
International Journal of Engineering Trends and Technology Volume 72 Issue 11, 322-332, November 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I11P131 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Towards Secure Agent Migration in Mobile Cloud

Computing Using JADE Framework

Khadija El miloudi1, Yassine Aggagui2, Abderrahim Abdellaoui3

1,2,3Systems Engineering Laboratory, ENSAK, Ibn Tofail University, Kenitra, Morocco.

1Corresponding Author : elmiloudi.khadija@gmail.com

Received: 03 April 2024 Revised: 09 August 2024 Accepted: 17 August 2024 Published: 29 November 2024

Abstract - Mobile Cloud Computing (MCC) has achieved significant success in recent years by delivering resources to mobile

devices and making them available to any device for computation and execution in the cloud. Speaking of computing the

execution, the Multi-Agent System (MAS) allows mobile devices to run an agent-based application in which agents can be

migrated from one node to another to continue the execution within a system. The goal is to combine the advantages of MCC

and MAS to compute application agents between mobiles to reduce power consumption and improve application performance.

This paper provides a novel agent migration architecture for mobile cloud computing built on the JADE platform and considers

security concerns using the ECDH, ECDSA, and SIMON algorithms.

Keywords - Agent migration, ECDH, ECDSA, JADE, Mobile cloud computing, SIMON.

1. Introduction
Mobile Cloud Computing (MCC) has become

increasingly important in the mobile environment, thanks to

the vast services and benefits provided by Cloud Service

Providers (CSPs) such as Google, Amazon, and Microsoft.

According to [1], mobile cloud computing is "a rich mobile

computing technology that leverages unified elastic resources

of varied clouds and network technologies toward unrestricted

functionality, storage, and mobility to serve a multitude of

mobile devices anywhere, anytime through the channel of

Ethernet or Internet regardless of heterogeneous environments

and platforms based on the pay-as-you-use principle". The

advancement of MCC can be observed in the enhanced

performance of mobile devices and mobile applications,

whereby the hosting of mobile execution has migrated to

cloud-based resources.

This can have a significant impact, particularly for mobile

devices with limited resources. Such improvements include

increased processing and data storage capacity, longer battery

life, and increased reliability [2]. On the other hand, mobile

users can benefit from a wide selection of services that can

reduce power usage and energy consumption while running

applications on mobile devices. These services are divided

into several groups, including software, platforms, and

infrastructure [3], [4]. As a result, consumers will benefit from

using servers, storage, applications, and processing power

with minimal management effort. Three approaches can be

used to implement MCC. The first is the conventional Client-

Server design, where the mobile device serves as a client, and

application processing is conducted in the cloud servers. The

second is called a cloudlet, a solution meant to help cloud

servers by giving customers access to resources with quicker

response times [5]. The third is a virtual resource cloud created

by collaborating with mobile devices on the same network,

with peer-to-peer communication between nodes [6]. This

study focuses on the third approach of MCC implementation.

Several solutions have been presented on this subject,

including migrating Agents based on Multi-Agent Systems

(MAS). Niu Haichun and Liu Yong [4] introduce a mobile

agent-based task seamless migration approach for mobile

cloud computing. It is a solution designed to overcome the

limitations of standard mobile agent migration by monitoring

the migration of Agent tasks over the network and specifying

each task's purpose with regard to time delay.

However, security is crucial to secure Agent data across

the network. As described in ref [7], a method based on

Elliptic Curve Cryptography is proposed to secure Agent data

exchange. In order to increase processing power and decrease

mobile phone resource consumption, this paper presents a new

agent migration scheme that complies with mobile cloud

computing security standards. This scheme provides a

framework for making decisions about agent migration and

optimizing agent transport. It also provides a technique for

monitoring agent migration and securing data flow between

agents in the platform. The scheme is based on the Java Agent

Development Framework (JADE) and Elliptic curve Diffie

Hellman algorithm with lightweight encryption using the

SIMON algorithm.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Khadija El miloudi et al. / IJETT, 72(11), 322-332, 2024

323

2. Review of Related Works
This section presents some of the research literature

around the agent migration and agents task migration models

used in mobile cloud computing and multi-agent systems. A

few instances of current agent/agent-task mobility works will

be introduced. Then, a collection of papers that offer several

approaches to enhance the security and privacy of agent data

will be examined. In ref [8], Ametller et al. present a

mechanism for agent mobility using the ACL communication

language proposed by FIPA. The "mobile-agent-description"

concept outlined by FIPA handles the agent's description

during migration. The transmission of the agent consists of

establishing the transmission protocol and the ontology that

will be utilized for the movement and extraction of the agent

between two platforms. The migration model used is handled

directly by the platform specified by the FIPA specification.

In reference [9], Vedran Vyroubal and Mario Kušek

present a novel migration agent model for the Android

platform, which allows agents to be sent between the J2SE and

Android platforms. A pair of techniques have been introduced,

one based on encapsulating the agent (including its code and

state) within an ACL message that FIPA defines. The second

step is to migrate each agent's function. By converting JVM

byte codes to DALVIK VM bytes-codes on both platforms,

they can solve the byte code mismatches between the J2SE

and Android platforms. A framework for improving mobile

device resource usage is presented by Angin and Bhargava

[10] as an example of how to implement agent migration. In

this example, mobile application agents migrate to a

designated cloud server to be executed. Based on each server's

computing power and communication link speed, the

migration manager selects which server will be utilized to

migrate the mobile agent.

In [11], the asynchronous migration technique is

employed to enable migrations to occur almost anywhere in

the user codes, while the Twin Method Hierarchy that is

suggested reduces the overhead that arises from state-

restoration codes during regular execution.

Another method for migrating agents between incompatible

platforms is described in ref [12]. The problem was resolved

by creating platform-independent agents with the ability to

migrate between incompatible systems using a special agent

architecture. Kamouri et al. [13] offer a novel method based

on a cryptography trace to identify the agent and the home

platform to ensure integrity during the agent transmission in

order to enforce the security requirement during the agent

migration. Additionally, an agent named SOS is mentioned as

a potential option for monitoring the migration of Lightweight

agents to new platforms. This agent is in charge of defending

the LW agent from malicious attacks, including DOS attacks.

Another method that delivers two benefits is referenced [14].

The first is the agent's robust anonymous authentication using

elliptic curve cryptography. The second one includes a tracing

tool for monitoring the execution of agent code migrating

across several platforms. As a result, when a new platform

receives an agent, this method can aid in detecting harmful

code. Angin et al. [15] demonstrate an effective way for

securing mobile agent mobility in mobile cloud computing,

where mobile agents move from a mobile device to a remote

container on the cloud server side. The suggested approach

enables the mobile agent to use integrity checkpoints to defend

itself against tampering while the agent runs in the container

to identify tampering attacks.

3. Theoretical background
Before presenting an agent migration framework based on

the JADE platform that considers security needs, a quick

overview of the JADE platform and the multiple security

algorithms employed in the proposed approach below is

provided.

3.1. JADE Platform

Java Agent Development Framework (JADE) is a

software framework that is compliant with the standard FIPA

for developing multi-agent systems. It is fully implemented in

Java and facilitates the development of intelligent agents in

heterogeneous environments under the FIPA specifications.

JADE provides a distributed agent platform across multiple

machines (which is unnecessary to execute the same OS),

besides a peer-to-peer communication between agents based

on the message-passing paradigm. Figure 1 demonstrates the

main architecture of JADE. The JADE platform consists of

containers, each of which can execute zero or more agents

simultaneously and is identifiable by a unique name. Agents

communicate with one another via ACL messages. As seen in

Figure 1, the platform allows containers to be executed across

several hosts in a distributed system. The JADE architecture

includes a specific container named Main Container, which

comprises two fundamental agents responsible for managing

the platform: The DF (Directory Facilitator) agent offers a

yellow page where agents can list their services and provide a

directory of the agents available on the platform. The AMS

(Agent Management System) agent is a platform controller;

aside from registration control and agent authentication, it is

the only one able to start, kill, suspend, and resume the agent,

container, or hall platform [10].

Fig. 1 The JADE architecture [16]

Khadija El miloudi et al. / IJETT, 72(11), 322-332, 2024

324

Table 1. ECC parameters

Parameter Description

p The field in which the curve is defined over

a, b The values used to define the curve

G The generator point

n The prime order of G

h Cofactor

3.2. Elliptic Curve Diffie Helman

3.2.1. Elliptic Curve Cryptography (ECC)

Definition

ECC is an asymmetric algorithm designed as an

alternative to RSA, commonly used in SSL certificates.

Compared to other algorithms, ECC delivers smaller keys

while maintaining the same level of security for devices with

limited resources. The ECC is used for key exchange, digital

signature, and encryption via key exchange with other

symmetric algorithms (in this study, the Elliptic curve with

Simon and Speck algorithms is used).

The following equation defines the ECC:

 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 (1)

a and b are two arbitrary constant points on the elliptic

curve, which must satisfy the following condition:

4𝑎3 + 27𝑏2 ≠ 0. (2)

An Elliptic curve [5] is a curve passing from a point that

solves the equation below:

 𝐸: (𝑥, 𝑦) | 𝑦2 = 𝑥2 + 𝑎𝑥 + 𝑏 (3)

Domain Parameters

They are a set of parameters to be agreed upon between

two parties to use the ECC, which are:

3.2.2. Diffie Helman (DH)

Definition

The Diffie Helman (DH) is a public key protocol to

exchange cryptographic keys across the network. It is an

interesting method to securely compute keys between two

parties to generate a shared key for encryption purposes.

Proposition

Let Bob and Alice be the two persons who wish to

exchange a secret key. The sharing procedure cannot begin

until all parties agree on the parameters. The protocol applies

to the multiplicative group of integers modulo p, where g is a

primitive root modulo p and p is a prime number. p and g are

necessary for determining the shared secret, which must be

between 1 and p-1. Below is an example:

 Bob and Alice agreed on a specific p = 24 and g = 4 to

use while sharing secrets.

 Alice generates a private integer a = 5, then computes

𝐴 = 𝑔𝑎𝑚𝑜𝑑 𝑝 : 𝐴 = 45𝑚𝑜𝑑 24 = 16

 Bob generates a private integer b = 4, then computes

𝐵 = 𝑔𝑏𝑚𝑜𝑑 𝑝 : 𝐵 = 43𝑚𝑜𝑑 24 = 16

 Alice sends 𝑆 = 𝐵𝑎𝑚𝑜𝑑 𝑝 :

𝑆 = 165𝑚𝑜𝑑 24 = 16

 Bob sends 𝑆 = 𝐴𝑏𝑚𝑜𝑑 𝑝 :

𝑆 = 164𝑚𝑜𝑑 24 = 16

As a result, Alice and Bob have the same secret, which is 16.

3.3. Simon Lightweight Algorithm

SIMON is a lightweight encryption scheme from the

Feistel-based block ciphers’ family, where each block is

divided into two halves [17]. SIMON was introduced by the

National Security Agency (NSA) in June 2013. It supports

different blocks and key sizes and provides high performance

on software and hardware.

Consequently, SIMON can be suitable for various

platforms and light for hardware-based devices (Table 2). As

illustrated in Figure 2, the round function uses the key

schedule to run several rounds on the same block data. The

round function combines two blocks of n bits to generate a

single encrypted word. The block logic comprises logical

functions of AND, XOR, and left rolls.

The following describes the steps of round function used

to encrypt the message.

• The first step is to generate a bit field utilizing the next

block via a left roll of 1 (S1) and 8 (S8) with a logical

AND operating on the current block as an XOR.

• In the second step, a left roll of 2 (S2) is utilized to create

a bit field in the next block. This field is then used as an

XOR against the outcome of the previous operation.

• The final step is to XOR the keyword with the previous

result. After that, the two blocks are switched, and the

procedure is repeated.

The block and key sizes of the function determine the

number of rounds.

3.4. Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA)

is a Digital Signature Algorithm (DSA) that employs keys

generated from elliptic curve cryptography. It is a remarkably

effective algorithm based on public key cryptography.

ECDSA has three primary functions.

Table 2. The combination of block size, key size, and number of rounds

using the Simon algorithm

Block size (bits) Key size (bits) Rounds

32 64 32

48
72 36

96 36

64
96 42

128 44

96
96 52

144 54

Khadija El miloudi et al. / IJETT, 72(11), 322-332, 2024

325

Fig. 2 The SIMON round function [18]

3.4.1. Key Pair Generation

The ECDSA key pair comprises

• Private key (privkey): it is a random integer in the range

of 0 to n-1.

• Public key (pubKey): is the point on the elliptic curve that

results from multiplying the generator point G by the

private key.

pubKey = privKey * G

3.4.2. Signature

To sign a message, the following actions are required:

• Randomly choose a number k between 1 and n-1.

• Calculate (𝑖, 𝑗) = 𝑘 × 𝐺 where G is an elliptic curve base

point.

• Calculate = 𝑖 𝑚𝑜𝑑 𝑛 ; if 𝑥 = 0, return to step 1.

• Calculate 𝑦 = 𝑘−1 × (𝐻(𝑚) + 𝑑) 𝑚𝑜𝑑 𝑛 where 𝐻(𝑚) is the

result of a cryptographic hash on the message m to be

signed, and d is the private key.

• If 𝑦 = 0, return to step 1.

The signature is (𝑥, 𝑦).

3.4.3. Verification

The signature verification technique uses the message and

signature (x, y) as inputs to establish the signature’s validity.

Here is a summarised version of the verification procedure.

The algorithm authenticates the sender by verifying the digital

signature of the message following steps below:

• Verify if 𝑄 is on the curve where 𝑄 is the sender’s public

key.

• Check that x and y are between 1 and n-1.

• Calculate
(𝑖, 𝑗) = (𝐻(𝑚)𝑦−1𝑚𝑜𝑑 𝑛) 𝐺 + (𝑥𝑦−1𝑚𝑜𝑑 𝑛)𝑄

The signature is valid if 𝑥 = 𝑖 𝑚𝑜𝑑 𝑛 , invalid otherwise.

4. The Proposed Approach
Multi-Agent Systems (MAS) is a robust paradigm that

offers numerous benefits for creating complex systems and

applications. The presence of a software agent in MAS aids in

resolving system issues by simplifying system activity. Each

node in an agent-based system can have either a static agent

that runs locally on the node or a mobile agent that can be

migrated to another node in the system [9]. In addition to the

advancement of mobile devices, the evolution of MAS

provides the opportunity to create agent-based smartphone

applications. The concept is to use the migration of agents in

MAS to compute agents between mobile devices for mobile

cloud computing, allowing us to reduce smartphone power

consumption. This research provides a new dynamic

framework for migrating mobile agent-based application

partitions to mobile cloud computing while maintaining

security needs. A computing agent is used to connect mobile

devices inside the same network. The migration of agents,

which distributes the execution of agents over several mobile

devices (servers offer resources to the client), aids in the

reduction of CPU, memory, and battery usage on mobile

devices. Our strategy relies on the JADE platform because of

its compatibility with the FIPA standard.The architectural

Xi+1 Xi

Xi+2 Xi+1

 S1

 S8

 S2

 &

ki

n

Khadija El miloudi et al. / IJETT, 72(11), 322-332, 2024

326

elements will be first described to enhance comprehension of

the suggested methodology. Then, every component of our

approach will be presented, along with an overview of each

component. Next, the entire process that the mobile agent goes

through to migrate from the client to the servers will be

outlined, including the steps of device discovery, migration

decision, ECDH authentication, registration, agent migration,

and migration monitoring.

4.1. Architecture of the Proposed Agent Migration Security

Framework

Figure 3 illustrates our proposed agent migration security

framework based on the JADE platform. It displays every

component of our approach on both the client-side and server-

side.

The client-side consists of the following components

• The client-interface is in charge of initiating

communication with the server, identifying and

authenticating devices and transferring agents to the

server (i.e., other mobile devices).

• The client manager decides which agents are candidates

for migration and which server will receive the

transmission (migration decision).

• The Main Container (provided by the JADE framework)

connects and allows all remote containers (i.e. those

executed on other mobile devices) to join the client on the

same platform. The main container always runs on the

client side.

• The App Agents are the application agents running in

local containers on the client side and execute all

application related tasks.

The following are the components offered on the server-side:

• The server-interface performs the same function as the

client-interface and receives the agent transferred by the

client-manager.

• The Server Manager collects the address information of

the main container from the client and uses it to create a

remote container on the same platform as the client. He

also receives agents from the server interface and adds

them to the remote container.

• The remote container where migrated agents will be

executed.

4.2. Mobile Agent Mobility Lifecycle

In order to achieve mobile agent mobility between

containers through the network, the following phases must be

performed (Figure 4): Every phase is defined to fulfill the

purpose of the subsequent phase, and each has a specific role.

The following section delves further into each component.

Fig. 3 Overview of the suggested agent migration architecture

Mobile B (Server) Mobile A (Client)

Main Container

Remote

Container
Server Manager

Client Manager

App Agents

S
erv

er In
terface

C
lien

t In
terface

Platform

Khadija El miloudi et al. / IJETT, 72(11), 322-332, 2024

327

Fig. 4 Mobile agent migration lifecycle

4.2.1. Device Discovery

In the device discovery phase, the purpose is to detect all

mobile devices that operate as servers and provide resources

to clients in the same network. In order to accomplish this, a

broadcast request is sent to every node connected to the

network using the UDP protocol.

All servers listen on the same port, allowing us to

distinguish the servers from other connected nodes. Upon

receipt of a request from the client, the server returns the

server's IP address along with details about the phone's total

free memory, battery life, and CPU usage (Figure 5).

Fig. 5 Sequence diagram of communication between server and client

4.2.2. Migration Decision

As previously stated, the client receives the IP addresses

of all servers within the network along with the phone's current

health (memory, CPU, and battery life). These details allow

for the classification of the devices and the determination of

the agent migration destination (Figure 6). Each agent's CPU

and memory usage is classified on the agent side. The memory

consumed before and after creating each agent in the container

is calculated to achieve that.

In Figure 8, The ObjectMemoryBefore method returns

the total consumed memory before creating the agent. The

ObjectMemoryAfter method returns the memory size of the

agents after creation. It is calculated by subtracting the total

memory used before and after creating the agent. Therefore,

the average CPU time of each behavior in the agent is

calculated (Figure 7):

n: number of behaviors in the agent.

m: number of executions of behavior.

a: The CPU usage is based on the behavior during

execution.

d: The total CPU usage by the behavior.

c: The range of CPU usage by the agent.

d = ∑(𝑎𝑗)

𝑚

𝑗=1

 (4)

c =
(∑ (𝑑𝑖)𝑛

𝑖=0)

𝑛
 (5)

As seen in Equation (4), the overall CPU usage is

obtained as the sum of the total CPU usage by the behavior

during execution which allows calculation of the range of

CPU for all behaviors in the agent (Equation (5)).

Fig. 6 Code segment of the Servercomparator class

Device Discovery

Migration Decision

Authentication using ECDH

Registration

Agent Migration

Monitoring of Migration

Client Server

Broadcast Request

 IP Address and

Informations about the phone

https://www.sciencedirect.com/science/article/pii/S0167404818303948#eq0001

Khadija El miloudi et al. / IJETT, 72(11), 322-332, 2024

328

Fig. 7 Code segment of the MyContainer class that displays the

calculation memory of an agent during the creation

Fig. 8 Code segment of the MyAgent class displays the calculation of

CPU range and memory of an agent

As a result, the agent's memory capacity and CPU use can

be determined (Figures 7 and 8). The Performance Monitor

class (Figure 9) is used by the classes Mycontainer and

MyAgent to do the computation. There are methods in this

class that facilitate memory and CPU monitoring. These

factors were utilized to categorize the agents and determine

each agent's final destination (Figure 10). The computation is

accurate for a given period of time at the moment of agent

migration. There are two goals in classifying the server's

power and resource consumption by the agent. The first is to

choose which servers are going to authenticate. The second is

determining which agent consumes the most resources,

necessitating migration to a specific server from among the

available servers in the network.

Fig. 9 Code segment of the PerformanceMonitor class

Fig. 10 2Code segment of the AgentComparator class

Fig. 11 Sequence diagram of migration decision

Client

Interface
Client

Manager

List of connected
servers

List of agents and their

destinations
Sort the list

of agents

according to
resources

Sort the list

of servers

according
to resources
availability

Khadija El miloudi et al. / IJETT, 72(11), 322-332, 2024

329

Fig. 12 Sequence diagram of the creation and addition of a container to the platform

4.2.3. Authentication Using ECDH

As previously stated, the client manager determines

which agents will participate in the migration and which will

be the destination. A list based on server-side resource

availability and agent-side resource use is the outcome of this

classification. The authentication phase focuses on creating a

secure tunnel between the client and the server that will be

used to transfer agents. A secure connection to the servers is

established using the list of servers created by the client-

manager.

To accomplish this purpose, the Elliptic curve Diffie

Helman key exchange is employed between the client and

server to ensure secure communication:

Step 1: To perform the key exchange, the domain parameters

(p, G, a, b, n, and h) must match on both the client

and the server.

Step 2: A random private key, d, that must be between 1 and

n-1, is generated by the client and server.

Step 3: The point Q is calculated, the public key:

• For the client: 𝑄𝑐 = 𝑑𝑐 × 𝐺 (The generator

point).

• For the server: 𝑄𝑆 = 𝑑𝑆 × 𝐺 (The generator

point).

Step 4: To calculate the shared key, the client and the server

compute their public keys.

For the client:

• Confirm that 𝑄𝑠 is on the curve and that

𝑄𝑠 × 𝑛 = ∞.

• Calculate the shared secret 𝑅, 𝑅𝑐 = 𝑄𝑠 × 𝑑𝑐.

For the server:

• Verify if the 𝑄𝑐 is on the curve, and check if

𝑄𝑐 × 𝑛 = ∞.

• Calculate the shared secret 𝑅, 𝑅𝑠 = 𝑄𝑐 × 𝑑𝑠.

Since the client and server share the same key, they can

safely communicate data.

Fig. 13 Code segment of adding a container to the platform

4.2.4. Registration

During this phase, the remote container is launched on the

same platform as the client. In order to create the remote

container, the server interface obtains the IP address and port

of the main container on the client side upon the client's

authentication with the server. To create and integrate the

remote container into the platform, the server interface

provides the server manager with the IP address and port of

the main container (Figure 12).

The JADE framework permits the addition of a remote

main container's IP address and port to any container during

the creation phase. The process of adding a container to a

platform is shown in Figure 13.

4.2.5. Agent Migration

Loading Agent

The migration process consists of transmitting the agent

from local containers on the client side to a remote container

on the server, accompanied by the agent's ability to execute its

tasks. For this, the client manager uses ACL messages to

retrieve the agent object directly from the agent. For example,

MyAgent (MA) requests the binary and status of the agent via

an ACL message sent by the client-manager to the agent. As a

result of the MA's response, the client manager sends the MA

to the client interface, which initiates the migration via Java

Socket.

Main container IP

Address and port Main container IP

Address and port

Client Interface Server Manager Server Interface

Create the

remote

container

Khadija El miloudi et al. / IJETT, 72(11), 322-332, 2024

330

Fig. 14 Sequence diagram of agent migration

The figure below shows how to send agent binary and

state from the agent itself.

Fig. 15 Code segment that shows how to send agent state

Serialization and Encryption

Serialization is employed because it allows data to be read

by other devices. Agents in the JADE framework are

serializable by default because they extend the Agent class,

which is already serializable. Upon receiving the agent binary

and its current state, the client manager sends it to the client

interface.

After authentication, the client interface prepares the

agent for migration. Agent a is encrypted using the SIMON

algorithm and the shared keys. The cyphertext c, 𝑐 =
 𝐸(𝑠, 𝑏, 𝑎), is gated. The block size b and key size n need to

be manually defined on both sides (a and c are two binary

arrays), after which a random k is chosen from [1, 𝑛 − 1].

Next, the ECDSA algorithm is used to sign the message

to retrieve the point e before the migration: 𝑒 | (𝑥, 𝑦) =
 𝐻(𝑑, 𝑐, 𝑘).

Table 3. The proposed approach parameters

Parameter Description

E Encryption method

D Decryption method

H Signature method

V Signature verification method

a The agent that we want to migrate

b The block size used for encryption

c
The cyphertext is the result of encryption

method E.

k The random value used to sign c.

e The signature value of the signing method.

Q The public key of the client.

d The private key of the client

In the end, c and e are computed on the server. On the

server side, it is verified if x and y are between 1 and n-1. It is

also checked if 𝑄 is a point from the curve 𝐸. Then, the point

v is obtained by verifying c using the ECDSA algorithm, 𝑣 =
𝑉(𝑐, 𝑒, 𝑄). The agent a is obtained by decrypting c using the

SIMON Algorithm, 𝑎 = 𝐷(𝑘, 𝑏, 𝑐).

Adding Agent to the Remote Container

With the JADE Framework, an agent can be added to a

container by providing the agent binary to the containers that

have the agent’s name assigned to them (Figure 16).

Fig. 16 Code segment that shows how to add an agent to a container

MyAgent
Client Manager

Server Interface

Client Interface

Agent binary and state

Agent binary and state

Migrate the agent

Khadija El miloudi et al. / IJETT, 72(11), 322-332, 2024

331

Fig. 17 Sequence diagram of migration monitoring

4.2.6. Migration Monitoring

When the agent arrives in the remote container, it sends

an ACL message to the client manager to confirm the

migration. Afterwards, the client manager pauses the agents'

execution within local containers. If no confirmation is

detected, the agent continues the execution normally.

5. Conclusion and Future Work
In order to minimize the consumption of CPU, memory,

and battery life consumption of mobile devices, this paper

provides a novel mechanism for computing agents across

mobile phones. Agents can be moved between incompatible

platforms thanks to our method, which is based on the Jade

platform. Additionally, an elliptic curve digital signature is

employed to guarantee the integrity of the migration, and an

elliptic curve Diffie Helman is employed for authentication.

The SIMON cipher algorithm is used to encrypt data sent

between agents. This method determines each agent's

destination before migration by using migration decisions.

The decision is made based on server resources and agent

consumption. The benefits of this study include the proposal

of a system that offers authentication, confidentiality, and

integrity for an agent migration while simultaneously

considering mobile device resource consumption. Cloud

resource management optimization [19] is one of the research

fields that has lately received notice and deserves further

exploration.

A critical field for further research is code injection. A

primary issue encountered by mobile agents is the possibility

of third parties manipulating the way the agents execute.

Successful code injection might have potentially harmful

consequences, such as enabling the client to receive untrusted

data.

References
[1] Dijiang Huang, Huijun Wu, Mobile Cloud Computing Taxonomy, Mobile Cloud Computing, pp. 5-29, 2018. [Google Scholar] [Publisher

Link]

[2] Parkavi Ravi, Priyanka Chinnaiah, and Sheik Adullah Abbas, Cloud Computing Technologies for Green Enterprises: Fundamentals of

Cloud Computing for Green Enterprises, IGI Global Scientific Publishing Platform, pp. 395-414, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[3] Jason Carolan et al., Introduction to cloud computing architecture, White Paper, 1st ed., 2009. [Google Scholar] [Publisher Link]

[4] N. Haichun, and L. Yong, “A Mobile Agent-Based Task Seamless Migration Model for Mobile Cloud Computing,” Proceeding 2014

IEEE Workshop on Advanced Research and Technology in Industry Applications (WARTIA), Ottawa, ON, Canada, 2014. [CrossRef]

[Google Scholar] [Publisher Link]

[5] Layth Muwafaq et al., “A Survey on Cloudlet Computation Optimization in the Mobile Edge Computing Environment,” International

Journal of Advanced Computer Science and Applications (IJACSA), vol. 14, no. 1, PP. 1-13, 2023. [CrossRef] [Google Scholar] [Publisher

Link]

[6] Niroshinie Fernando, Seng W. Loke, and Wenny Rahayu, “Mobile Cloud Computing: A Survey,” Future Generation Computer Systems,

vol. 29, no. 1, pp. 84-106, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[7] Yousra Berguig et al., “Mobile Agent Security Based on Mutual Authentication and Elliptic Curve Cryptography,” International Journal

of Innovative Technology and Exploring Engineering, vol. 8, no. 12, pp. 2509-2517, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[8] Joan Ametller, Sergi Robles, and Joan Borrell, “Agent Migration over FIPA ACL Messages,” Proceedings International Workshop on

Mobile Agents for Telecommunication Applications, Springer, Berlin, Heidelberg, vol. 2881, pp. 210-219, 2003. [CrossRef] [Google

Scholar] [Publisher Link]

Remote ContainerAgent Local Agent Client Manager

Migrated Agent Confirmation Suspends the local Agent

Execution

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=D.+Huang%2C+and+H.+Wu%2C+Mobile+Cloud+Computing%3A+Chapter+1+-+Mobile+Cloud+Computing+Taxonomy%2C&btnG=
https://www.oreilly.com/library/view/mobile-cloud-computing/9780128096444/B9780128096413000028.xhtml
https://www.oreilly.com/library/view/mobile-cloud-computing/9780128096444/B9780128096413000028.xhtml
http://dx.doi.org/10.4018/978-1-5225-7915-1.ch021
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cloud+Computing+Technologies+for+Green+Enterprises%3A+Fundamentals+of+Cloud+Computing+for+Green+Enterprises&btnG=
https://www.igi-global.com/gateway/chapter/221059
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Introduction+to+cloud+computing+architecture&btnG=
http://www.staroceans.org/e-book/CloudComputing.pdf
https://doi.org/10.1109/wartia.2014.6976242
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+mobile+agent-based+task+seamless+migration+model+for+mobile+cloud+computing&btnG=
https://ieeexplore.ieee.org/document/6976242
http://dx.doi.org/10.14569/IJACSA.2023.0140157
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+on+Cloudlet+Computation+Optimization+in+the+Mobile+Edge+Computing+Environment&btnG=
https://thesai.org/Publications/ViewPaper?Volume=14&Issue=1&Code=IJACSA&SerialNo=57
https://thesai.org/Publications/ViewPaper?Volume=14&Issue=1&Code=IJACSA&SerialNo=57
https://doi.org/10.1016/j.future.2012.05.023
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobile+Cloud+Computing%3A+A+survey&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X12001318?via%3Dihub
http://doi.org/10.35940/ijitee.L3438.1081219
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mobile+Agent+Security+Based+on+Mutual+Authentication+and+Elliptic+Curve+Cryptography&btnG=
https://www.ijitee.org/portfolio-item/L34381081219/
https://doi.org/10.1007/978-3-540-39646-8_20
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agent+Migration+over+FIPA+ACL+Messages&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Agent+Migration+over+FIPA+ACL+Messages&btnG=
https://link.springer.com/chapter/10.1007/978-3-540-39646-8_20

Khadija El miloudi et al. / IJETT, 72(11), 322-332, 2024

332

[9] Vedran Vyroubal, and Mario Kušek, “Task Migration of JADE Agents on Android Platform,” Proceedings of the 12th International

Conference on Telecommunications, Zagreb, Croatia, pp. 123-130, 2013. [Google Scholar] [Publisher Link]

[10] P. Angin, and B.K. Bhargava, “An Agent-Based Optimization Framework for Mobile-Cloud Computing,” Journal of Wireless Mobile

Networks, Ubiquitous Computing, and Dependable Applications, vol. 4, no. 2, pp. 1-17, 2013. [Google Scholar] [Publisher Link]

[11] Ricky K.K. Ma, and Cho-Li Wang, “Lightweight Application-Level Task Migration for Mobile Cloud Computing,” Proceedings of the

IEEE 26th International Conference on Advanced Information Networking and Applications, Fukuoka, Japan, pp. 550-557, 2012.

[CrossRef] [Google Scholar] [Publisher Link]

[12] P. Misikangas, and K. Raatikainen, “Agent Migration Between Incompatible Agent Platforms”, In Proceedings of the 20th IEEE

International Conference on Distributed Computing Systems, Taipei, Taiwan, pp. 4-10, 2000. [CrossRef] [Google Scholar] [Publisher

Link]

[13] Sophia Alami-Kamouri et al., “Mobile Agent Security Based on Cryptographic Trace and SOS Agent Mechanisms,” Journal of

Communications, vol. 15, no. 3, pp. 221-230, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[14] Hind Idrissi, “Anonymous ECC-Authentication and Intrusion Detection Based on Execution Tracing for Mobile Agent Security,” Wireless

Personal Communications, vol. 94, no. 3, pp. 1799-1824, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[15] Pelin Angin, Bharat Bhargava, and Rohit Ranchal, “A Self-Protecting Agents Based Model for High-Performance Mobile-Cloud

Computing,” Computers & Security, vol. 77, pp. 380-396, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[16] David Grimshaw, JADE Administration Tutorial, Jade Platform, Ryerson University, 2010. [Online]. Available:

https://jade.tilab.com/documentation/tutorials-guides/jade-administration-tutorial/

[17] Ashutosh Dhar Dwivedi, and Gautam Srivastava, “Security Analysis of Lightweight IoT Encryption Algorithms: SIMON and

SIMECK,” Internet of Things, vol. 21, pp. 1-11, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[18] Ray Beaulieu et al., “The SIMON and SPECK Lightweight Block Ciphers,” Proceedings of the 52nd ACM/EDAC/IEEE Design Automation

Conference (DAC), San Francisco, CA, pp. 1-6, 2015. [CrossRef] [Google Scholar] [Publisher Link]

[19] Aldo H.D. Mendes et al., “MAS-Cloud+: A Novel Multi-Agent Architecture With Reasoning Models for Resource Management in

Multiple Providers,” Future Generation Computer Systems, vol. 154, pp. 16-34, 2024. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Task+migration+of+JADE+agents+on+Android+platform&btnG=
https://ieeexplore.ieee.org/document/6578280
https://scholar.google.com/scholar?cluster=14990988261016940790&hl=en&as_sdt=0,5
https://open.metu.edu.tr/handle/11511/82240
https://doi.org/10.1109/aina.2012.124
https://scholar.google.com/scholar?cluster=14243209136672418662&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/6184918
http://dx.doi.org/10.1109/ICDCS.2000.840901
https://scholar.google.com/scholar?cluster=12679850576898817539&hl=en&as_sdt=0,5
https://ieeexplore.ieee.org/document/840901
https://ieeexplore.ieee.org/document/840901
http://dx.doi.org/10.12720/jcm.15.3.221-230
https://scholar.google.com/scholar?cluster=6252780211333615487&hl=en&as_sdt=0,5
https://www.jocm.us/show-237-1515-1.html
https://doi.org/10.1007/s11277-016-3712-z
https://scholar.google.com/scholar?cluster=14468247283891249039&hl=en&as_sdt=0,5
https://link.springer.com/article/10.1007/s11277-016-3712-z
https://doi.org/10.1016/j.cose.2018.04.011
https://scholar.google.com/scholar?cluster=12336426102852743697&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0167404818303948?via%3Dihub
https://doi.org/10.1016/j.iot.2022.100677
https://scholar.google.com/scholar?cluster=16622219566975538351&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/pii/S2542660522001585?via%3Dihub
https://doi.org/10.1145/2744769.2747946
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=The+SIMON+and+SPECK+lightweight+block+cipher&btnG=
https://dl.acm.org/doi/abs/10.1145/2744769.2747946
https://doi.org/10.1016/j.future.2023.12.022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MAS-Cloud%2B%3A+A+novel+multi-agent+architecture+with+reasoning+models+for+resource+management+in+multiple+providers&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0167739X23004776?via%3Dihub

