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Abstract - Wireless Sensor Networks (WSNs) have facilitated the advancement of communication systems. WSNs are deployed 

in sectors where metrics and performance factors are calculated mainly based on particular nodes, the importance of which 

should be emphasized. Centrality measures are enumerated to include Degree, Betweenness, Closeness, Eigenvector, Katz and 

Subgraph Centralities, which directly assess the importance of individual network nodes. The research explicitly considers the 

generation of WSNs with 150 nodes using the Watts-Strogatz, Random Walk and Barabasi-Albert models, paying attention to 

essential nodes that affect the network level and its features. Using Pearson correlation analysis, Kendall rank correlation 

analysis and Spearman rank correlation analysis determine how centrality measures correlate in each model. Principal 

Component Analysis (PCA) determines how many nodes need to be used to determine the centrality data to contain the most 

variance across the different models. The findings in this study also underscore the importance of the centrality measures in 

explaining the network's topology and make it clear why some nodes are more important than others; the information provided 

may assist in creating more efficient WSN structures. 

Keywords - Wireless Sensor Networks (WSNs), Centrality measures, Key node identification, Principal component analysis 

(PCA), Network optimization. 

1. Introduction 
Wireless Sensor Networks (WSNs) provide fundamental 

support for smart systems since they touch the areas of 

healthcare or the environmental systems. The spatially 

adaptive sensors that are the constituent of this network are 

tasked with receiving, transmitting and disseminating data of 

a particular range and area to a specified location for 

processing. Proper setup of the node management 

configuration is also critical in operationalizing WSN, as 

identifying some selected nodes, which are dispersed in the 

network, improves the performance and dependability of the 

system [2]. In network analysis, centrality measures are 

essential for assessing the relative importance of individual 

members depending on their location in a network geometry. 

Degree, Betweenness, Closeness, Eigenvector, Katz, and 

Subgraph Centralities are common measures of centrality, 

which rely on node connectivity, influencing communication 

channels and even enhancing the network [3,4,5]. These 

numerous studies highlight the centrality metrics of different 

networks, including WSNs, which improve fault tolerance, 

data routing efficiency and energy consumption [6-8]. 

Nonetheless, despite the plethora of literature on centrality in 

WSNs, understanding the relationship between centrality and 

different network models such as the Watts-Strogatz, Random 

Walk, and Barabási-Albert models appears to be an 

unexplored area. The relationship can be seen that the bulk of 

the earlier work focused on single centrality measure 

approaches within one class of network topology. Still, little 

is known about the approaches that cut across topologies, 

which are ideal for determining which aspects of the node's 

position across the network topologies are significant to the 

structural balance of the network. This research gap calls for a 

multi-model framework of a network-centric approach to 

establish the central nodes that are key to the efficiency of the 

WSNs. This study fills this gap in the research literature by 

systematically comparing centrality measures in 150 node 

WSNs designed with three models: the Watts-Strogatz model, 

which is best characterized by high clustering with small 

world tendency [9]; the Random Walk model, which depicts 

networks with random node mobility or shaking such as 

sensor networks with unpredictable movements [10,11]; the 

Barabási-Albert model reflected the networks which are scale-

free or have a free degree distribution such as real and 

technological networks [12,13]. Moreover, it uses Pearson, 
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Kendall rank, and Spearman correlations further to assess the 

relationship among the different centrality measures and thus 

identify some aspects where they complement or differ [14-

16]. In the present work, Principal Component Analysis 

(PCA) reduces dimensionality while maximizing variance to 

make the complex interrelationships between centralities less 

complicated. It thus generates principal components that 

highlight the importance of the nodes [17-23]. The study 

provides a new perspective on key node identification by 

proposing ways of measuring the interaction of centrality 

across different types of networks. It guides how the design of 

WSNs can be done for improved robustness, optimality, and 

growth. The primary focus of this study is to bridge the gap in 

WSN optimization by explaining how various centrality 

measures work in different WSNs now generated based on 

other network models. The results provide further knowledge 

and practical implementation in contemporary communication 

systems and sound contributions to network theory by clearly 

pointing out the centrality measures that best express essential 

nodes in the network and improving the design and 

deployment of robust, scalable WSNs. 

2. Centrality Measures in Wireless Sensor 

Networks 
Centrality measures are commonly used tools in network 

analysis to determine the most key nodes. In WSN, these 

measures help to examine which nodes are essential for the 

proper operation of the network, for instance, for data 

relaying, communication, and redundancy. Below are 

descriptions of some of the most widely used centrality 

measures in WSN, along with their formulas and significance.  

2.1. Degree Centrality (DC) 

Degree centrality measures the importance of a node 

based on the number of direct connections it has with other 

nodes in the network. In this formula, deg(v) represents the 

degree of node v, meaning the number of edges connected to 

it, and N is the total number of nodes in the network. The 

concept behind degree centrality is straightforward: a node 

with more connections is generally more important because it 

can directly communicate with more network parts. In WSNs, 

nodes with a high degree of centrality often serve as hubs 

facilitating data exchange across the network [24].The degree 

centrality of a node v is given by  

𝐶𝐷(𝑣) =
deg(𝑣)

𝑁−1
    (1) 

2.2. Betweenness Centrality (BC) 

Betweenness centrality quantifies the importance of a 

node based on the number of shortest paths that pass through 

it. In this formula, 𝜎𝑠𝑡 denotes the total number of shortest 

paths between nodes s and t, while 𝜎𝑠𝑡(𝑣) is the number of 

those paths that pass through node v. A high betweenness 

centrality indicates that a node acts as a critical bridge or 

bottleneck, playing a key role in maintaining communication 

across the network. In WSNs, such nodes are crucial for 

ensuring efficient data flow, particularly in networks with 

sparse connectivity. The betweenness centrality of node v is 

given by  

𝐶𝐵(𝑣)  = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑡≠𝑣   (2) 

2.3. Closeness Centrality (CC) 

Closeness centrality reflects how close a node is to all 

other nodes in the network by calculating the average shortest 

path length from the node to all other nodes. Here, 𝑑(𝑣, 𝑡) is 

the shortest path distance between node v and node t. Nodes 

with high closeness centrality can reach other nodes more 

quickly, making them efficient for disseminating information 

throughout the network. In WSNs, such nodes are ideal for 

roles requiring quick data aggregation or distribution [25]. 

The closeness centrality of a node v is given by  

𝐶𝐶(𝑣)  =
𝑁−1

∑ 𝑑(𝑣,𝑡)𝑡≠𝑣  
  (3) 

2.4. Eigenvector Centrality (EVC) 

Eigenvector centrality measures a node's influence based 

on the importance of its neighbors. In the formula, M(v) 

represents the set of neighbors of node v, and λ is a constant 

(the largest eigenvalue of the adjacency matrix). A node with 

high eigenvector centrality is not only well-connected but is 

connected to other nodes that are themselves highly 

connected. This measure highlights nodes that are influential 

in the broader network context. In WSNs, nodes with high 

eigenvector centrality ensure robust and efficient network 

communication [26, 27]. The eigenvector centrality of a node 

v is given by  

𝐶𝐸(𝑣)  =
1

𝜆
∑ 𝐶𝐸(𝑢)𝑢∈M(𝑣)   (4) 

Where 𝐶𝐸(𝑢) is the Eigenvector centrality of node u, a 

neighbor of node v. 

2.5. Katz Centrality (KC) 

Katz centrality extends the idea of eigenvector centrality 

by considering all paths between nodes, not just direct 

connections, with attenuation based on path length. In this 

formula, α is a constant that scales the influence of neighbors, 

and β is a constant that adds value for each node, ensuring the 

centrality score is never zero. Katz centrality is useful for 

identifying nodes that are not only central but also influential 

across multiple levels of the network. In WSNs, this measure 

helps to identify nodes that play pivotal roles in spreading 

information across the network [28]. 

The Katz centrality of a node v is given by  

𝐶𝐾(𝑣) = 𝛼 ∑ 𝐶𝐾(𝑢)𝑢∈M(𝑣) + 𝛽 (5) 

Where 𝐶𝐾(𝑢) is the Katz centrality of node u, a neighbor 

of node v. 

2.6. Subgraph Centrality (SC) 

Subgraph centrality measures the importance of a node by 

counting the number of closed walks of different lengths that 
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start and end at the node. In this formula, 𝜇𝑘(𝑣) denotes the 

number of closed walks of length k at node v. Nodes with high 

subgraph centrality are central to many small subgraphs within 

the network, which means they play a significant role in the 

local structure. In WSNs, these nodes are crucial for 

maintaining local network robustness and ensuring effective 

local communication [29]. The Subgraph centrality of node v 

is given by  

𝐶𝑆(𝑣) = ∑
𝜇𝑘(𝑣) 

𝑘!

∞
𝑘=0   (6) 

3. Results and Discussion  
This research analysed the various centrality measures to 

identify the most critical nodes among the 150 analyzed 

WSNs. The set of centrality measures that cut across this study 

included Degree Centrality (DC), Betweenness Centrality 

(BC), Closeness Centrality (CC), Eigenvector centrality 

(EVC), Katz centrality (KC) and Subgraph centrality (SC).  

Figures 1, 2 and 3 illustrate the configurations of the 

WSNs with 150 nodes constructed using the Watts-Strogatz 

model, Random Walk and Barabasi-Albert models, 

respectively. The networks were constructed using Watts-

Strogatz, Random Walks, and Barabasi-Albert Models. 

Further, figures 2, 4 and 6 display the network’s marked DC, 

BC, CC, EVC, KC and SC measure values. Using the libraries 

and functions related to network analysis, the research was 

implemented in Python. Tables 1, 3, and 5 show the rank order 

for the centrality measures for the Watts-Strogatz, Random 

Walk, and Barabási-Albert models, respectively. Tables 2, 4, 

and 6 also provide the correlation coefficients for the 

centrality measures computed for these 150 nodes WSNs 

developed using similar models.  

3.1. First Experiment: WSN with 150 Nodes Generated 

Using the Watts-Strogatz Model 

The first experiment involved the generation of a 150-

node WSN using the Watts-Strogatz model. This model is 

characterized by its small-world properties, which balance 

high clustering and short path lengths. The network's 

incidence of node importance was exposed through the 

centrality measures for this network. As per degree centrality, 

nodes 127, 133 and 91 were ranked the highest as the hub 

nodes, which are central in sustaining interlinks and the 

transfer of information throughout the network. Betweenness 

centrality rated nodes 91, 112 and 108 as critical bridges or 

bottlenecks, which indicate their role in efficient data 

communication and offer a certain degree of robustness 

regarding damage control about node malfunctions. Closeness 

centrality analysis of the network stated specifically nodes 

109, 112, and 49, which are also listed as the most important 

nodes, which are the nearest to the most significant number of 

other nodes and which can be used in cases where information 

is needed to be gathered quickly. Eigenvector centrality 

disclosed that nodes 127, 126 and 125 wield much power 

owing to their neighbours' authority level, which makes those 

three nodes extremely relevant as they guarantee an optimal 

level of correlation of communication transferred throughout 

the network. Katz centrality again nodes 127, 133 and 91 

saying that they are striking nodes because of their 

effectiveness network wide. 

 
Fig. 1 WSN with 150 nodes generated using the Watts-Strogatz model

Table 1. Node rankings based on centrality metrics in a 150-node WSN generated using the Watts-Strogatz model 

Rank DC BC CC EVC KC SC 

1 127, 133 109 91 127 127 127 

2  91 112 126 133 128 

3 * 108 49 125 91 36 

4  68 113 124 139 133 

5  112 114 139 132 140 

6  49 109 128 140 78 

7  113 108 118 141 47 

8  90 90 90 3 120 

9  114 68 129 17 119 

10  111 111 123 49 9 

* 3,9,17, 32, 33,36, 47, 49 
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Fig. 2 Centrality values in a 150-node WSN generated using the Watts-Strogatz model 

Table 2. Correlation coefficients among centrality values of a 150-node WSN generated using the Watts-Strogatz model 

 DC BC CC EVC KC SC 

Pearson correlation  

DC - 0.73 0.66 0.75 0.95 0.73 

BC - - 0.81 0.48 0.68 0.23 

CC - - - 0.59 0.70 0.17 

EVC - - - - 0.90 0.80 

KC - - - - - 0.79 

SC - - - - - - 

Kendall rank correlation  

DC - 0.57 0.49 0.65 0.85 0.70 

BC - - 0.63 0.39 0.49 0.22 

CC - - - 0.39 0.51 0.18 

EVC - - - - 0.77 0.54 

KC - - - - - 0.64 

SC - - - - - - 

Spearman correlation  

DC - 0.71 0.61 0.79 0.95 0.84 

BC - - 0.82 0.55 0.68 0.33 

CC - - - 0.69 0.68 0.25 

EVC - - - - 0.92 0.71 

KC - - - - - 0.83 

SC - - - - - - 
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Finally, subgraph centrality ranked nodes 127, 128, and 

36 at the top, which are significant in the preservation of the 

local architecture of the network. The correlation analysis 

among the centrality measures revealed strong associations 

between degree, Katz and subgraph centralities, which all 

significantly identify the key nodes within the network. On the 

other hand, betweenness and closeness centralities had 

moderate correlations with other measures, implying that they 

measure the node importance from a different perspective. 

3.2. Second Experiment: WSN with 150 Nodes 

Generated Using the Random Walk Model 

The second experiment, a 150-node WSN was generated 

using the Random Walk model, which simulates networks 

with nodes that exhibit random movement. This model is 

particularly relevant for scenarios where nodes are mobile or 

have unpredictable behavior. 

 
Fig. 3 WSN with 150 nodes generated using the Random Walk model 

Fig. 4 Centrality values in a 150 node WSN generated using the Random Walk model 

Table 3. Node rankings based on centrality metrics in a 150-Node WSN generated using the Random Walk model 

Rank DC BC CC EVC KC SC 

1 28 28 28 28 28 28 

2 14 14 14 43 14 43 

3 103 103 103 92 43 14 

4 * 108 7 19 92 92 

5  92 108 14 103 112 

6  7 74 87 112 87 

7  43 92 91 87 91 

8 7, 59,70 79 66 74 91 103 

9  84 112 112 7 19 

10  87 35 7 59 70 

*43, 87,92, 112 
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Table 4. Correlation coefficients among centrality values of a 150-node WSN generated using the Random Walk model 

 DC BC CC EVC KC SC 

Pearson correlation  

DC - 0.94 0.73 0.88 0.98 0.96 

BC - - 0.63 0.84 0.93 0.92 

CC - - - 0.72 0.76 0.66 

EVC - - - - 0.95 0.94 

KC - - - - - 0.97 

SC - - - - - - 

Kendall rank correlation  

DC - 0.88 0.77 0.71 0.90 0.89 

BC - - 0.72 0.62 0.79 0.77 

CC - - - 0.87 0.87 0.87 

EVC - - - - 0.92 0.92 

KC - - - - - 0.92 

SC - - - - - - 

Spearman correlation  

DC - 0.94 0.74 0.82 0.98 0.94 

BC - - 0.67 0.64 0.87 0.87 

CC - - - 0.97 0.97 0.97 

EVC - - - - 0.92 0.97 

KC - - - - - 0.99 

SC - - - - - - 

Node 28 dominated the degree centrality rankings, 

establishing itself as a major hub in the network and likely 

playing a crucial role in maintaining network connectivity, 

particularly in dynamic environments. Similarly, node 28 also 

topped the betweenness centrality rankings, reinforcing its 

position as a critical bridge within the network, with nodes 14 

and 103 also emerging as significant. Closeness centrality 

rankings once again placed node 28 at the forefront, followed 

by nodes 14 and 7, indicating their strategic positioning for 

rapid information dissemination and efficient data flow. In 

terms of eigenvector centrality, nodes 28, 43, and 92 were 

highlighted as the most influential, suggesting their key roles 

in the broader network structure. Katz's centrality also 

accentuated the importance of nodes 28, 43 and 14, as they 

greatly appeal throughout the network. Subgraph centrality 

also computed node 28 as the most centred and reconfirmed 

its significance. Also, the last correlation study for the 

Random Walk model demonstrated the strength of 

correlations between degree, Katz and subgraph centralities, 

which were as good as those obtained in the Watts-Strogatz 

model, which leads one to suggest that these measures are 

indeed very reliable in deciding the most critical nodes in 

various network models. The high correlation ratio between 

betweenness and other centralities in this model also suggests 

that nodes critical for network connectivity are essential for 

other network functionalities.  

3.3. Third Experiment: WSN with 150 Nodes Generated 

Using the Barabási-Albert Model 

The final experiment involved generating a 150-node 

WSN using the Barabási-Albert model, known for its scale-

free properties. This model represents networks where a few 

nodes (hubs) have significantly higher connections, which is 

common in many real-world networks. Node 0 emerged as the 

most central across several measures, highlighting its role as a 

major hub within the network and its likely essential function 

in maintaining overall network connectivity.  

In betweenness centrality, node 0 also topped the 

rankings, reinforcing its importance as a crucial bridge or 

bottleneck, with nodes 6 and 7 also identified as significant.  

 
Fig. 5 WSN with 150 nodes generated using the Barabási-Albert model 
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Fig. 6 Centrality values in a 150-node WSN generated using the Barabási-Albert model 

Table 5. Node rankings based on centrality metrics in a 150-node WSN generated using the Barabási-Albert model 

Rank DC BC CC EVC KC SC 

1 0 0 0 0 0 0 

2 6 6 6 6 6 6 

3 7 7 7 7 7 7 

4 11 11 11 12 11 12 

5 12 15 12 11 12 11 

6 1 12 1 1 1 1 

7 15 1 15 5 5 5 

8 10 26 5 9 10 9 

9 5 10 10 8 15 8 

10 26 5 9 10 9 10 

Table 6. Correlation coefficients among centrality values of a 150-node WSN generated using the Barabási-Albert model 

 DC BC CC EVC KC SC 

Pearson correlation  

DC - 0.94 0.74 0.74 0.82 0.74 

BC - - 0.67 0.64 0.87 0.87 

CC - - - 0.97 0.97 0.97 

EVC - - - - 0.92 0.97 

KC - - - - - 0.99 

SC - - - - - - 

Kendall rank correlation  

DC - 0.89 0.77 0.72 0.90 0.90 

BC - - 0.72 0.63 0.79 0.77 

CC - - - 0.87 0.88 0.87 

EVC - - - - 0.92 0.92 

KC - - - - - 0.92 



Suneela Kallakunta & Alluri Sreenivas / IJETT, 72(12), 30-41, 2024 

 

37 

SC - - - - - - 

Spearman correlation  

DC - 0.94 0.74 0.74 0.82 0.74 

BC - - 0.67 0.64 0.87 0.87 

CC - - - 0.97 0.97 0.97 

EVC - - - - 0.92 0.97 

KC - - - - - 0.99 

SC - - - - - - 

The closeness centrality analysis placed nodes 0, 6, and 7 

at the top, indicating their strategic positioning within the 

network, which is vital for rapid data dissemination. The 

influence of node 0 was further stressed as the most influential 

with the application of eigenvector centrality, with nodes 6 

and 7 coming next, implying that these nodes are vital not only 

in the direct connections but also in how they are central in the 

influence of other essential nodes of the network. Katz's 

centrality once again underscored the importance of nodes 0, 

6 and 7, thus validating their relatively extensive centrality 

throughout the network. Finally, subgraph centrality rankings 

highlight the vital role played by node 0 as far as the network 

is concerned. The correlation analysis for the Barabási-Albert 

model revealed the same patterns as the previous models, with 

strong correlations obtained between degree, Katz, and 

subgraph centralities. This implies that the same nodes, when 

these measures, are always the most important across different 

network architectures. Also, the Barabási-Albert model's 

scale-free character accentuates the hubs' role in preserving 

the network's stability and resilience. The results from the 

three experiments endorse the relevance of centrality 

measures for selecting important nodes across varying WSN 

models. Degree, Katz, and subgraph centralities always 

pinpointed the most critical nodes in all the models, which 

attests to their ability to capture the key nodes in all 

configurations. This means that the Watts-Strogatz model, 

which has small world features, clustering, and short path 

lengths, is an essential parameter in preserving the network's 

performance. Mobil or dynamic nodes had the Random Walk 

model, highlighting the flow of information and the degree of 

network connectivity in the changing environment. The 

Barabási-Albert model, on the other hand, with its scale-free 

features, churned out the importance of hubs in the networks. 

This is very important for the design and analysis of WSNs. 

Network designers can reduce costs and increase the network's 

efficiency, robustness and expansion by focusing on the most 

critical nodes defined by centrality measures. The observed 

strong correlations between specific centrality measures 

suggest that these measures capture different dimensions of 

node importance and thus allow for a complete explanation of 

network behavior. 

4. Principal Component Analysis (PCA) in Node 

Centrality Analysis 
4.1. Introduction PCA in Network Analysis 

PCA, also known as Principal Component Analysis, is 

viewed as one of the procedures suited for dimensionality 

reduction. It has the strength of transforming many 

interrelated variables into a smaller set of uncorrelated 

variables called principal components. In a more general 

sense, PCA could be useful in aiding data reduction and 

complexity simplification, such as when dealing with 

centrality measures in social network analysis. PCA is 

beneficial in network analysis since one can amalgamate 

centrality index measures into a few factors that explain the 

trends and factors that govern the node importance instead of 

simultaneously examining the factors individually. In the 

context of Multilayered networks, each of the layers also has 

various centrality measures (Degree Centrality, Betweenness 

Centrality, Closeness Centrality, Eigenvector Centrality, Katz 

Centrality, and Subgraph Centrality) that allow analysis of 

different levels of importance of nodes. 

 

In many cases, however, these dimension measures are 

correlated because a node important in one dimension, say, 

connectivity, is likely to be important in many other 

dimensions; for example, it is likely to be important regarding 

the flow of information. Employing PCA can ascertain these 

interrelations, allowing us to reduce the number of variables 

by expressing the variables that account for most of the 

variance in node centrality as principal components. The 

dimensionality reduction algorithm here is based on the eigen-

decomposition of the covariance matrix of the data and 

employs its eigenvalues and eigenvectors optimally. 

Eigenvalues are the principal weights of each component of a 

vector space; thus, they determine how much variation a 

principal component captures.  

 

Hence, a greater eigenvalue would mean a more 

significant variance captured by that component. On the 

contrary, the eigenvector provides usable directions for each 

principal component. It specifies the weightings or loadings 

allocated to different factors, such as centrality measures, to 

form the component. This structural arrangement of 

relationships between the principal coordinates and variances 

as geometric figures and their counterparts enables the data to 

be automatically decomposed using PCA without losing its 

basic characters or structure. 

 

For each principal component 𝑃𝐶𝑖, the variance explained 

is calculated as: 

Variance Explained by 𝑃𝐶𝑖 =
𝜆𝑖

∑ 𝜆𝑗
 100  (7) 
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Where 𝜆𝑖 is the eigenvalue associated with the i-th 

component, and ∑ 𝜆𝑗 is the sum of eigenvalues for all 

components. High eigenvalues indicate that a component 

captures significant patterns in the data, while low eigenvalues 

suggest minimal unique contribution. 

4.2. Methodology: Application of PCA in Network Models 

The approach aims at streamlining the interpretation of 

centrality measures within the framework of PCA applied in 

network models by focusing on three specific kinds of 

network structures, which are the Watts-Strogatz, Random 

Walk, and Barabási-Albert models, which have distinct 

characteristics contain elements that distinguish it from the 

others. For example, the Watts-Strogatz model has small-

world properties that extend through high clustering and short 

average path lengths. On the other hand, the Random Walk 

model depicts a network in which there is a continuous 

movement from node to node, representing areas where the 

position and the connection of nodes constantly change. The 

Barabasi-Albert model also follows a scale-free network 

structure where network topologies comprise many nodes.  

 

However, a few of them, called hubs, are highly 

connected and distributed according to a power law. For each 

of these networks, PCA was applied to six centrality measures: 

degree, betweenness, closeness, eigenvector, Katz, and 

subgraph centralities to isolate the most important principal 

components, which are PC1 and PC2 together with the 

eigenvalues associated with them. These components shape 

the space and explain the order-dependence of nodes within 

each network to explore the critical centrality features in these 

networks that differ in their structure. 

 

4.2.1. First Principal Component (PC1) 

Interpretation of PC1’s Eigenvalue: The large eigenvalue 

of PC1 indicates that most centrality measures in this network 

are highly correlated and reflect a single dominant factor: node 

importance based on connectivity and clustering. Nodes with 

high degrees (many connections) or high closeness (proximity 

to many nodes) are essential in a small-world network for 

efficient communication. Thus, PC1 effectively captures this 

connectivity-clustering relationship. 

 

𝑃𝐶1 = 𝑤11 ⋅ 𝐷𝑒𝑔𝑟𝑒𝑒 + 𝑤12 ⋅ 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 

       +𝑤13 ⋅ 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 + ⋯            (8) 

 

The high weights 𝑤1j In PC1, it is indicated that degree 

and closeness centralities contribute the most, emphasizing 

nodes that anchor connectivity within clusters. 

 

4.2.2. Second Principal Component (PC2) 

Interpretation of PC2’s Eigenvalue: The low eigenvalue 

suggests that PC2 does not offer significant insights into node 

importance. It may represent peripheral variations or minor 

structural differences not central to connectivity. 

𝑃𝐶2 = 𝑤21 ⋅ 𝐷𝑒𝑔𝑟𝑒𝑒 + 𝑤22 ⋅ 𝐵𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠 

                     +𝑤23 ⋅ 𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠 + ⋯            (9) 

 

Here, the low weights 𝑤2j confirm PC2’s lack of 

influence in the primary analysis of node centrality. 

 

4.3. Experiment 1: PCA in the Watts-Strogatz Model 

4.3.1. Network Characteristics of the Watts-Strogatz Model 

The small world properties of the Watts-Strogatz 

model are a high level of clustering coefficient with short path 

lengths between nodes. These characteristics establish a 

network whereby connectivity and clustering influence the 

importance of nodes. Nodes with many connections to other 

nodes and near others are key to better communication and 

robustness. 

4.3.2. Analysis of Principal Components in the Watts-Strogatz 

Model 

First Principal Component (PC1) 

Eigenvalue and Variance Explained: The eigenvalue 

associated with PC1 in the Watts-Strogatz model accounts for 

70% of the variance in the centrality data. This extremely high 

percentage suggests that this single component can describe 

nearly all variability in centrality measures. 

 

Interpretation of PC1’s Eigenvalue: The large eigenvalue 

of PC1 indicates that most centrality measures in this network 

are highly correlated and reflect a single dominant factor: node 

importance based on connectivity and clustering. Nodes with 

high degrees (many connections) or high closeness (proximity 

to many nodes) are essential in a small-world network for 

efficient communication.  

 

The high weights 𝑤1j In PC1, it is indicated that degree 

and closeness centralities contribute the most, emphasizing 

nodes that anchor connectivity within clusters. 
 

Second Principal Component (PC2) 

Eigenvalue and Variance Explained: PC2 explains only 

25% of the variance, a minimal value indicating that PC2 

captures little additional information. 

 

Interpretation of PC2’s Eigenvalue: The low eigenvalue 

suggests that PC2 does not offer significant insights into node 

importance. The low weights 𝑤2j confirm PC2’s lack of 

influence in the primary analysis of node centrality. 

 

4.4. Experiment 2: PCA in the Random Walk Model 

4.4.1. Network Characteristics of the Random Walk Model 

The Random Walk model simulates a network with node 

mobility, where connectivity can change dynamically. 

Stability and robust connectivity are key to node importance, 

as these properties maintain network cohesion despite 

potential movement or random disconnections. 
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4.4.2. Analysis of Principal Components in the Random Walk 

Model 

First Principal Component (PC1) 

Eigenvalue and Variance Explained: PC1 explains 68% 

of the variance in the Random Walk model, indicating that this 

component nearly captures all meaningful information. 

 

Interpretation of PC1’s Eigenvalue: The high eigenvalue 

for PC1 indicates that most centrality measures align around 

identifying nodes with stable and reliable connections as key. 

Degree and Eigenvector centralities, highlighting nodes with 

strong connectivity, are heavily weighted in PC1, as they are 

vital for maintaining connectivity. In PC1, the high loadings 

for Degree and Eigenvector centralities signify their 

dominance in determining stable, connected nodes in this 

model. 

 

Second Principal Component (PC2) 

Eigenvalue and Variance Explained: PC2 accounts for 

just 26% of the variance, adding minimal unique information. 

Interpretation of PC2’s Eigenvalue: The very low eigenvalue 

means PC2 captures slight variations in node roles, likely from 

peripheral nodes with weaker connections. It does not 

contribute significantly to understanding overall node 

centrality. The low eigenvalues and weights signify that PC2 

does not add valuable insight into node importance in a 

Random Walk model. 

 

4.5. Experiment 3: PCA in the Barabási-Albert Model 

4.5.1. Network Characteristics of the Barabási-Albert Model 

The Barabási-Albert model is a scale-free network 

characterized by a few highly connected hubs that dominate 

connectivity, following a power-law degree distribution. 

These hubs are central to the network’s resilience, holding the 

structure together. 

4.5.2. Analysis of Principal Components in the Barabási-

Albert Model 

First Principal Component (PC1) 

Eigenvalue and Variance Explained: PC1 explains almost 

70% of the variance, indicating that it captures all the 

significant patterns of node centrality. 

 

Interpretation of PC1’s Eigenvalue: The high eigenvalue 

of PC1 confirms that all centrality measures converge in 

identifying hub nodes as the primary components of the 

network structure. With high Degrees and Eigenvector 

centralities, these nodes dominate in maintaining network 

stability. The high weights reflect the significance of hubs, 

where Degree and Eigenvector Centralities are most 

influential. 

 

Second Principal Component (PC2) 

Eigenvalue and Variance Explained: PC2 accounts for 

just 22% of the variance, adding minimal unique information. 

Interpretation of PC2’s Eigenvalue: This low eigenvalue 

confirms that PC2 is unnecessary for capturing the network’s 

structure. It may capture peripheral nodes with low 

connectivity but not impact network interpretation. 

4.6. Summary of PCA Findings Across Models 

The first principal component, PC1, had a very high 

eigenvalue in all three models, accounting for the most 

variance in centrality data. Consequently, it was the best proxy 

for the importance of nodes. This result demonstrates that PC1 

can integrate many centrality indices into a single measure 

representing the structure of that model. In the Watts-Strogatz 

model, PC1 emphasized clustering and connection; in the 

Random Walk model, this stable linkage was active in a 

changing environment; and in the Barabási-Albert model, PC1 

stressed the role of central dominant nodes. Across all models, 

PC2 had very low eigenvalues across all models, so it also 

contributed much variance that accounted only for low levels 

of structural differences, which do not significantly impact the 

relevance of nodes. The eigenvalues of the PCs have been 

consistent across models for PC1 and PC2, confirming that it 

is only necessary to shift one's focus on PC1 when defining 

node relevance for each model, which makes the analysis 

simple and robust while capturing the unique aspects of the 

structure and the centrality distribution of that class/type of 

networks. This approach provides a way to evaluate the nodes' 

centrality efficiently, providing a good basis for devising 

strategies to analyze and restructure networks based on the 

influence and connection of critical nodes. 

5. Conclusion 
This study presents WSNs generated from the Watts-

Strogatz, Random Walk, and Barabasi-Albert models. The 

work primarily involves identifying key nodes using various 

centrality measures, such as Decide Centrality, Betweenness 

Centrality, Closeness Centrality, Eigenvector Centrality, Katz 

Centrality, and Subgraph Centrality. These conclusions 

confirm the importance of such measures in increasing 

network functions and improvements in WSNs and WSN 

management. A model of Watts-Strogaz, a small-world 

model, the networks have been characterized by high 

clustering and short path lengths with the Kolmogorov-

Smirnov test relying on Degree, Katz and Subgraph 

centralities. Such a strong correlation among these measures 

further proves that these parameters are effective in locating 

the regions of great importance in the configuration of the 

network. This model proved that local clustering is crucial in 

upholding effective communication traces, essential for 

systems with continuous data transfer and communication 

with minimal delay. The Random Walk model mainly proved 

the importance of node mobility and connectivity as they are 

essential factors that aid in network performance in networks 

that have mobile or dynamic nodes.  

According to the centrality measures provided, the 

consistent node 28 acted as a centre of various activities, 
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indicating that during all the activities, node 28 was necessary 

for the network and the dispersal of data across the network. 

From the model, the strong relationship that was observed to 

exist between Degree, Katz and Subgraph centralities 

demonstrates enough explainability of node importance in that 

significant alterations are commonplace to the network 

topology. The Barabási-Albert model has gained popularity 

for its scale-free nature. It also emphasized the criticality of 

the bulk of the hubs in any network regarding connection and 

diversity. On the scope, node 0, turn first, has been observed 

to be the most central in all measures, which asserts its 

importance within the hierarchical structure of the network. 

Applying PCA, it was established that almost all the variance 

of the centrality data could be explained by the first principal 

component, which reveals the importance of some hubs in this 

model. It weakens the intricate relationships among the 

centrality measures, making locating scale-free networks’ 

most essential nodes easier. The use of individual PCA across 

all three models indicated that inter-nodal variance in 

centrality measures is primarily explained by most of a single 

principal component, which points to node degree semantics 

or having a handful of critical nodes. This finding is beneficial 

regarding understanding how the analysis of the various 

centrality measures can be obfuscated even more to 

concentrate on the rudimentary factors related to the 

importance of nodes. In this way, the quality of the network 

analyses can be improved further. This research stresses the 

importance of centrality measures for understanding and 

improving the design of WSNs for various topologies. The 

pattern of Degree, Katz and Subgraph Centralities for 

significant nodes and the same metrics on different models 

indicate that node’s degree, Katz and subgraph centrality are 

some of the most effective measures of the degree of nodes.  

 

The research has practical applications that will assist in 

designing and optimizing WSNs to achieve robust and 

efficient networks that can meet the requirements of various 

applications.  

Such outcomes are of significant significance for 

operating and managing WSNs in many real applications 

where stability and performance of the network will be the 

key. 
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[12] Albert-László Barabási, and Réka Albert, “Emergence of Scaling in Random Networks,” Science, vol. 286, no. 5439, pp. 509-512, 1999. 

[CrossRef] [Google Scholar] [Publisher Link] 

[13] Réka Albert, Hawoong Jeong, and Albert-László Barabási, “Error and Attack Tolerance of Complex Networks,” Nature, vol. 406, no. 

6794, pp. 378-382, 2000. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Jan Hauke, and Tomasz Kossowski, “Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of 

Data,” Geographical questions, vol. 30, no. 2, pp. 87-93, 2011. [CrossRef] [Google Scholar] [Publisher Link] 

https://doi.org/10.1109/MCOM.2002.1024422
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+on+sensor+networks&btnG=
https://ieeexplore.ieee.org/document/1024422
https://doi.org/10.1016/j.comnet.2008.04.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Wireless+sensor+network+survey&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1389128608001254?via%3Dihub
https://doi.org/10.2307/3033543
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=A+set+of+measures+of+centrality+based+on+betweenness&q=A+set+of+measures+of+centrality+based+on+betweenness&btnG=
https://www.jstor.org/stable/3033543?origin=crossref
https://doi.org/10.1086/228631
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=A+set+of+measures+of+centrality+based+on+betweenness&q=Power+and+Centrality%3A+A+Family+of+Measures&btnG=
https://www.journals.uchicago.edu/doi/10.1086/228631
https://doi.org/10.1016/j.socnet.2004.11.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=A+set+of+measures+of+centrality+based+on+betweenness&q=A+measure+of+betweenness+centrality+based+on+random+walks&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0378873304000681?via%3Dihub
https://doi.org/10.1016/j.socnet.2004.11.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=A+set+of+measures+of+centrality+based+on+betweenness&q=A+measure+of+betweenness+centrality+based+on+random+walks&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0378873304000681?via%3Dihub
https://doi.org/10.1109/ICIEECT.2017.7916530
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Realization+of+centrality+measure+on+Wireless+Sensor+Network&btnG=
https://ieeexplore.ieee.org/document/7916530
https://doi.org/10.1016/j.comcom.2007.05.024
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=A+set+of+measures+of+centrality+based+on+betweenness&q=A+Survey+on+Clustering+Algorithms+for+Wireless+Sensor+Networks&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0140366407002162?via%3Dihub
https://doi.org/10.1038/30918
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=A+set+of+measures+of+centrality+based+on+betweenness&q=Collective+dynamics+of+%E2%80%98small-world%E2%80%99+networks&btnG=
https://www.nature.com/articles/30918
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=A+set+of+measures+of+centrality+based+on+betweenness&q=Random+Walks+on+Graphs%3A+A+Survey&btnG=
https://www.cs.cmu.edu/~15859n/RelatedWork/random-walks-on-graphs.pdf
https://doi.org/10.1007/978-3-030-27968-4_2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nachmias%2C+A.%2C+%E2%80%9CRandom+Walks+and+Electric+Networks%2C&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-27968-4_2
https://doi.org/10.1126/science.286.5439.509
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&scioq=A+set+of+measures+of+centrality+based+on+betweenness&q=Emergence+of+Scaling+in+Random+Networks&btnG=
https://www.science.org/doi/10.1126/science.286.5439.509
https://doi.org/10.1038/35019019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Error+and+attack+tolerance+of+complex+networks&btnG=
https://www.nature.com/articles/35019019
https://doi.org/10.2478/v10117-011-0021-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparison+of+Values+of+Pearson%E2%80%99s+and+Spearman%E2%80%99s+Correlation+Coefficients+on+the+Same+Sets+of+Data&btnG=
https://sciendo.com/article/10.2478/v10117-011-0021-1


Suneela Kallakunta & Alluri Sreenivas / IJETT, 72(12), 30-41, 2024 

 

41 

[15] M. G. Kendall, “A New Measure of Rank Correlation,” Biometrika, vol. 30, no. 1-2, pp. 81-93, 1938. [CrossRef] [Google Scholar] 

[Publisher Link] 

[16]  Charles Spearman, “The Proof and Measurement of Association Between Two Things,” The American Journal of Psychology, vol. 15, 

no. 1, pp. 72-101, 1904. [CrossRef] [Google Scholar] [Publisher Link] 

[17] Ian T. Jolliffe, and Jorge Cadima, “Principal Component Analysis: A Review and Recent Developments,” Philosophical Transactions of 

the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 374, no. 2065, pp. 1-16, 2016. [CrossRef] [Google Scholar] 

[Publisher Link] 
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