

can effectively use routes to optimize logistics processes or

survey the territory. The research provides a solid foundation

for developing autonomous systems capable of adapting to

complex and changing working environments, which is

especially relevant for large-scale production and work in

spacious or difficult terrain.

9. Conclusion
The work considers the symbiosis of the BRRT and A*

algorithms for constructing the movement path for a mobile

robot. This approach is implemented and tested in Python

using the PhCham development environment. Experimental

data showed that changing the basic parameters (number of

iterations and moving steps) significantly impacts the

efficiency of route construction. The execution time of the

algorithms remains quite low for all parameter options,

which indicates the high speed of the proposed route

planning method. However, increasing the number of

iterations and the movement step leads to a slight increase in

execution time due to greater consumption of computing

resources. Increasing the number of iterations and the

movement step also leads to an increase in the length of the

route and the number of turns. This is because algorithms

have more space to explore and can find longer more

complex paths. Environmental complexity, measured by the

number of obstacles, remains relatively constant across

different parameter options. The overall reliability and

stability of routes also remain high, and the symbiosis of

algorithms successfully copes with degenerate cases and

various scenarios.

Thus, the study results allow us to conclude that the

BRRT and A* algorithms are highly effective and applicable

for constructing optimal routes for a mobile robot in various

environmental conditions. However, the research revealed

new issues that could become the basis for future work and

potential applications. One such issue is the optimization of

the BRRT and A* algorithms for work in a dynamic

environment where obstacles can change their position. In

addition, the task of adapting the proposed approach to work

on 3D maps remains open, which will require additional

research on computational efficiency. The solution of these

issues forms the basis of subsequent research. This will allow

the proposed algorithms to be used in more complex

conditions, for example, for autonomous work or performing

various tasks in multi-level environments.

References
[1] Pietro Bilancia et al., “An Overview of Industrial Robots Control and Programming Approaches,” Applied Sciences, vol. 13, no. 4, pp.

1-14, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[2] Achim Buerkle et al., “Towards Industrial Robots as a Service (IRaaS): Flexibility, Usability, Safety and Business Models,” Robotics

and Computer-Integrated Manufacturing, vol. 81, pp. 1-20, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Jianjun Ni et al., “An Improved Ssd-Like Deep Network-Based Object Detection Method for Indoor Scenes,” IEEE Transactions on

Instrumentation and Measurement, vol. 72, pp. 1-15, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] Rodrigo Bernardo, João M.C. Sousa, and Paulo J.S. Gonçalves, “A Novel Framework to Improve Motion Planning of Robotic Systems

Through Semantic Knowledge-Based Reasoning,” Computers & Industrial Engineering, vol. 182, pp. 1-16, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[5] Dingyun Duan et al., “Industrial Robots and Firm Productivity,” Structural Change and Economic Dynamics, vol. 67, pp. 388-406,

2023. [CrossRef] [Google Scholar] [Publisher Link]

[6] V. Troianskyi et al., “First Reported Observation of Asteroids 2017 AB8, 2017 QX33, and 2017 RV12,” Contributions of the

Astronomical Observatory Skalnaté Pleso, vol. 53, no. 2, pp. 5-15, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[7] Federico Adolfi, Jeffrey S. Bowers, and David Poeppel, “Successes and Critical Failures of Neural Networks in Capturing Human-Like

Speech Recognition,” Neural Networks, vol. 162, pp. 199-211, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[8] Xiangrui Xing et al., “Robot Path Planner Based on Deep Reinforcement Learning and the Seeker Optimization Algorithm,”

Mechatronics, vol. 88, 2022. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.3390/app13042582
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=2005&sciodt=0%2C5&cites=6481744078071061492&scipsc=&q=An+overview+of+industrial+robots+control+and+programming+approaches&btnG=
https://www.mdpi.com/2076-3417/13/4/2582
https://doi.org/10.1016/j.rcim.2022.102484
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=2005&sciodt=0%2C5&cites=6481744078071061492&scipsc=&q=Towards+industrial+robots+as+a+service+%28IRaaS%29%3A+Flexibility%2C+usability%2C+safety+and+business+models&btnG=
https://www.sciencedirect.com/science/article/pii/S0736584522001661
https://ieeexplore.ieee.org/document/10044143
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&as_ylo=2023&q=An+improved+ssd-like+deep+network-based+object+detection+method+for+indoor+scenes&btnG=
https://ieeexplore.ieee.org/abstract/document/10044143
https://www.sciencedirect.com/science/article/pii/S0360835223003698?via%3Dihub
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&as_ylo=2023&q=+A+novel+framework+to+improve+motion+planning+of+robotic+systems+through+semantic+knowledge-based+reasoning&btnG=
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&as_ylo=2023&q=+A+novel+framework+to+improve+motion+planning+of+robotic+systems+through+semantic+knowledge-based+reasoning&btnG=
https://www.sciencedirect.com/science/article/pii/S0360835223003698?via%3Dihub
https://doi.org/10.1016/j.strueco.2023.08.002
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=2005&sciodt=0%2C5&cites=6481744078071061492&scipsc=&q=Industrial+robots+and+firm+productivity&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0954349X23001042
https://doi.org/10.31577/caosp.2023.53.2.5
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=First+reported+observation+of+asteroids+2017+AB8%2C+2017+QX33%2C+and+2017+RV12&btnG=
https://www.astro.sk/caosp/Eedition/Abstracts/2023/Vol_53/No_2/pp5-15_abstract.html
https://doi.org/10.1016/j.neunet.2023.02.032
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&as_ylo=2023&q=Successes+and+critical+failures+of+neural+networks+in+capturing+human-like+speech+recognition&btnG=
https://www.sciencedirect.com/science/article/pii/S0893608023001016
https://doi.org/10.1016/j.mechatronics.2022.102918
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=Robot+path+planner+based+on+deep+reinforcement+learning+and+the+seeker+optimization+algorithm&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957415822001362

Amer Abu-Jassar et al. / IJETT, 72(11), 294-306, 2024

306

[9] Xinning Li et al., “Research on an Optimal Path Planning Method Based on A* Algorithm for Multi-View Recognition,” Algorithms,

vol. 15, no. 5, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[10] N. Hung, and et al., “A Review of Path Following Control Strategies for Autonomous Robotic Vehicles: Theory, Simulations, and

Experiments,” Journal of Field Robotics, vol. 40, no. 3, pp. 747-779, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[11] Shiwei Lin et al., “An Intelligence-Based Hybrid PSO-SA for Mobile Robot Path Planning in Warehouse,” Journal of Computational

Science, vol. 67, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[12] Martina Benko Loknar, Gregor Klančar, and Sašo Blažič, “Minimum-Time Trajectory Generation for Wheeled Mobile Systems Using

Bézier Curves with Constraints on Velocity, Acceleration and Jerk,” Sensors, vol. 23, no. 4, pp. 1-16, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[13] Jaafar Ahmed Abdulsaheb, and Dheyaa Jasim Kadhim, “Classical and Heuristic Approaches for Mobile Robot Path Planning: A

Survey,” Robotics, vol. 12, no. 4, pp. 1-35, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[14] Wei Li et al., “CC-BRRT: A Path Planning Algorithm Based on Central Circle Sampling Bidirectional RRT,” Web Information Systems

and Applications: 18th International Conference, Kaifeng, China, pp. 430-441, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] Bing-Gang Jhong, and Mei-Yung Chen, “An Enhanced Navigation Algorithm with An Adaptive Controller for Wheeled Mobile Robot

Based on Bidirectional RRT,” Actuators, vol. 11, no. 10, pp. 1-18, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[16] Mehmet Korkmaz, and Akif Durdu, “Comparison of Optimal Path Planning Algorithms,” 2018 14th International Conference on

Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering, Lviv-Slavske, Ukraine, pp. 255-258, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[17] Yubo Zhang, and Daoxiong Gong, “S-BRRT*: A Spline-based Bidirectional RRT with Strategies under Nonholonomic Constraint,”

2021 33rd Chinese Control and Decision Conference, Kunming, China, pp. 1753-1758, 2021. [CrossRef] [Google Scholar] [Publisher

Link]

[18] Xin Shu et al., “Locally Guided Multiple Bi-RRT∗ for Fast Path Planning in Narrow Passages,” 2019 IEEE International Conference on

Robotics and Biomimetics, Dali, China, pp. 2085-2091, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[19] Pengkai Wang et al., “ABA*-Adaptive Bidirectional A* Algorithm for Aerial Robot Path Planning,” IEEE Access, vol. 11, pp. 103521-

103529, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[20] Chunlei Wang, Xiao Yang, and He Li, “Improved Q-learning Applied to Dynamic Obstacle Avoidance and Path Planning,” IEEE

Access, vol. 10, pp. 92879-92888, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[21] Karthik Karur et al., “A Survey of Path Planning Algorithms for Mobile Robots,” Vehicles, vol. 3, no. 3, pp. 448-468, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[22] Liwei Yang et al., “Path Planning Technique for Mobile Robots: A Review,” Machines, vol. 11, no. 10, pp. 1-46, 2023. [CrossRef]

[Google Scholar] [Publisher Link]

[23] Zeynep Gari, Durmuş Karayel, and Murat Erhan Çimen, “A Study on Path Planning Optimization of Mobile Robots Based on Hybrid

Algorithm,” Concurrency and Computation: Practice and Experience, vol. 34, no. 5, 2022. [CrossRef] [Google Scholar] [Publisher

Link]

[24] Shang Erke et al., “An Improved A-Star Based Path Planning Algorithm for Autonomous Land Vehicles,” International Journal of

Advanced Robotic Systems, vol. 17, no. 5, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[25] Joshua Buckner et al., “pyCHARMM: Embedding CHARMM Functionality in a Python Framework,” Journal of Chemical Theory and

Computation, vol. 19, no. 12, pp. 3752-3762, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[26] Alex Martelli et al., Python in a Nutshell, O'Reilly Media, pp. 1-738, 2023. [Google Scholar] [Publisher Link]

[27] Mustafa Tosun et al., “DAWN-Sim: A Distributed Algorithm Simulator for Wireless Ad-Hoc Networks in Python,” 2023 International

Conference on Computing, Networking and Communications (ICNC), Honolulu, HI, USA, pp. 635-639, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[28] Rainer Otterbach et al., “System Verification Throughout the Development Cycle,” ATZ Worldwide, vol. 109, pp. 5-8, 2007. [CrossRef]

[Google Scholar] [Publisher Link]

[29] Junki Wang et al., “Hybrid Bidirectional Rapidly Exploring Random Tree Path Planning Algorithm with Reinforcement Learning,”

Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 25, no. 1, pp. 121-129, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

https://doi.org/10.3390/a15050171
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Research+on+an+Optimal+Path+Planning+Method+Based+on+A*+Algorithm+for+Multi-View+Recognition&btnG=
https://www.mdpi.com/1999-4893/15/5/171
https://doi.org/10.1002/rob.22142
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=A+review+of+path+following+control+strategies+for+autonomous+robotic+vehicles%3A+Theory%2C+simulations%2C+and+experiments&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.22142
https://doi.org/10.1016/j.jocs.2022.101938
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Intelligence-Based+Hybrid+PSO-SA+for+Mobile+Robot+Path+Planning+in+Warehouse&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1877750322002976
https://doi.org/10.3390/s23041982
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=Minimum-Time+Trajectory+Generation+for+Wheeled+Mobile+Systems+Using+B%C3%A9zier+Curves+with+Constraints+on+Velocity%2C+Acceleration+and+Jerk&btnG=
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=Minimum-Time+Trajectory+Generation+for+Wheeled+Mobile+Systems+Using+B%C3%A9zier+Curves+with+Constraints+on+Velocity%2C+Acceleration+and+Jerk&btnG=
https://www.mdpi.com/1424-8220/23/4/1982
https://doi.org/10.3390/robotics12040093
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=Classical+and+heuristic+approaches+for+mobile+robot+path+planning%3A+A+survey&btnG=
https://www.mdpi.com/2218-6581/12/4/93
https://doi.org/10.1007/978-3-030-87571-8_37
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=2005&sciodt=0%2C5&cites=6481744078071061492&scipsc=&q=CC-BRRT%3A+A+Path+Planning+Algorithm+Based+on+Central+Circle+Sampling+Bidirectional+RRT&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-87571-8_37
https://doi.org/10.3390/act11100303
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=An+Enhanced+Navigation+Algorithm+with+an+Adaptive+Controller+for+Wheeled+Mobile+Robot+Based+on+Bidirectional+RRT&btnG=
https://www.mdpi.com/2076-0825/11/10/303
https://doi.org/10.1109/TCSET.2018.8336197
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=Comparison+of+optimal+path+planning+algorithms.In+14th+International+Conference+on+Advanced+Trends+in+Radioelecrtronics&btnG=
https://ieeexplore.ieee.org/abstract/document/8336197
https://doi.org/10.1109/CCDC52312.2021.9602738
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&scioq=Comparison+of+optimal+path+planning+algorithms.In+14th+International+Conference+on+Advanced+Trends+in+Radioelecrtronics&q=S-BRRT*%3A+A+Spline-based+Bidirectional+RRT+with+Strategies+under+Nonholonomic+Constraint&btnG=
https://ieeexplore.ieee.org/abstract/document/9602738
https://ieeexplore.ieee.org/abstract/document/9602738
https://doi.org/10.1109/ROBIO49542.2019.8961757
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&scioq=Comparison+of+optimal+path+planning+algorithms.In+14th+International+Conference+on+Advanced+Trends+in+Radioelecrtronics&q=Locally+Guided+Multiple+Bi-RRT%E2%88%97+for+Fast+Path+Planning+in+Narrow+Passages&btnG=
https://ieeexplore.ieee.org/abstract/document/8961757
https://doi.org/10.1109/ACCESS.2023.3317918
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&scioq=Comparison+of+optimal+path+planning+algorithms.In+14th+International+Conference+on+Advanced+Trends+in+Radioelecrtronics&q=ABA*%E2%80%93Adaptive+Bidirectional+A*+Algorithm+for+Aerial+Robot+Path+Planning&btnG=
https://ieeexplore.ieee.org/abstract/document/10258288
https://doi.org/10.1109/ACCESS.2022.3203072
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&scioq=Comparison+of+optimal+path+planning+algorithms.In+14th+International+Conference+on+Advanced+Trends+in+Radioelecrtronics&q=Improved+Q-Learning+Applied+to+Dynamic+Obstacle+Avoidance+and+Path+Planning&btnG=
https://ieeexplore.ieee.org/abstract/document/9870811
https://doi.org/10.3390/vehicles3030027
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=Karur%2C+K.%2C++A+survey+of+path+planning+algorithms+for+mobile+robots.+&btnG=
https://www.mdpi.com/2624-8921/3/3/27
https://doi.org/10.3390/machines11100980
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=L+Yang%2C+Path+Planning+Technique+for+Mobile+Robots%3A+A+Review&btnG=
https://www.mdpi.com/2075-1702/11/10/980
https://doi.org/10.1002/cpe.6721
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=A+study+on+path+planning+optimization+of+mobile+robots+based+on+hybrid+algorithm.+Concur&btnG=
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6721
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6721
https://doi.org/10.1177/1729881420962263
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=An+improved+A-Star+based+path+planning+algorithm+for+autonomous+land+vehicles&btnG=
https://journals.sagepub.com/doi/full/10.1177/1729881420962263
https://doi.org/10.1021/acs.jctc.3c00364
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=CHARMM%3A+Embedding+CHARMM+Functionality+in+a+Python+Framework.+Journal+of+Chemical+Theory+and+Computation.&btnG=
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.3c00364
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Alex+Martelli%2C+Python+in+a+Nutshell&btnG=
https://www.google.co.in/books/edition/Python_in_a_Nutshell/22SmEAAAQBAJ?hl=en&gbpv=0
https://doi.org/10.1109/ICNC57223.2023.10074218
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=DAWN-Sim%3A+A+Distributed+Algorithm+Simulator+for+Wireless+Ad-hoc+Networks+in+Python&btnG=
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&q=DAWN-Sim%3A+A+Distributed+Algorithm+Simulator+for+Wireless+Ad-hoc+Networks+in+Python&btnG=
https://ieeexplore.ieee.org/abstract/document/10074218
https://doi.org/10.1007/BF03224922
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&scioq=Development+of+a+digital+assistant+to+facilitate+the+use+of+model+checking+in+product+engineering+processes&q=System+verification+throughout+the+development+cycle&btnG=
https://link.springer.com/article/10.1007/BF03224922
https://doi.org/10.20965/jaciii.2021.p0121
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&scioq=Development+of+a+digital+assistant+to+facilitate+the+use+of+model+checking+in+product+engineering+processes&q=Junkui+Wang%2C+Kaoru+Hirota%2C+Xiangdong+Wu%2C+Yaping+Dai%2C+and+Zhiyang+Jia.+%282021%29.+Journal+of+Advanced+Computational+Intelligence+and+Intelligent+Informatics&btnG=
https://scholar.google.com.ua/scholar?hl=ru&as_sdt=0%2C5&scioq=Development+of+a+digital+assistant+to+facilitate+the+use+of+model+checking+in+product+engineering+processes&q=Junkui+Wang%2C+Kaoru+Hirota%2C+Xiangdong+Wu%2C+Yaping+Dai%2C+and+Zhiyang+Jia.+%282021%29.+Journal+of+Advanced+Computational+Intelligence+and+Intelligent+Informatics&btnG=
https://www.jstage.jst.go.jp/article/jaciii/25/1/25_121/_article/-char/ja/

