
International Journal of Engineering Trends and Technology                         Volume 72 Issue 11, 307-321, November 2024 

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I11P130                                        © 2024 Seventh Sense Research Group®   
   

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Hybdeefu-Feaseg: A Comprehensive Framework For 

Lung Cancer Detection Combining Deep Learning, 

Fuzzy Logic, And Optimized Feature Selection 

N. Raghapriya1, Y. Kalpana2 

1,2 Department of Computer Science, Vels Institute of Science Technology and Advanced Studies, Chennai, India. 

1Corresponding Author : raghapriyakamal@gmail.com 

Received: 25 May 2024         Revised: 07 October 2024    Accepted: 17 October 2024  Published: 29  November 2024

Abstract - Lung carcinoma is one of the greatest threatening and life-taking diseases in the globe, with the highest mortality 

rate. Early diagnosis and treatment can save lives. Among all of the diseases being investigated, lung cancer requires more 

focus because it impacts both men and women and raises the rate of death. Although MRI is the greatest scanning technology 

in the healthcare industry, it is difficult for doctors to comprehend and identify cancer from MRI (Magnetic Resonance 

Imaging) scans. In order to precisely detect malignant cells, computer-aided diagnostics might be beneficial for clinicians. 

Several studies and applications of computer-aided methods employ image processing and machine learning. Early and 

accurate diagnosis of malignant tumors can significantly enhance both the effectiveness of treatment and the persistence rate 

of carcinoma patients. Nevertheless, the conventional strategies' limited sensitivity, high cost, and disruptive characteristics 

constrain the applicability. Standard lung tumor forecasting techniques could not sustain precision because of low picture 

quality, interfering with the segmentation process. This research proposes a Hybrid Deep Learning and Fuzzy Logic 

Integration (HYBDEEFU-FEASEG) approach for Lung Cancer Detection. The projected model will include five major phases: 

The gathered raw MRI image was pre-processed via Gaussian filtering. The segNet method was proposed for segmentation. 

Haralick Texture Features (contrast, correlation, energy, and entropy), Local Phase Feature (LPF), and Shape feature (Hu 

moments, Zernike moments) techniques were used to extract texture features from segmented images. Artificial Gorilla Troops 

Optimization (AGTO) and Seagull Optimization Algorithm (SOA) approaches were developed for feature selection. The final 

detected outcomes (presence/absence of lung cancer) will be acquired from fuzzy logic. This method was used to classify and 

detect lung cancer more accurately. Therefore, our research targets to increase the efficiency of the existing model.  

Keywords - Lung cancer, Hybrid deep learning and Fuzzy logic integration, SegNet, Artificial gorilla troops optimization, 

Seagull optimization algorithm. 

1. Introduction  
Lung cancer will cause 1.8 million deaths worldwide in 

2020, according to the World Health Organization (WHO). 

The lack of early detection tools and the late diagnosis of 

lung cancer is mostly to blame for the disease's high 

mortality rate [1]. This is mainly caused by increased 

smoking behaviours, a diagnosis of COPD, and Personal 

encounters with cancer. Because doctors undergo a lengthy 

theoretical procedure and cannot be instantly enhanced, the 

detecting method must initially be adjusted to increase the 

overall mortality rate in underdeveloped regions and nations 

[2]. The lung is a common target for radiation exposure due 

to its enormous surface area. These diseases are one with a 

greater occurrence of solid tumours, according to the data 

from the cohort of people who survived the atomic bomb, 

and it is expected to be the foremost source of death for both 

men and woman kind [3]. Globally, lung cancer is ranked 

seventh for women and second for men. These studies 

provide general information about the systematic approach to 

locating Lung Cancer, which has four fundamental phases. 

Following colorectal and breast cancers, this illness is the 

third maximum common malignancy among women [4]. 

Radiologists can create preoperative planning and prognosis 

evaluation using lung cancer Computer-Aided Diagnostic 

(CAD) systems' objective and precise diagnosis outcomes. 

Two elements make up a typical CAD system: (i) CADe 

subnetwork for identifying suspicious nodules and (ii) CADx 

subnetwork for assessing malignancy at the nodule and 

patient levels [5]. It can be treated only if lung cancer is 

found in its earliest stages. Some technologies, such as 

Computed Tomography, isotope, X-ray, and MRI, can be 

used to diagnose it [6]. Diagnostic imaging demonstrates that 

computed tomography is a thriving analysis method due to 

the sequential examination of the lung's soft tissues and 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


N. Raghapriya & Y. Kalpana / IJETT, 72(11), 307-321, 2024 

 

308 

organs and the delivery of useful information about the 

damaged section. This is in comparison to additional imaging 

techniques like MRI and PET [7]. Both patients and medical 

personnel can benefit from early cancer discovery and the 

ability to forecast the depth of cancer survivorship to more 

effectively control expenditures, the severity of therapy, and 

the amount of time spent receiving medical care. Better 

chances for positive outcomes are realized when such 

sickness is detected early. Due to these factors, researchers 

studying the medical field, artificial intelligence, and medical 

experts are all very interested in the issue of cancer 

survivability [8]. The topic of lung nodule identification has 

significant clinical significance and scientific value. Lung 

nodules can be categorized into three sections according to 

characteristics: ground glass thickness nodules, compact 

nodules, and half-solid nodules [9]. Patients with 

bronchogenic carcinoma scheduled for VATS face difficult 

circumstances prior to surgery (such as medical damage, 

anaesthesia exposure, and the possibility of death), which 

may make them more nervous. Therefore, it is crucial to 

investigate what causes preoperative anxiety in lung 

carcinoma patients receiving VATS to find mitigation 

techniques [10]. The practice of using medication or dietary 

changes to leisurely or stop the development of precancerous 

into severe lung carcinoma is known as chemoprevention 

[11]. 

Deep learning techniques can be divided into four 

groups: autoencoders, Restricted Boltzmann Machines 

(RBMs), CNN-based techniques, and neuro-fuzzy techniques 

[12]. Fuzzy set theory quantifies the qualitative aspects and is 

connected to a collection of items with imperceptible borders 

and reasoning using natural language. We use ideas called 

membership degrees to characterize object memberships in 

any of these groupings [13]. Fuzzy logic and fuzzy set theory 

are the related and highly applicable basis for knowledge-

based structures in prescription drugs for responsibilities like 

the detection and treatment of illness. Fuzzy logic is used in 

some areas, including the diagnosis of various kinds of 

carcinoma, including lung, skin, breast, prostate, and other 

malignancies [14]. Deep learning has become a viable 

method for automatically identifying and categorizing lung 

nodules in human data. DL algorithms have been used in 

numerous investigations based on human CT data. These 

have demonstrated that, when used on annotated archives of 

clinical scans, DL techniques can detect lung nodules with a 

higher degree of precision, sensitivity, and specificity [15]. 

The document follows a well-organized structure. Section 1 

introduces the research topic, Section 2 provides an extensive 

literature review of prior methods, and Section 3 summarises 

the proposed methodology. Section 4 discusses the research 

results, and Section 5 concludes the study. 

2. Literature Review 
In 2022, Talukder et al. [16] recommended a hybrid 

ensemble feature extraction standard to categorize colon and 

lung carcinoma excellently. For datasets of cancer images, it 

combines deep feature extraction, ensemble learning, and 

high-yielding filtering. The study's findings indicate that a 

hybrid model has accuracy rates for lung, colon, and 

bronchial along with colon lung carcinoma detection of 

99.05%, 100%, and 99.30%, respectively. Therefore, these 

models might be used in clinics to assist doctors in making 

cancer diagnoses. In 2022, Qazi et al. [17] concluded that the 

danger of developing lung carcinoma will be ascertained, and 

patients will be given instructions to eliminate the danger. 

After obtaining the hazard value for bronchogenic 

carcinoma, the state of the patient's vulnerability and struggle 

with anxiety is utilized to determine the impacts of stress on 

the disease. The neuro-fuzzy logic model has been offered as 

a solution to the issue. This study allows these folks to take 

precautions to lower their cancer risk. This study will also 

look at using neuro-fuzzy logic models in artificial 

intelligence and health-related fields. In 2023, Ding et al. 

[18] proposed a Convolutional Neural Network and 

transformer-based fuzzy fusion technique that uses the 

features extracted through a Convolutional Neural Network 

and Transformer together via an entirely novel fuzzy fusion 

segment. The improved segmentation results from the new 

model's use of deconvolution to produce the final 

segmentation result. The investigational outcomes on the 

Chest X-ray and Kvasir-SEG datasets demonstrate that 

FTransConvolutional Neural networks outperform the most 

advanced deep segmentation models in segmentation tasks. 

In 2023, Valerian et al. [19] explored a Machine 

Learning mechanism of the type automatic encoder for 

irregularity identification created via PyTorch was trained 

using 34 optimal IMRT treatment plans and 10 suboptimal 

Intensity Modulated Radiation Therapy treatment plans 

collected from Siloam MRCCC Semanggi Hospital. This 

study was divided into four stages: planning, development, 

validation, and evaluation. The findings suggest that the 

majority of radiomic features are noise that must be 

eliminated for the model to identify treatment options that 

are not optimal. In 2020, Li et al. [20] introduced wavelet 

dynamic examination, which was utilized to extract and 

restore the lung parenchyma, apart from noise intrusion from 

external the lung parenchyma. Accurately find the lung 

nodules with the aid of the algorithm. The characteristics of 

the computerized tomography picture of the pulmonary 

nodules are then extracted using the CNN enhanced by 

genetic procedure and the conventional CNN. It can be 

shown from a comparison of the two algorithms' accuracy 

levels that the convolutional neural network improved using 

genetic process performs better. A convolutional neural 

network augmented by a genetic procedure is utilized to 

distinguish and categorise the existing pulmonary nodule 

images, which gives instructions for pulmonary nodule CT 

picture discovery expertise. In 2023, Ardimento et al. [21] 

suggested an innovative method for computer tomography 

scans-based accurate 3D lung nodule detection. This study 
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uses an evolutionary method to create different iterations of 

the UNet-based structure, known as GUNet3++, to identify 

patients with bronchogenic carcinoma from examining lung 

computerized tomography scan pictures. The method is 

verified on the LIDC-Image Database Resource Initiative 

actual dataset, and the findings reveal that it produces better 

3D models of lesions by increasing the segmentation quality 

metrics like IoU and Dice over baselines. In 2022, Hua et al. 

[22] examined small extracellular vesicles as a biological 

indicator for the initial recognition of bronchogenic 

carcinoma using a new type of autoantibody. The Small 

Extracellular Vesicles were purified from plasma by 

ultracentrifugation, and their morphology and characteristic 

markers were used for validation. Additionally, binding 

assays, Nanoflow cytometry, and immunogold labelling 

transmission electron microscopy demonstrated that the 

rheumatoid factors may attach to the antiserums on SEVs, 

which may account for the autoantibodies seen on SEVs. 

Additionally, the connection reduced complement-mediated 

cytotoxicity, which may help lung cancer elude the immune 

system. 

In 2022, Ahmad et al. [23] proposed a novel technique 

known as Cancer Cell Detection using Hybrid Neural 

Network for an initial and precise analysis. Acutting-edge 

3D-convolution neural network was also used in this study to 

increase diagnosis precision. The proposed method also 

makes it possible to differentiate between benign and 

malignant haemorrhaging. The suggested hybridDL strategy 

for early lung cancer evaluation is viable when the findings 

are analyzed using conventional statistical methods. In 2019, 

Nasrullah et al. [24] suggested the accurate diagnosis of 

malignant nodules, a brand-new deep learning-based model 

with numerous techniques. Faster R-Convolutional Neural 

Networks were utilized to distinguish nodules via 

expeditiously learned qualities from CMixNet and U-Net, 

such as encoder-decoder structure. The 3D CMixNet 

structure's learned characteristics were used to classify the 

nodules utilizing a GBM. In initial-phase bronchogenic 

carcinoma diagnosis, the DL model for nodule recognition 

and organization, in conjunction with scientific variables, 

helps to lessen misdiagnosis and false positive outcomes. On 

LIDC-IDRI datasets, the suggested system was assessed for 

sensitivity (94%) and specificity (91%), and improved 

outcomes were obtained when associated with the current 

approaches. In 2021, Naik et al. [25] investigated 108 

research publications to examine deep learning approaches' 

role in identifying malignant tumours in lung CT scans. 

Variations applied to deep learning architecture are discussed 

in this study to increase the classification system's accuracy 

and thoroughly compare all DL methods presently used for 

classifying lung nodules. Sorting lung nodules via 

sophisticated DL techniques also poses obstacles and 

potential in this study. The report concludes that the goal is 

to identify the malignant lesion early and address new 

challenges in nodule categorization. In 2020, Bicakci et al. 

[25] suggested the molecular imaging-based sub-

classification of lung cancer. Adenocarcinoma (ADC) and 

Squamous Cell Carcinoma (SqCC), two subtypes of NSCLC, 

were distinguished in that study using deep learning-based 

classification algorithms, which were thoroughly studied. 

3. Proposed Methodology 
This study demonstrates the efficacy of deep learning 

and image processing technology in accurately classifying 

and forecasting bronchogenic carcinoma. The anticipated 

model will have five key stages: 

(a) pre-processing, (b) segmentation, (c) feature extraction,  

(d)feature selection and (e) lung cancer detection.  

The total flow diagram of the suggested model is in Figure 1 

3.1. Pre-processing 

This research will pre-process the gathered raw MRI 

images through gaussian filtering and contrast stretching for 

image contrast enhancement. To overcome the noise in the 

image, efforts need to be made to improve the quality of the 

image, one of which is by filtering the image. There are 

many image filtering techniques, and the authors used spatial 

domain filtering techniques in this study. A spatial domain is 

a filtering technique based on manipulating a pixel set of an 

image to generate a new image. There are different types of 

filters in the spatial domain, namely nonlinear and linear 

filters. In this study, the authors used a linear mean filter. The 

mean filter smooths and eliminates noise by replacing the 

values at the midpoint of the entire matrix in the image with 

the average value on the damaged image. Gaussian filter uses 

a non-local mean filter that can preserve subtle grey-values 

and edge information. Their filter selects pixels similar to the 

corrected pixel and applies a weighted average function 

within a small fixed window. Therefore, the Gaussian 

filter on the rendered images increases the similitude of 

synthetic images to real images. These methods are described 

below: 

3.1.1 Gaussian Filtering 

It is a linear filter. This filter is often applied to blur 

the image or minimize noise. Gaussian filtering is more 

effective at smoothing images. In one dimension, the 

Gaussian function is defined as follows: 

𝐺(𝑥) =  
1

√2𝜋𝜎2
𝑒

−𝑥2

2𝜎2   (1) 

Where, 𝜎 is the standard deviation. The behaviour of the 

Gaussian function is significantly influenced by its standard 

deviation.  The Gaussian function, which computes the 

values inside the kernel, is expressed in the following Equ 

(2) 

𝐺(𝑥) =  
1

√2𝜋𝜎2
𝑒

−𝑥2+𝑦2

2𝜎2   (2) 

Where 𝑥 represents the worth of 𝑥-coordinate, 𝑦 is the 

value of 𝑦-coordinate, and 𝜎 denotes standard deviation. 

https://www.sciencedirect.com/topics/computer-science/edge-information
https://www.sciencedirect.com/topics/engineering/rendered-image
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Fig. 1 Overall workflow diagram of the proposed model 

3.1.2. Contrast Stretching 

Low dynamic range in the image sensor, poor 

illumination, or even the incorrect lens aperture setting 

during the image capture phase can all lead to low contrast 

images. Contrast stretching is a procedure that increases the 

range of intensity levels in a picture, covering the whole 

intensity range of the display mechanism or recording 

medium. In order to boost the contrast of an image, the dark 

areas are made darker, and the bright areas are made brighter. 

Equation (3) represents a transformation used to achieve 

contrast stretching. 

𝑆 =  {
𝑙 ∗ 𝑟                  0 ≤ 𝑟 < 𝑎

𝑚 ∗  (𝑟 − 𝑎) + 𝑣           𝑎 ≤ 𝑟 < 𝑏                   

𝑛 ∗  (𝑟 − 𝑏) + 𝑤               𝑎 ≤ 𝑟 < 𝑏                      
(3) 

Where, 𝑚, 𝑙, 𝑎𝑛𝑑 𝑟 are represents slopes. By applying 

a slope of less than one, the dark grey levels get darker. The 

contrast stretching transformation increases the dynamic 

range of the altered image. In accordance with an input 

image and purpose of usage, several slopes can be applied. 

Image enhancement is a subjective processing approach 

since no set of slope values will provide the desired outcome. 

  

{
0                                 𝑖𝑓 𝑟 ≤ 𝑎
𝐿 − 1                         𝑖𝑓 𝑟 > 𝑎

  (4) 

The output of the thresholding function is always a 

binary image with two colours, black (pixel value 0) and 

white (255). 

3.2. Segmentation 

Our research used a SegNet methodology to segment 

pre-processed lung cancer images precisely. This approach 

enabled us to identify Regions of Interest (ROIs) within the 

images. By harnessing advanced segmentation techniques, 

our research aimed to enhance the accuracy and efficiency of 

detecting these critical ROIs, ultimately contributing to 

improved diagnosis and treatment planning for lung cancer 

patients. 

3.2.1. SegNet 

The segmentation of medical semantic images was 

successfully handled by SegNet architecture, also known as 

CNN encoder-decoder. It has five symmetric decoders and 

five encoders, batch normalization, convolution layers, 

rectified linear unit layer, upsampling, SoftMax classifier, 

and max-pooling layer, as shown in Figure 2. After each 

convolutional layer, the encoder and decoder systems employ 

batch normalisation. It is convolutional since there is no 

entirely connected layer. Respectively, each and every 

encoder layer has a matching decoder layer to enhance the 

SegNet strategy.  
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Fig. 2 Architecture of SegNet 

Therefore, the decoder network for VGG-19 and VGG-

16 comprises 16 and 13 convolutional layers, respectively. 

The encoder is used as VGG-16 or VGG-19, which gradually 

reduces an image's spatial dimension by pooling layers per 

the CNN encoder-decoder concept. The VGG-19 system is 

more wide-ranging than the VGG-16 system. All 

convolutional layers are supplemented by tiny 3x3 filters that 

reduce the parameters in each layer. This VGG-19 system 

has developed robust attribute illustrations for various 

images. In order to create a sparse feature map, a decoder is 

employed to upsample its input via the pool guides 

transmitted from its encoder. Convolution is then carried out 

to measure the density of the feature maps utilizing a 

trainable filter bank.  

A Softmax classifier is assumed to be the last decoder 

outcome characteristic maps for pixel-by-pixel organization. 

The decoder improved spatial dimensions to enable rapid and 

precise picture segmentation. Most recent deep architectures 

for segmentation have identical encoder networks, i.e. 

VGG16, but differ in the form of the decoder network, 

training and inference. The role of the decoder network is to 

map the low-resolution encoder feature maps to full input-

resolution feature maps for pixel-wise classification.  

Although all these factors improve performance on 

challenging benchmarks, it is unfortunately difficult from 

their quantitative results to disentangle the key design factors 

necessary to achieve good performance. The novelty of 

SegNet lies in how the decoder upsamples its lower-

resolution input feature map(s). Specifically, the decoder 

uses pooling indices computed in the max-pooling step of the 

corresponding encoder to perform non-linear upsampling. 

This eliminates the need for learning to upsample. The 

upsampled maps are sparse and convolved with trainable 

filters to produce dense feature maps. 

3.3. Feature Extraction 

The process of collecting features, such as texture, 

colour, and shape, from an image is known as feature 

extraction. This research extracts the segmented image using 

techniques such as Local Phase Feature (LPF), Haralick 

Texture Features, Hu moments, Zernike moments, and shape 

feature extraction. 

3.3.1. Haralick Texture Features 

Human visual perception depends extensively on 

texture. Statistical texture methods compute resident qualities 

at each place in the picture and obtain conventional statistics 

from the supplies of the local characteristics to analyse the 

spatial distribution of grey standards. 1973, Haralick et al. 

presented textural characteristics and the Grey Level 

Cooccurrence Matrix. This technique has been widely 

employed in image analysis applications, mainly in the 

biomedical sector. There are two procedures for extracting 

features. The first phase involves computing the GLCM; the 

second involves computing the texture features based on the 

GLCM. According to the grey level, the GLCM displays the 

frequency of each grey level at a pixel in relation to each 

other at a set geometric point. The measurement of these 

factors is discussed below: 

i. Contrast 

Contrast measures the intensity or grey level variances 

between the reference pixel and its neighbor. The huge 

contrast in GLCM represents huge intensity variations. It is 

shown in Equation (5) 

𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =  ∑ ∑ (𝑖 − 𝑗)2𝑃𝑑(𝑖, 𝑗)𝑗𝑖   (5) 

ii. Correlation 

The correlation feature shows that grey level values in 

the cooccurrence matrix are linearly dependent. This function 

is expressed in Equation (6) 

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  ∑ ∑ 𝑃𝑑(𝑖, 𝑗)𝑗𝑖

(𝑖−𝜇𝑥)(𝑗−𝜇𝑦)

𝜎𝑥  𝜎𝑦

 (6) 

Where, 𝜇𝑥, 𝜇𝑦are mean values, and 𝜎𝑥 , 𝜎𝑦are standard 

deviations. 𝜇𝑥 𝑎𝑛𝑑 𝜇𝑦 are expressed in the following 

equation. 

𝜇𝑥 =  ∑ ∑ 𝑖𝑃𝑑(𝑖, 𝑗)𝑗𝑖    ;    𝜇𝑦 =  ∑ ∑ 𝑗𝑃𝑑(𝑖, 𝑗)𝑗𝑖  (7) 

The standard deviations 𝜎𝑥, 𝜎𝑦 are given in Equation (8) 

𝜎𝑥 =  √∑ ∑ (𝑖 − 𝜇𝑥)2𝑃𝑑(𝑖, 𝑗)𝑗𝑖        ;   𝜎𝑦 =

 √∑ ∑ (𝑖 − 𝜇𝑦)2𝑃𝑑(𝑖, 𝑗)𝑗𝑖  (8) 

iii. Energy 

The Angular Second Moment (ASM) provides energy. 

ASM measures the local homogeneity of grey levels. The 
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ASM value will be high if the pixels are quite similar. The 

expression of energy is described in Equation  (9) 

𝐸𝑛𝑒𝑟𝑔𝑦 =  √𝐴𝑆𝑀 (9) 

Where, 𝐴𝑆𝑀 =  ∑ ∑ (𝑃𝑑)2(𝑖, 𝑗)𝑗𝑖    (10) 

iv. Entropy 

An image's degree of disorder or unpredictability is 

measured by its entropy. When the cooccurrence matrix's 

elements are evenly distributed, the entropy value is greatest; 

when they are not, it is lowest. It is expressed in the 

following Equation (11) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ ∑ 𝑃𝑑(𝑖, 𝑗)𝑗𝑖 𝑙𝑛 𝑃𝑑(𝑖, 𝑗) (11) 

3.3.2. Local Phase Feature 

A 3-D phase symmetry measure from odd and even 

symmetric log-Gabor filter replies can be represented by 

𝑜𝑟𝑚 , 𝑒𝑟𝑚, correspondingly, remunerated by a noise power 

threshold Tr. The phase symmetry feature is expressed in the 

following Equation (12) 

𝑃𝑆 =  
∑ ∑ ⌊[|𝑒𝑟𝑚|−|𝑜𝑟𝑚|]⌋−𝑇𝑟𝑚𝑟

∑ ∑ √𝑒𝑟𝑚
2 + 𝑜𝑟𝑚

2 +𝜀𝑚𝑟

  (12) 

Let G (x, y): 𝑁𝑥  ×  𝑁𝑦 → 𝑍 be the grey levels of an 

𝑁𝑥  ×  𝑁𝑦 images I for Z = 0 to 255. In order to create the 

four distinct patterns represented by the number m of motif, 

pixel G (x, y) is split into four blocks, each containing two 

two-pixel grids. These four motifs will be stored as four 

𝑁𝑥  ×  𝑁𝑦 two-dimensional motifs of scan pattern matrix Pi 

[x, y], where i = 1, 2, 3, 4, x = 1, 2...,𝑁𝑥 , y = 1, 2..., 𝑁𝑦, and 

Pi [x, y]: 𝑁𝑥  ×  𝑁𝑦 → 𝑤 signifies a 𝑁𝑥  ×  𝑁𝑦matrix for W = 

0 to 6. The CCM computes distribution within the two-

dimensional matrix 𝑃𝑖[𝑁𝑥 , 𝑁𝑦]. The synchronisation that 

separates (x, y) on the x-axis in dx and y-axis in dy, then the 

total number of co-occurring motifs of scan pattern pairings 

(u, v) (where u = 0, 1,..., 6) is calculated. It is expressed in 

Equation (13). 

𝑀𝑖(𝑢, 𝑣) =  𝑀𝑖(𝑢, 𝑣 | 𝛿𝑥, 𝛿𝑦) = 𝑀𝑖(𝑃𝑖[𝑥, 𝑦], 𝑃𝑖[𝑥 + 𝛿𝑥 , 𝑦 +

𝛿𝑦])   (13) 

Where, 𝑃𝑖[𝑥, 𝑦] = 𝑢 , 𝑃𝑖[𝑥 + 𝛿𝑥 , 𝑦 + 𝛿𝑦] = 𝑣. As 

illustrated in Equation (14), the co-occurring probabilities of 

number 𝑖 motifs of the scan model matrix are calculated by 

dividing 𝑀𝑖(𝑢, 𝑣)by the sum of all counts for 𝑢 𝑎𝑛𝑑 𝑣. 

𝑚[𝑢, 𝑣] =  
𝑀𝑖(𝑢,𝑣)

𝑁𝑖
 (14) 

Where, 

 𝑁𝑖 =  ∑ ∑ 𝑀𝑖(𝑢, 𝑣)6
𝑣=0

6
𝑢=0 ;          1 ≤ 𝑖 ≤ 4  (15) 

Thus, there will be a total of 7x7 two-dimensional CCM 

grids, or 7x7 = 49, where 𝑁𝑓 =  49 is the total number of 

Colour Co-occurrence Matrix characteristics. 

3.3.3. Shape feature extraction 

In this study, shape features are extracted using Hu 

moments and Zernike moments. These two techniques are 

described below in detail: 

i. Hu moments 

This technique uses a statistical feature to extract visual 

information. Digital image recognition frequently makes use 

of moments in two dimensions. In actuality, it brings one-

dimensional signal order moments into two-dimensional 

space.  Moment theory was utilised to build and popularise a 

statistical feature extraction approach in image recognition. If 

the scaling factor 𝜌 ≤ 2 and the trajectory graph's rotation 

angle are both 𝜃 = 450degrees, the Hu moment may be 

assured. For the two-dimensional function 𝑓(𝑥, 𝑦) ∈ 𝑅2, 

which is defined on the plane 0 − 𝑥𝑦. , The following 

Equation (16) describes the 𝑝 + 𝑞 order mixed origin 

moment: 

𝑝, 𝑞 = 0, 1, 2 ⋯  (16) 

The following formula defines the  𝑝 + 𝑞 order of mixed 

central moment: 

𝜇𝑝𝑞 =  ∫ ∫ (𝑥 − 𝑥̅)𝑝(𝑦 − 𝑦̅)𝑞𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
∞

−∞

∞

−∞
 (17) 

Where 𝑥̅, 𝑦 ̅ represents the gray centre of gravity for the 

image and it is expressed as: 

𝑥̅ =  
𝑚10

𝑚00
  ;             𝑦̅ =  

𝑚01

𝑚00
    (18) 

The normalized central moment function is defined in 

the following equation: 

𝜂𝑝𝑞 =  
𝜇𝑝𝑞

𝜇00
𝑟    (19) 

Under the constraints, 𝑟 = 𝑝 + 𝑞 + 2 2⁄ ;          𝑝 + 𝑞 =
0,1,2,3 ⋯ 

The seven moment functions are built utilising the 

aforementioned core moments. These 7 expressions represent 

translation, scaling, and rotation. These are expressed in the 

following Equation (20)-(26) 

∅1 =  𝜂20 + 𝜂02   (20) 

∅2 =  (𝜂20 − 𝜂02)2 + 4𝜂11
2   (21) 

∅3 =  (𝜂30 − 3𝜂12)2 + (𝜂03 − 3𝜂21)2  (22) 

∅4 =  (𝜂30 + 𝜂12)2 + (𝜂03 + 𝜂21)2   (23) 

∅5 =  (𝜂30 − 3𝜂12)      
𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂03 + 𝜂21)2 + (3𝜂21 −

𝜂03)(𝜂03 + 𝜂21)[3(𝜂30 + 𝜂12)2 − (𝜂03 + 𝜂21)2]] 

  (24) 

∅6 = (𝜂20 − 𝜂02)[(𝜂30 + 𝜂12)2 − (𝜂03 + 𝜂21)2] +
4𝜂11(𝜂30 + 𝜂12) + (𝜂03 + 𝜂21) (25) 
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∅7 = (3𝜂21 − 𝜂03)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 −
3(𝜂03 + 𝜂21)2] + (3𝜂12 − 𝜂30)(𝜂03 + 𝜂12)[3(𝜂03 + 𝜂21)2 −

(𝜂03 + 𝜂21)2]    (26) 

ii. Zernike Moment 

A unique type of complex moment known as a Zernike 

moment is built on orthogonal functions known as Zernike 

polynomials. Zernike moments have better benefits in terms 

of their expressive power and noise sensitivity than HU 

moments, but they have a more difficult calculation. When it 

comes to target recognition, Zernike moments are frequently 

employed because of their rotation invariance properties. A 

group of orthogonal polynomials 𝑉𝑛𝑚(𝑝, 𝜃), which are 

orthogonal in the unit circle 𝜌 ≤ 1, are presented by Zernike. 

The following steps are used to produce the polynomial 

function in polar coordinates: 

𝑉𝑛𝑚(𝜌, 𝜃) = 𝑅𝑛𝑚(𝜌) exp (𝑖𝑚𝜃)  (27) 

Under the constraints, 𝑛 = 0, 1, 2 ⋯ 𝑎𝑛𝑑 𝑚 =
0, ±1, ±2 ⋯ , |𝑀| ≤ 𝑛 , 𝑤ℎ𝑒𝑟𝑒 (𝑛 − |𝑀|) represents an even 

number. 𝜌 denotes the vector form of origin point to pixel 

point (𝑥, 𝑦), 𝜃 specifies the angle between the vector 𝜌 and 

𝑥 𝑎𝑥𝑖𝑠, 𝑅𝑛𝑚(𝜌) is radial polynomial.  

𝑅𝑛𝑚(𝜌) =  ∑ (−1)5(𝑛−|𝑚|) 2⁄
𝑠=0 , 

(𝑛−𝑠)! 𝑝(𝑛−2𝑠)

𝑆!((𝑛−2𝑠+|𝑚|) 2⁄ )! ((𝑛−2𝑠−|𝑚|) 2⁄ )!  

 (28) 

Radial polynomials  𝑅𝑛𝑚(𝜌) satisfy the following Eq.(29) 

∫ 𝑅𝑛𝑙(𝑟)𝑅𝑚𝑙(𝑟) 𝜌𝑑𝜌 =
1

2(𝑛+1)
𝛿𝑛𝑚

𝑙

0
   

 (29) 

Where, 𝛿𝑛𝑚 denotes Kronec ker delta. 

The orthogonality conditions of Zernike polynomials are 

expressed in the following equation: 

∫ ∫ 𝑉𝑛𝑙
∗𝑙

0
(𝑟)𝑉𝑚𝑘(𝑝, 𝜃)𝜌𝑑𝜌𝑑𝜃 =

1

2(𝑛+1)

2𝜋

0
𝛿𝑛𝑚𝛿𝑙𝑘 (30) 

In the above Equation (30), * denotes complex 

conjugate, and this equation is simplified to the following 

Equation (31). 

𝑉𝑛𝑚
∗ (𝜌, 𝜃) = 𝑉𝑛−𝑚(𝜌 − 𝜃)  (31) 

Important properties of 𝑅𝑛𝑚 as follows: 

𝑅𝑛𝑚(1) = 1,                𝑅𝑛𝑚(𝑟) = 𝜌𝑛 ;  𝑅00(𝜌) = 1 (32) 

The following Equation (33) defines a n order Zernike 

polynomial with a repeating rate of M: 

𝐴𝑛𝑚 =
𝑛+1

∏
∬ 𝜌2 ≤ 1 𝑓(𝜌, 𝜃)𝑉𝑛𝑚

∗ (𝜌, 𝜃)𝜌𝜌𝑑𝜃, 𝜌2 ≤ 1   (33) 

For digital images, the integral is replaced by 

summation, and it is given by: 

𝐴𝑛𝑚 =  
𝑛+1

𝜋
∑ ∑ 𝑓(𝑥, 𝑦)𝑦𝑥 𝑉𝑛𝑚

∗ (𝜌, 𝜃)𝑑𝑥𝑑𝑦,                  𝑥2 +

𝑦2 ≤ 1 (34) 

It is important to shift the axis trajectory image's centre 

to the coordinate circle and map the trajectory's pixel points 

onto the unit circle to compute the Zernike moments of an 

axis shaft orbit. It is clear from the formula that 𝑉𝑛𝑚
∗ (𝜌, 𝜃) it 

can extract picture features and, for bigger n values, 

𝑉𝑛𝑚
∗ (𝜌, 𝜃)can retrieve high-frequency characteristics. In cases 

when n is less, 𝑉𝑛𝑚
∗ (𝜌, 𝜃) it yields low-frequency features. 

High moments may be built using Zernike moments. 

Theoretically, greater moments can store more picture data, 

improving pattern detection. 

3.4. Feature Selection 

The best features will be chosen from the retrieved 

features using a novel hybrid optimisation approach, which 

has been suggested. The conceptual improvement of the 

conventional Artificial Gorilla Troops Optimisation (AGTO) 

and Seagull Optimisation Algorithm (SOA) will be the 

proposed hybrid optimisation model in this research. In this 

phase, Artificial Gorilla Troops Optimization (AGTO) and 

Seagull Optimization Algorithm (SOA) approaches were 

created for FS. The best features will be chosen from the 

segmented lung image using a novel hybrid optimization 

approach, which has been suggested. FS can be viewed as an 

optimization issue with multiple objectives and two 

competing goals to be met: greater precision in classification 

and a reduced number of randomly chosen features. A 

solution is better if its feature count and classification 

accuracy are lower. 

While the AGTO algorithm is a unique metaheuristic 

strategy based on gorilla group behavior, the SOA approach 

offers strong global searching capability. This study suggests 

two hybrid optimization methods to enhance the SOA 

algorithm's local search capability. Three different solutions 

are available in the AGTO method's optimizing stage: P is 

the gorilla's position, and G is the precise spot of the 

candidate gorilla produced at each step. It will operate if it 

performs better than the current one. Ultimately, the 

"silverback" is the superior choice in every iteration. First, 

one of the two algorithms is chosen randomly for 

optimization, much like a roulette wheel. The algorithm 

selects Equation 40 at random for this iteration's position 

update and uses the advantages of the two formulas to update 

the position, thus improving the optimization ability. To 

circumvent the local optimisation problem, this technique 

will randomly conduct global and local searches. This 

strategy is called SOA-AGTO. 

3.4.1. Artificial Gorilla Troops Optimization (AGTO) 

An artificial metaheuristic optimization system that 

mimics gorilla social behaviour is called the Artificial Gorilla 

Troop Optimization (AGTO) algorithm. AGTO has 

demonstrated its effectiveness when compared to other 

cutting-edge metaheuristic algorithms like TSA, GWO, SCA, 

MVO, WOA, GSA, and MFO by resembling the live 

practice of the Gorilla Troop. The primary distinction 
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between meta-heuristic algorithms is how they update 

existing algorithms with new answers. There are two steps to 

this process in the AGTO: Local based forward and Global 

based forward. In the subsection below, both phases are 

described: 

i. Local based Forward 

This is the first stage in the AGTO process. It is 

expressed in the following equation: 

𝐺𝑛𝑒𝑤

= {

(𝑢𝑏 − 𝑙𝑏) × 𝜃1 + 𝑙𝑏, 𝑟𝑑𝑛 < 𝜏
(𝜃2 − 𝑀) × 𝐺𝑟𝑑𝑠 + 𝑁 × 𝐾, 𝑟𝑑𝑛 ≥ 0.5

𝐺 − 𝑁 × [𝑁 × (𝐺 − 𝐺𝑟𝑑𝑠) + 𝜃3 × (𝐺 − 𝐺𝑟𝑑𝑠)], 𝑟𝑑𝑛 < 0.5

 

                                                                                    (35) 

Where, G represents the present location, 𝐺𝑛𝑒𝑤  denotes 

the new location of the gorilla, 𝜃1, 𝜃2, 𝑎𝑛𝑑 𝜃3 and generated 

random values in the interval 0 to 1. lb and ub are lower and 

upper limitations of search space. 𝜏 is the given operator, and 

it changes between 0 and 1. 𝐺𝑟𝑑𝑠 It specifies random gorilla 

picked up from the entire population. K, N, and M are 

expressed in Equations (36)-(38). 

𝐾 = 𝑅𝐷 × 𝑋     (36) 

𝑁 = 𝑀 × 𝑙     (37) 

𝑀 = 𝑄 × (1 −
ℎ

𝐻
)    (38) 

Where, 𝑄 = cos(2 × 𝜃4) + 1   (39) 

From above Equation (36)-(38), N represents the control 

operator, and RD denotes the created random value of -M to 

M, l is the generated random value between -1 and 1, the 

letter h denotes the present iteration, Q is an amplifying 

factor, H represents the maximum quantity of iteration, and 

𝜃4 denotes a random value between 0 and 1.  

ii. Global Based Forward 

The general form for global based forward is shown in 

below Equation (40) 

𝐺𝑛𝑒𝑤 =  {
𝐾 × 𝐼 × (𝐺 − 𝑆𝐵) + 𝐺, 𝑀 ≥ 𝜀

𝑆𝐵 − (𝑆𝐵 × 𝐼𝐹 − 𝐺 × 𝐼𝐹) × 𝑉𝑇,   𝑀 < 𝜀
 (40) 

Where, 𝜀 denotes the reference parameter, which is set 

before evaluation, SB represents the silverback gorilla 

location. VT specifies the violation term, which is given in 

Equation (41). IF is the impact term expressed in Equation 

(43), and I is the synthesis term specified in Equation (44). 

𝑉𝑇 = 𝜌 × 𝑅𝐹                 (41) 

Where, 𝑅𝐹 =  {
𝑈1, 𝑟𝑑𝑛 ≥ 0.5
𝑈2, 𝑟𝑑𝑛 < 0.5

  (42) 

𝐼𝐹 = 2 × 𝜃5 − 1             (43) 

𝐼 =  (|
1

𝑃𝑜𝑝
∑ 𝐺𝑖

𝑃𝑜𝑝
𝑖=1 |

𝛼

)

1

𝛼
 ;  𝛼 = 2𝑘          (44) 

3.4.2. Seagull Optimization Algorithm (SOA) 

Seagulls are seabirds that are found all over the world 

and are formally referred to as the seagull family. There are 

numerous varieties of seagulls, each with a unique mass and 

length. Flies, trawl, serpents, amphibians, and fish worms are 

among the omnivorous foods that seagulls consume. Seagulls 

in a group can transfer toward the seagull with the highest 

unintended endurance or one whose fitness level is lesser 

than the others. The other seagulls can adjust their starting 

positions based on the fittest seagull. Following their 

avoidance of neighbor collisions, the search agents proceed 

toward the best neighbor, as equation (14) indicates. 

𝑀𝑆 = 𝐵 ×  (𝑃𝑏𝑠(𝑥)  −  𝑃𝑠(𝑥))  (45) 

In this case, MS stands for the search agent Ps location, 

with respect to the search agent Pbs, which fits the best. B's 

randomised behaviour ensures that exploration and 

exploitation are properly balanced. Since FS is a discrete 

optimization problem, the original AGTO is transformed 

here using a sigmoid transfer function, and the probability 

value is then calculated using Equation 46. 

𝑇(∆𝑝𝑖
𝐿(𝐼𝑡 + 1)) =  𝑠𝑖𝑔𝑚𝑜𝑖𝑑(∆𝑝𝑖

𝐿(𝐼𝑡 + 1)) =
1

1+𝑒
−2∆𝑝𝑖

𝐿(𝐼𝑡+1)
 
   (46) 

The first update of each gorilla position is indicated by 

the notation (∆p_i^L (It+1)). In this case, a sigmoid function 

of transfer is used to transform the original AGTO and 

calculate the probability value because FS is a periodic 

problem for optimization. Ultimately, the AGTO algorithm's 

equation is refined to the SOA algorithm's seagull attack 

formula, enhancing the seagull algorithm's local discovery 

capability. The SOA-AGTO technique was developed to help 

gulls more easily approach their prey. Equation 47 provides 

its numerical formula.  

𝑀𝑠 =  𝐵 × (𝑃𝑏𝑠(𝑥)  −  𝑃𝑠(𝑥)) × 𝑒𝑥𝑝(−2∆𝑝𝑖
𝐿(𝐼𝑡 + 1))   (47) 

To swiftly approach the target item (−2∆𝑝𝑖
𝐿(𝐼𝑡 + 1))  

swap the slight between objects. Therefore, the original 

AGTO is upgraded (−2∆𝑝𝑖
𝐿(𝐼𝑡 + 1)) so seagulls can 

effectively approach prey. 

  

4. Results and Discussion  
The operation of the recommended technique was 

assessed using the IQ-OTH/NCCD lung carcinoma dataset. 

This data is set to two different values of 60 and 70 

percentage for computation. The experiment was 

implemented in Python. Several metrices are used to analyze 

the efficiency of the proposed method, and they are discussed 

in the following section. 

4.1. Evaluation metrics 

Several accepted criteria were applied to estimate the 

performance of the suggested network, including Accuracy, 

Precision, Sensitivity, Specificity, TPR, FPR, TNR, F1 score, 
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and Recall. The efficiency of these metrics is discussed 

below: 

4.1.1. Accuracy 

The measure of correctness repeatedly labels the 

execution of the system across all classes. When every class 

is similarly significant, it is advantageous. It is resolute by 

dividing the total number of guesses by the number of 

accurate forecasts. It is expressed as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
            (48) 

Where, TP is True Positive, TN indicates True Negative, 

FP means False Positive, and FN denotes False Negative 

values. 

4.1.2. Precision 

The degree of precision is the ratio of Positive examples 

appropriately classified to all samples properly or 

erroneously recognised as Positive. The exactness gauges 

how exactly the standard categorizes a sample as positive. 

The mathematical expression of precision is given below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (49) 

4.1.3. Sensitivity 

It is a statistic that assesses how well a test can classify a 

positive outcome. It is determined by the percentage of true 

positives the test successfully discovered. The sensitivity 

equation is: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (50) 

4.1.4. Specificity 

Specificity is a crucial extra element for binary 

classification problems. It evaluates a model's ability to 

precisely identify negative events among all of the genuinely 

negative examples in the dataset. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (51) 

4.1.5. True Positive Rate (TPR) 

It is a functioning indicator employed in binary 

classification tasks to assess how effectively a model 

accurately distinguishes positive examples from all the real 

positive cases in the dataset. The mathematical expression of 

TPR is given below: 

𝑇𝑃𝑅 =
𝑇𝑃

𝐹𝑃+𝐹𝑁
  (52) 

4.1.6. False Positive Rate (FPR) 

It is a performance indicator used in binary classification 

tasks to assess how frequently the model misidentifies 

negative examples as positive. 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
  (53) 

4.1.7. True Negative Rate (TNR) 

It is a performance indicator utilized in binary 

categorization tasks to assess how effectively a standard 

accurately distinguishes negative examples from all the true 

negative occurrences in the dataset. 

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
  (54) 

4.1.8. F1 Score 

The F1 score, sometimes called the F-measure or F-

score, is a well-liked statistic used in binary classification 

issues to balance the trade-off between recall (sensitivity) 

and precision. Accounting for both FS and FN offers a single 

number that sums up a model's performance. 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2×(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (55) 

4.1.9. Recall 

The recall is concluded as the proportion of positive 

samples that were properly recognized as positive for all 

positive examples. The recall gauges how healthy the system 

can detect Positive samples. The more positive samples that 

are acknowledged, the larger the recall. The calculation 

method of recall is shown below: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
        (56) 

4.2. Performance Metrics Comparison 

The proposed model Hybrid Deep Learning and Fuzzy 

Logic Integration for Lung Cancer Detection (HybDeeFu) 

was compared with various existing algorithms such as 

Artificial Gorilla Troops Optimization (AGTO) and Seagull 

Optimization Algorithm (SOA), Pro_classifier, CNN [27], 

RNN [28]. The model was implemented in python. The 

dataset is set with two different percentages for computation 

https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-

lung-cancer-dataset.  

Table 1 evaluates several existing techniques with the 

proposed 60% trained dataset method. Table 2 illustrates the 

comparative analysis of the suggested approach with various 

techniques currently in practice, with datasets trained to 70%.  

Figures 3 and 4 represent the findings for malignant and 

benign cases. Illustrative images are provided to present the 

application of contrast stretching, Gaussian Filter, normal 

image, malignant image, benign image and segmented lung 

cancer images. These visual representations offer valuable 

insights into the impact of these techniques on enhancing 

image quality and emphasizing significant features in various 

cases. 
 

 

 

https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-dataset
https://www.kaggle.com/datasets/hamdallak/the-iqothnccd-lung-cancer-dataset
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Table 1. Existing and proposed technique comparison for dataset trained with 60% 

  AGTO SOA Pro_classifier CNN [27] RNN [28] PROPOSED 

Accuracy 0.955 0.935 0.919 0.876 0.911 0.977 

Precision 0.935 0.903 0.879 0.816 0.867 0.969 

Sensitivity 0.943 0.907 0.878 0.815 0.866 0.966 

Specificity 0.943 0.961 0.919 0.917 0.923 0.963 

TPR 7.000 4.656 3.625 2.204 3.250 10.50 

FPR 0.033 0.048 0.060 0.092 0.066 0.016 

TNR 0.965 0.951 0.939 0.907 0.933 0.983 

F1 Score 0.934 0.905 0.877 0.810 0.869 0.956 

Recall 0.943 0.907 0.878 0.815 0.866 0.966 

Table 2. Comparison of the proposed model with existing techniques for dataset trained with 70% 

 AGTO SOA Pro_classifier CNN [27] RNN [28] PROPOSED 

Accuracy 0.969 0.947 0.933 0.868 0.917 0.985 

Precision 0.957 0.931 0.811 0.807 0.890 0.981 

Sensitivity 0.954 0.921 0.911 0.803 0.875 0.978 

Specificity 0.977 0.960 0.950 0.901 0.937 0.989 

TPR 10.00 5.846 4.512 2.038 3.524 12.071 

FPR 0.022 0.039 0.051 0.098 0.062 0.010 

TNR 0.977 0.960 0.954 0.901 0.937 0.989 

F1 Score 0.952 0.923 0.833 0.807 0.867 0.980 

Recall 0.954 0.921 0.942 0.803 0.875 0.978 

 

  
Fig. 3 Before and after preprocessing of the Bengin case Fig. 4 Pictorial format of before and after preprocessing for the 

Malignant Case 
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Fig. 5 Accuracy measures of the existing and proposed technique for the 

dataset with 60% and 70% 

 

Fig. 6 Precision comparison of the existing and suggested method with 

60% and 70% dataset 

The graphical analysis of Tables 1 and 2 are depicted in 

Figures 5-13. Each metric was obtained with different values, 

which were useful for comparing the suggested approach. 

Every metric is explained separately in graphical form for 

datasets with two different trained set percentages. Figure 5 

displays the accuracy measurement for several algorithms 

with the dataset for 60 and 70%. The accuracy values for 

algorithms AGTO, SOA, Pro_classifier, CNN [27], RNN 

[28], and suggested HYBDEEFU-FEASEG with 60% trained 

dataset are 0.955, 0.935, 0.919, 0.876, 0.911, and 0.977 

respectively.  

Accuracy with 70% trained dataset is listed as 0.969 for 

AGTO, 0.947 for SOA, 0.933 for Pro_classifier, 0.868 for 

CNN [27], 0.917 for RNN [28], and 0.985 for suggested 

method. In this accuracy measurement, the proposed model 

achieved the highest value of all existing models. Therefore, 

the newly constructed HYBDEEFU-FEASEG method 

presents great accuracy in bronchogenic carcinoma detection 

compared to existing approaches. Figure 6 shows the 

precision measurement for several methods with datasets for 

60 and 70%.  

The corresponding precision scores for the algorithms 

AGTO, SOA, Pro_classifier, CNN [27], RNN [28], and 

recommended HYBDEEFU-FEASEG with 60% trained 

dataset are 0.935, 0.903, 0.879, 0.8161, 0.867, and 0.969 

respectively. The precision for each technique for the 70% 

training dataset is given as follows: AGTO: 0.957; SOA: 

0.931; Pro_classifier: 0.811; CNN: 0.807; RNN: 0.890; and 

Suggested technique: 0.981. In this precision evaluation, the 

suggested model outperformed every other existing model.  

Compared to other technologies, the newly developed 

HYBDEEFU-FEASEG method has good precision in 

detecting lung cancer.  The sensitivity measurement for 

various approaches using datasets for 60 and 70% is shown 

in Figure 7 below. According to evaluation Table 1, the 

sensitivity values listed as 0.943, 0.907, 0.878, 0.815, 0.866, 

and 0.966 for the newly developed model, RNN [28], CNN 

[27], PRO_classifier, SOA, and AGTO respectively.  

 

The proposed model reached the highest sensitivity with 

60% of the trained dataset compared to other techniques. 

Based on Table 2, sensitivity values of 0.954 for AGTO, 

0.921 for SOA, 0.911 for PRO_classifier, 0.803 for CNN 

[27], 0.875 for RNN [28], and 0.978 for the proposed 

approach. In this 70% trained dataset, the newly created 

technique also has the highest sensitivity rate. Thus, the 

proposed approach performs better than all existing 

techniques in 60 and 70 percentage of the trained dataset. 

 

 
Fig. 7 Measures of sensitivity for the proposed and current techniques 

for datasets with 60% and 70% 

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

Accuracy ( with 60 % DataSet)

Accuracy( with 70 % DataSet)

0

0.2

0.4

0.6

0.8

1

1.2

Precision ( with 60 % DataSet)

Precision ( with 70 % DataSet)

0

0.2

0.4

0.6

0.8

1

1.2

Sensitivity( with 60 % DataSet)

Sensitivity( with 70 % DataSet)



N. Raghapriya & Y. Kalpana / IJETT, 72(11), 307-321, 2024 

 

318 

 
Fig. 8 Specificity comparison of suggested and current methods using 

60% and 70% datasets 

Figure 8 displays specificity assessment for several 

methodologies utilizing 60 and 70 percentage datasets. For 

the newly constructed model, AGTO, SOA, PRO_classifier, 

RNN [28], CNN [27], and, respectively, the specificity 

values are stated as 0.943, 0.961, 0.919, 0.917, 0.923, and 

0.963. The suggested model had the maximum specificity 

compared to other methods using 60% of the training dataset.  

According to Table 2, the specificity values for AGTO, 

RNN, SOA, PRO_classifier, CNN, and the suggested 

algorithm were 0.977, 0.960, 0.950, 0.901, 0.937, and 0.989 

respectively. The newly developed method also has the 

greatest specificity value in this 70% trained dataset. Thus, 

the suggested strategy outperforms all other known 

techniques in 60 and 70 percent of the training dataset. The 

TPR assessment for various approaches using datasets for 60 

and 70 percent is revealed in Figure 9 below. 

 
Fig. 9 Comparison of recommended and current approaches' TPR 

utilizing 60% and 70% of datasets 

From the above TPR graphical representation, the 

resultant value for the dataset trained to 60 percentage are 

stated as 7.00, 4.656, 3.625, 2.04, 3,250 and 10.5 for 

techniques AGTO, SOA, PRO_classifier, CNN [27], RNN 

[28], and HYBDEEFU-FEASEG respectively. The values 

with 70% trained dataset are obtained as 10.00 for AGTO, 

5.846 for SOA, 4.512 for PRO_classifier, 2.03 for CNN [27], 

3.524 for RNN [28], and 12.071 for newly suggested 

approach. The developed method attains the highest value of 

TPR for these two sets of training data.  

This indicates that the proposed model has a greater 

positive approach than all existing techniques. Therefore, this 

developed model is well suitable for lung cancer prediction. 

Figure 10  displays the FPR evaluation for several 

methodologies utilizing 60 and 70 percent datasets. 

According to Figure 10, the corresponding results for a 

dataset trained to 60% are 0.033, 0.048, 0.06, 0.092, 0.066, 

and 0.016 for algorithms AGTO, SOA, PRO_classifier, CNN 

[27], RNN [28], and HYBDEEFU-FEASEG, respectively.  

A 70% trained dataset yielded the following values: 

0.022 for AGTO, 0.039 for SOA, 0.051 for PRO_classifier, 

0.098 for CNN [27], 0.062 for RNN [28], and 0.010 for a 

newly proposed technique with regard to these two sets of 

training data, the presented approach achieves the least FPR 

value. This shows that the suggested methodology is very 

beneficial compared to all other strategies already in use. As 

a result, our established model produces significantly less 

false values than other existing methods, and thus, the newly 

developed technique works effectively for predicting lung 

cancer. 

The TNR evaluation for several approaches using 

datasets for 60 and 70 percent is shown in Figure 11. The 

Figure 11 shows the comparable results of methods AGTO, 

SOA, PRO_classifier, CNN [27], RNN [28], and 

HYBDEEFU-FEASEG for a dataset trained to a 60% TNR 

as 0.965, 0.951, 0.939, 0.907, 0.933, and 0.983, respectively. 

The following values were obtained from a 70% trained 

dataset: 0.977 for AGTO, 0.96 for SOA, 0.95 for 

PRO_classifier, 0.901 for CNN [27], 0.937 for RNN [28], 

and 0.981 for a recently developed method. The technique 

yields the highest TNR value for these two training data sets. 

This demonstrates that, compared to all other currently 

employed tactics, the methodology offered has a significantly 

advantageous approach. 

Figure 12 displays the F1 score evaluation for several 

methods utilizing datasets for 60 and 70 percent. The results 

of the algorithms AGTO, SOA, PRO_classifier, CNN [27], 

RNN [28], and HYBDEEFU-FEASEG for a dataset trained 

to a 60% F1 score are displayed in the Figure 12 as 0.934, 

0.905, 0.877, 0.810, 0.869, and 0.956 respectively. 
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Fig. 10 FPR measurements for new and existing methods for datasets 

with 60% and 70% 

 

 
Fig. 11 Measures of TNR of proposed and current techniques for 

datasets with 60% and 70% 

 
Fig. 12 F1 score measurements of current and planned methods for 

datasets with 60% and 70% 

 
Fig. 13 Comparison of recommended and current approaches' recall 

utilizing 60% and 70% of datasets 

A dataset that had been trained to 70% yielded the 

following values: 0.952 for AGTO, 0.807 for CNN [27], 

0.833 for PRO_classifier, 0.867 for RNN [28], 0.923 for 

SOA, and 0.980 for a more modern technique. The suggested 

approach produces the greatest F1 score for these two 

training data sets. This implies that the methodology being 

supplied has a substantially more beneficial strategy when 

compared to all other currently used methods. The recall 

evaluation for various methodologies using datasets for 60 

and 70 percent is shown in Figure 13.  In Figure.13, the 

outcomes of the methods AGTO, SOA, PRO_classifier, 

CNN [27], RNN [28], and HYBDEEFU-FEASEG are shown 

as 0.943, 0.907, 0.878, 0.815, 0.866, and 0.966 for a dataset 

trained to a 60% recall, respectively. The following results 

were obtained using a dataset that had been trained to a 70% 

level: 0.954 for AGTO, 0.803 for CNN [27], 0.942 for 

PRO_classifier, 0.87 for RNN [28], 0.921 for SOA, and 

0.978 for a more recent method. The recommended method 

yields the highest recall for these two training data sets. This 

suggests that, compared to all other approaches now in use, 

the methodology provided has a significantly more 

advantageous strategy. 

5. Conclusion  
In conclusion, the proposed HYBDEEFU-FEASEG 

approach offers a comprehensive and effective solution for 

accurate lung cancer detection, leveraging the power of deep 

learning and fuzzy logic integration. The five main stages of 

the model, including preprocessing, segmentation, feature 

extraction, feature selection, and lung cancer classification, 

synergistically contribute to achieving reliable and initial 

diagnosis of lung carcinoma. By utilizing DL and image 

processing technologies, the model demonstrates the 

capability to accurately classify and forecast lung cancer, 

providing valuable insights for promptly selecting the most 
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effective therapy. Integrating optimized SegNet for ROI 

identification and the hybrid optimization model for 

hyperparameter tuning enhances the segmentation process's 

accuracy and efficiency. The feature extraction and selection 

stages harness a combination of texture and shape-based 

features, ensuring comprehensive characterization of lung 

cancer images. The hybrid optimization approach refines 

feature selection, leading to the identification of the most 

relevant features for improved classification performance. 

Incorporating Bidirectional LSTM, CNN, and RNN 

classifiers and the subsequent input to the fuzzy logic stage 

further boosts the model's predictive power. The comparison 

with existing models using the IQ-OTH/NCCD dataset 

validates the efficiency and effectiveness of HYBDEEFU-

FEASEG.  

Future research will further focus on incorporating 

advanced deep learning techniques to enhance the model's 

accuracy and adaptability. Overall, HYBDEEFU-FEASEG 

holds great promise in supporting early and precise lung 

cancer diagnosis, ultimately contributing to better patient 

outcomes and advancing medical research in lung cancer 

detection. 
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