
International Journal of Engineering Trends and Technology Volume 72 Issue 12, 151-159, December 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I12P114 © 2024 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

The Scheduling Problem of Renewable Resources Adapted

by a Competitive Differential Algorithm

Amol Chaudhary1, Sachin Meshram2

1,2Mechanical Engineering Department, G H Raisoni University, Amravati, India.

1Corresponding Author : amolchaudhary50@gmail.com

Received: 20 June 2024 Revised: 20 October 2024 Accepted: 02 December 2024 Published: 25 November 2024

Abstract - Valuable asset bound project Planning with Inexhaustible assets is a point that has been quite examined. Basically,

you have a list of things you need to do in a project, and you have a limited amount of stuff you can use to do those things.

There is only one way to do each task, and the resources can be used repeatedly. To address this problem, we used Differential

Evolution (DE) to discover first-class work scheduling in an undertaking so that you can reduce the entire mission's final touch

time (referred to as the makespan). The number of sources to be had and the duties that may be completed earlier than or after

one another (referred to as precedence regulations) should be considered. We used a sequential era method to assemble the

challenge schedule and a prioritized fee-driven method to describe it if you want to streamline the procedure. Subsequent, we

contrasted our DE set of rules with some different algorithms that had already been created by using other academics. Using

Patterson's check bed, we assessed each one and discovered that the DE algorithm finished pretty well, supplying attainable

solutions for most problems. This is a remarkable new approach to the problem of RCPSP involving scarce and renewable

resources.

Keywords - DE algorithm, RCPSP, Time period optimization, Branch & Bound Approach, Makespan.

1. Introduction
Task managers confront a challenging project when

faced with the mission scheduling challenge with limited

resources (RCPSP), which requires careful planning and

proper sequencing while also dealing with resources like

time, money, and labor. Schedule the use of all renewable

and limited resources. There are three basic approaches to

addressing this issue: precise techniques, heuristics, and a

near-optimal course of action. Definite techniques strive to

discover the optimal answer, but they may take a long time

and may not always be effective for large projects. Heuristics

are more like rules of thumb that help you develop a decent

answer fast, but they may not necessarily provide the greatest

solution. Meta-heuristic approaches are similar to intelligent

strategies that try to find the best answer by investigating

numerous choices, albeit they may take some time.

Researchers have written countless publications on such

responses throughout the years, recommending ways to boost

their potential. The study references many well-known

experts on the issue, including Hartmann and Kolisch [1],

Kolisch and Padman [2], and Kolisch and Hartmann [3].

RCPSP is classified as an NP-hard optimization problem, as

previously stated. While bigger operations are concerned,

using real algorithms may result in excessively lengthy

execution durations. Metaheuristic methodologies are used in

various research projects to solve this issue. Here is a quick

review of some of those tactics. Among these tactics is the

genetic set of rules (GA), which is entirely based on global

evolution and herbal selection concepts. It was successfully

used to handle a variety of project scheduling challenges [4]-

[11]. It compares issues that must be addressed to a network

of living objects found in the environment, with the answers

preserved in something known as a "chromosome."Rather

than depending on sheer force to find the best solution, the

method uses specialized operators to improve the fitness of

the chromosomes. By simulating natural selection, GA

produces a more efficient and adaptive outcome.

Zamani (2013) [12] developed a novel genetic algorithm

that stands out for using a magnet-based crossover operator.

This operator may keep up to two connected segments from

the recipient and one from the donor in their genetic

composition. This guarantees that the recipient's genes

correspond with the donor's genetic composition. This

crossover operator retains up to three interlocked segments

rather than merely distinguishing it from the usual-factor

crossover. Only two connected segments are kept inside the -

factor crossover and must come from the same figure.

GA handles optimization problems using simulated

annealing, a probabilistic approach. This approach

incorporates "annealing," which involves gradually reducing

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:amolchaudhary50@gmail.com

Amol Chaudhary & Sachin Meshram / IJETT, 72(12), 151-159, 2024

152

the temperature so the algorithm can discover a high-quality

solution. While it has reached its lowest temperature. GA

may address task scheduling challenges, as shown in studies

by Bouleimen and Lecocq [13] and Boctor [14]. It does this

by avoiding being trapped in neighboring peaks. ACO is

used in this method. This strategy is comparable to how ants

look for food. It works by regularly altering pheromone

pathways among a group of simulated ants, enabling them to

choose the optimum solution while adhering to the rules.

Merkle et al. [15] and Lo et al. [16] have described this

method more specifically.

Zhang et al. (2006) [17] demonstrate how PSO has been

used for scheduling challenging scenarios. Debris in PSO

moves about the answer area, each representing a possible

solution. The PSO and DE algorithms and the artificial Bee

Colony (ABC) approach proportionally manage factors such

as colony length and cycle amount.

Jia [18] and search engine optimization (2013) improved

the efficiency of the helpful resource-restricted mission

scheduling hassle (RCPSP) by using the facility layout hassle

(FLP) technique. They developed new ways using the

Permutation-primarily based synthetic Bee Colony (PABC)

principles. The first method is to immediately use the FLP

concept to plot activities within time and aid limitations with

no conflicts or collection violations occurring. While the

second strategy is similar to the first, it tackles large

instances of the problem categorized as NP-hard using the

Permutation Illustration Scheme from the PABC set of rules.

They eventually added a new layer of complexity by

using Variable Neighborhood Search (VNS) to find virtually

flawless solutions. VNS is related to a strategy that

systematically adjusts the environment and employs basic

local search techniques for greater solutions. It has already

been used to solve scheduling challenges, as shown by

Fleszar and Hindi's 2004 study. This paper studies how to

calculate RCPSP and how to use it in the Differential

Evolution (DE) meta-heuristic technique. In 1997, Storn and

Fee [19] created DE, a powerful approach that combines

classic crossover, mutation, and reputation operators with

basic mathematical operators. DE's core system begins with

developing trial parameter vectors, which are subsequently

formed by crossover and mutation. Choice determines which

vectors will be surpassed down to the next period.

The use of DE to address scheduling challenges in

projects has been investigated. For example, Damak et

al.;2009 [20] employed DE to solve resource-constrained

challenge scheduling problems (MRCPSP) in a variety of

modalities. This approach represents solutions as a vector of

coordinates and a vector of mode assignments. The choice

operator penalizes unrealistic solutions based on the purpose

characteristic's values. Preferred scenarios were used to test

the algorithm's performance, and the results were compared

to those of particle swarm optimization by Jarboui et al.

(2008) [21] and simulated annealing by Bouleimen and

Lecocq [13]. A differential evolution (DE) technique change

was used by Rahimi et al. (2013) [22] to resolve the mode

identity constraints venture scheduling problem (MIRCPSP).

The approach was coupled with a module for nearby search

and gaining knowledge to improve the current DE's efficacy.

The objective function and computing instances of the

solutions to several take a look at issues have been compared

statistically to evaluate the performance of the DE.

2. Resource-Constrained Project Scheduling

Problem (RCPSP)
The issue with project planning is sorting out what

amount of time it will require to do an undertaking's

exercises to accomplish a specific objective. In primary

research on project scheduling, it was assumed that a

project's activities are only described by the time it takes to

carry them out. After that, strategies like the basic way

strategy (CPM) and the program assessment and survey

method (Energetic) are suggested by considering the most

important connections between tasks. Constraints will be

applied, and their effects will be evaluated because assuming

that precedence relationships are independent appears

unreasonable. The Resource-Constrained Project Scheduling

Problem, or RCPSP, is considered a typical project

scheduling issue. This problem considers a project with J

activities labeled j=1,..., J. They are one of the major

limitations of project scheduling. In addition, the duration of

an activity j, or processing time, is represented by dj,

indicating that the activity must be finished immediately after

beginning. Technological requirements are generally placed

in order of precedence among the activities. These

connections are shown by sets of prompt ancestors Pj,

demonstrating that an action j cannot be begun before the

fruition of every one of its ancestors (iεPj). Furthermore,

these connections can be addressed as an organization. A

specific measure of assets is expected for every movement to

be performed. Attributable to a full limit accessible in each

period, the assets are perceived as sustainable. Altogether,

we have K sorts of inexhaustible assets named k=1,…, K. It

is assumed that a constant amount of Rk is available prior to

the beginning of each period for each resource k. It is

necessary to have rjk units of resource k in each period

where the processing is carried out to carry out activity j.

Additionally, two additional activities, j=0 and j=J+1, signify

the project's beginning and end, respectively, are considered.

Since both are fictitious activities, there is no processing time

or use of resources. The problem's information is taken to be

definite and deterministic, and the parameters are taken to be

integer-valued and non-negative. In this issue, the point is to

carve out the beginning opportunity (Sj) for the exercises

j=0,1,…, J+1, such that the consummation season of the

venture is limited Hartmann, 2002[5]. As previously

mentioned, this is the fundamental form of the resource-

constrained project scheduling problem. Nonetheless, since

Amol Chaudhary & Sachin Meshram / IJETT, 72(12), 151-159, 2024

153

the circumstances are totally divergent practically, changes

have been made to the essential suspicions by the analysts

over the long run. In addition, the RCPSP problem is one of

the strongly NP-hard problems, as demonstrated by

Blazewicz et al. [23]. As a result, various solutions are

utilized based on the changes in the fundamental

assumptions.

3. Problem Definition
Experience demonstrates that resources are incredibly

crucial for every project. This phase will deal with the

fundamental resource-restrained undertaking scheduling

hassle, typically called the RCPSP. It is a common issue

involving splitting time into specific periods and breaking

tasks into various activities. We will have a collection of n

activities, each with a duration di, where i ranges from 1 to

m. Certain activities cannot begin until others have been

completed, necessitating us to consider this factor. There are

several periods of time within the planning span, and the

number of activities needed for each job is limited to a

certain amount. To make things more organized, we will

label all the activities from A0 to An+1, where A0 is the first

thing we need to do (the source) and Am+1 is the last thing

we need to do (the sink). Without a source or sink, a dummy

task will be included with zero duration and no resource

needs. However, every task requires resources to be

completed. The total number of resources is R, and we can

only have a maximum of Rj units of resource j at any given

period. The resources are renewable, so we can use them as

much as we want, but we can only use them when they are

available. The RCPSP aims to parent out a way to do all the

duties using the least amount of resources. To do this, we

must determine when each task starts and finishes,

considering all the resources we need and the order of things.

The RCPSP is an integer programming problem that can

be represented by xkt as a variable set to 1 if task Ak is

scheduled to finish at the end of period t and 0 if not. For

every task, Ak is assigned the Earliest Finish Time (EFT),

EFk, and the latest finish time (LST), LFk, which is allocated

using the Kelley and Walker (1959) technique. LFm+1 is

assigned a value of H, which will never exceed the total

duration of all activities.

Minimize ∑ 𝑡𝑋𝑚 + 1, 𝑡𝑡=𝐿𝐹 𝑚+1
𝑡=𝐸𝐹 𝑚+1 (1)

Subject to : ∑ 𝑋𝑘𝑡
𝐿𝐹𝑗
𝑡=𝐸𝐹𝑘 = 1 for k=0,…..,n+1 (2)

∑ 𝑡𝑋𝑖𝑡𝐿𝐹𝑖
𝑡=𝐸𝐹𝑖 ≤ ∑ 𝑡𝑋𝑘𝑡 − 𝑑𝑘𝐿𝐹𝑘

𝑡=𝐸𝐹𝑘 (3)

for all (Ai, Aj) ε P

∑ 𝑟𝑗𝑘𝑋𝑗𝑞
min{𝑡+𝑑𝑘−1,𝐿𝐹𝑘}
𝑞=max {𝑡,𝐸𝐹𝑘} ≤ Rj for k=1,..R (4)

xkt ε {0,1} for i=0,…..,m+1; t= EFk,….,LFi (5)

(2) Constraints ensure that each task is carried out only

once. P is the assortment of all sets of exercises (Ai, Ak) with

computer-based intelligence going before Ak, addressed by

disparities (3) to show the prioritized imperatives. The use of

binary decision variables is specified by restriction (5), and

restriction (4) ensures that the utilization of each resource

does not continue to exceed the quantity that is currently

available. An ideal schedule showing the times at which each

task can be completed can be obtained by solving problems

(1) to (5).

4. Implementation
Our work's Genetic Algorithm is a combination of

proposed and proven components. Literature-collected

proven components are adapted for use by incorporating

variations. Controlled random numbers have been

extensively used, as in most genetic algorithms.

From a convenience standpoint, we use software and

platforms that are widely available for implementation. This

also puts us on par with the majority of other research,

making it easier to make straightforward comparisons.

4.1. Stage Depiction (Equipment, Programming, and so

forth)

The algorithm is implemented in Structured C and

compiled using Borland® C++. We took advantage of a

compiler feature unique to (Kernighan/Ritchie) C by doing

so. For instance, we consolidated elements of C++ for record

perusing and composing. Under Microsoft Windows XP, the

program is run on a 2GHz Intel Pentium4 computer with

2GB of RAM. Contingent upon informational collection and

boundaries chosen for testing and observing, the run time for

a complete informational collection went from under seven

minutes (averaging 875 milliseconds for each occurrence) to

simply over 24 hours (averaging three minutes for every

occasion).

4.2. Input Information- The Test Data-Set

4.2.1. The Input Data-set

To evaluate scheduling strategies for the RCPSP, we put

our algorithm through its paces on internationally recognized

standard benchmark instances provided by Kolisch in 2000

[1]. It is known as PSPLIB, and the scientific literature

acknowledges its usefulness. We used the PSPLIB's standard

SMFF (Single Mode, Full Factorial) set as test cases. The

Project lengths are indicated by the labels J30, J60, J90, and

J120 on these. We used J30 and J60 as our test data set

because they each have (48 X 10 =) 480 project instances.

Every one of the sets manages four compelled

inexhaustible assets. One mode of execution governs each

task. The interconnectedness of the task dependencies, the

number of resource types, and the quantity of available

resources are roughly equivalent to the three parameters on

Amol Chaudhary & Sachin Meshram / IJETT, 72(12), 151-159, 2024

154

which this set is dependent. The PSPLIB also provides

SMCP, MMCP, and MMFF sets as test problems. The library

moderators regularly compile a performance comparison

between the algorithms of various researchers who utilize

this data set. We use Kolish and Hartmann's (2006) [3]

refreshed correlation for benchmarking our exploratory

outcomes. In this case, the paper's authors have invited

"future studies" to use the compiled results as benchmarks.

Hartmann and Kolisch [1] and Kolisch and Padman [2] made

previous comparisons in the literature in 2000 and 1996. The

most recent, up-to-date list of the best results on each

instance set by various researchers can be found in the same

library.

4.2.2. Other Test Data-set

SMFF informational collection of PSPLIB is the most

generally involved test information for the RCPSP. This

library contains additional benchmarking-useful standard

data sets and those available from other libraries and authors.

A short portrayal of these is given here.

a) PAT: James Patterson presented this simple arrangement

of occurrences in his correlation of careful arrangement

techniques for asset-obligated project planning. There are

110 project scheduling issues in the Patterson set (PAT)

whose tasks have a single execution mode and multiple

resources. The optimal resource-constrained solution is

frequently identical to the optimal resource-unconstrained

solution because the resource constraints are not particularly

strict.

b) SMCP: The Single Mode Ceteris Paribus set is similar to

the Patterson set but has more resource restrictions and ten to

forty tasks. There are 200 problems in the set, ranging from

one to four types of renewable resources. There is only one

execution mode for each task.

c) MMFF: The Multi-Mode Full Factorial set includes four

different resource types, two of which are renewable and two

of which are not. Only about 85% of the cases in this set are

known to have solutions that could be implemented. The

addition of non-renewable resources raises the possibility of

creating unsolvable issues.

d) BMRX: At the beginning of 1995, Barry Fox and Mark

Ringer proposed the Bench MaRX problem. There are

twelve parts to this one problem. Each component tests

various aspects of a solution strategy by adding additional

constraints or problem modifications. The first four sections

use pretty standard language. From there, it gets harder.

There are 575 tasks, three types of labor resources, and

fourteen location-based resources in the problem. It includes

numerous temporal restrictions in addition to resource and

location constraints, such as three shifts per day, resources

restricted to specific shifts, and task start and finishes

required within a shift or permitted to cross shifts. The final

of the twelve sections has multiple goals. By fluctuating asset

accessibility and work orders after a timetable is not entirely

settled, the issue likewise tests the capacity of arrangement

techniques to adjust to dynamic changes.

e) Boctor Sets: Boctor has given a bunch of test information,

which 1s named as boctor 50mm boctor 100mm.

f) Alvarez-Tamarit sets: The authors created prob 103, prob

27, and prob 51, three test data sets. As previously stated, we

have experimented with the Kolisch [1] SMFF set. We refer

to the PSPLIB for additional information on the instance

generation mechanism, the instance generator (Pro Gen),

solution sets, and other topics. We portray our test

information (SMFF) arrangement as given in the PSPLIB in

Figure. The library has converted it from Pro Gen format to

Patterson format. Let us denote

j=1,…..;J : jobs

r=1…..,R : resource types

S(j) : number of immediate successor-jobs of job j

S(j,s) : s-th immediate successor-job of job j

D(j) : non-preemptable duration of job j

K(r)
: resource availability of resource type r within

each period

K(j,r) : resource usage of job j w.r.t. resource type r

Keep in mind that the instance size (j) for a project with

30 activities is 32. The initial and conclusion points are

dummy tasks that make up the two additional tasks. (For the

purposes of this discussion, the term "tasks" refers to a toy or

a project size that includes the dummy activities.)

An example of a test project with 32 tasks (or 30

activities) is provided based on the above format definition.

Even though we used the SMFF data set, we were able to test

our algorithm's adaptability to other datasets by making a

small change to our program.

The format is :

J R

K(1) K(2) K(R)

d(1) k(1,1) .. k(1,R) S(1) S(1,1) S(a,S(1))

..

..

d(J) k(J,1) .. k(J,R) S(J) 0

Amol Chaudhary & Sachin Meshram / IJETT, 72(12), 151-159, 2024

155

Table 1. Instance example of the J30 test data-set; File name : J301_1.rcp

32 4

12 13 4 12

0 0 0 0 0 3 2 3 4

8 4 0 0 0 3 6 11 15

4 10 0 0 0 3 7 8 13

6 0 0 0 3 3 5 9 10

3 3 0 0 0 1 20

8 0 0 0 8 1 30

5 4 0 0 0 1 27

9 0 1 0 0 3 12 19 27

2 6 0 0 0 1 14

7 0 0 0 1 2 16 25

9 0 5 0 0 2 20 26

2 0 7 0 0 1 14

6 4 0 0 0 2 17 18

3 0 8 0 0 1 17

9 3 0 0 0 1 25

10 0 0 0 5 2 21 22

6 0 0 0 8 1 22

5 0 0 0 7 2 20 22

3 0 1 0 0 2 24 29

7 0 10 0 0 2 23 25

2 0 0 0 6 1 28

7 2 0 0 0 1 23

2 3 0 0 0 1 24

3 0 9 0 0 1 30

3 4 0 0 0 1 30

7 0 0 4 0 1 31

8 0 0 0 7 1 28

3 0 8 0 0 1 31

7 0 7 0 0 1 32

2 0 7 0 0 1 32

2 0 0 2 0 1 32

0 0 0 0 0 0

There are four parts to each data set:

• Tasks (or activities, or nodes, depending on which term

the authors prefer),

• Assets (we zeroed in on the amount compelled

sustainable assets),

• Precedence Constraints (which predecessor or successor

is shown)

• Time taken to finish the task

The position format of the preceding four components is

the primary difference between the input and output data

sets. Whenever this is broken down and grasped, and

imperative changes are made in the 'input data' capability, the

rest of our program continues as before. However, the Single

Mode aspect was our primary focus at all times.

5. Differential Evolution (DE)
DE is based on populations and randomness, which

takes inspiration from Evolutionary Algorithms (EAs) in

general and, more specifically, the Genetic Algorithm (GA).

It tries to find a solution close to optimal or satisfactory by

combining existing ones using techniques like mutation,

crossover, and acceptance.

In differential advancement, people are signified by D-

layered vectors known as xi, with D addressing the number

of genuine boundaries and NP as the populace size.

Beginning with a group of beings with randomly generated

values for their components (genes), evolution begins.

Initially, the mutation process takes place by randomly

selecting three individuals and blending their gene values in

various ways. More specifically, the differences in gene

values between the other two individuals and the initial

person are combined. This procedure can be summed up as

follows:

DE = (xi1 - xi2) + xi1 + (xi2 - xi3) + xi2 + (xi3 - xi1) + xi3

Vi= xi1 + F ….. (xi2- xi3 (6)

Amol Chaudhary & Sachin Meshram / IJETT, 72(12), 151-159, 2024

156

i1, i2, i3, and ε are distinct integers between 1 and NP (the

population size) are distinct integers that do not include the

vector's index i. The difference between two vectors is

affected by the constant F greater than zero. A crossover

between the mutated individual (vi) and a target individual

from the current population (xi), known as the trial

individual, produces a trial individual. During the crossover

operation, it is necessary to abide by these regulations.

yi (j)= {vi (j), if Rj ≤ cr or j= jrandom (7)

xi (k), otherwise

The crossover rate constant, cr ε is defined as (0,1), and

each Rj is randomly selected with values between 0 and 1. In

this simulation, there are D possible values for randomly

chosen j, from the set {1, 2, ..., D}, for each individual.

Following mutation and crossover, the trial individual is then

subject to acceptance. The trial individual's fitness is

evaluated against the target individual's, and the one with the

higher fitness level is chosen to advance to the next

generation. The trial person's fitness is then compared to that

of the fitter person, and if it is higher, the trial person is

chosen as the new target person for the next generation.

xi = {yi , if f(yi) ≤ f(xi) (8)

xi, otherwise

A fresh group of people is formed by following the

same steps with each person from the initial group, and this

cycle continues until a specific requirement is fulfilled. The

solution to the problem is determined by selecting the top

individual from the previous generation.

5.1. Representation of a Solution

A vector (I) of size m with one element for each task

solves this issue. The kth element represents the priority of

task k in the solution (a priority list). The kth element pvk
I ε

{1,2,…..,n} , which can have values from 1 to m:

I= (pv1
I, pv2

I,….. pvm
I) (9)

The Serial Schedule Generation Scheme (SSGS) creates

a schedule for a single person. Essentially, SSGS focuses on

the makespan criterion, a standard measure of performance

that improves as task completion times decrease. Using the

serial SGS guarantees that no best schedules will be

overlooked, allowing us to utilize it for this task confidently.

With a specific individual I, we can determine their

respective schedule by adhering to these steps:

• Check if there is only one task for I. If so, then the

schedule is just that one task.

• Otherwise, we make a list of all the activities in

increasing order of their completion times.

• Then, we go through the list and add each task to the

schedule one at a time, in the order they appear in the

list. The first task is added to the schedule immediately,

while the last one is added at the end.

• Once we have added all the activities, the schedule is

complete.

1) Let P= 1.

2) Set the dummy start task 1 at time 0.

3) P= P+ 1.

4) Select the task k with the priority value pvkI = P.

5) Compute the earliest precedence and resource

feasible start time of task k.

6) If the dummy end task m is on the schedule, halt. If

not, proceed to step 3.

Table 2. Time needed for operation

Task Task
Duration

(Shifts)

Resource

Type A Type B Type C

1-2 Gearbox taking out 2 1 1 3

1-3 Bottom frame Removing 2 1 1 5

2-4 Bottom frame fabrication 2 1 1 4

3-5 Gearbox fitting 2 1 1 4

4-6 Gearbox alignment 2 1 1 5

5-7 Motor fitting and alignment 2 1 1 4

6-8 barrel lifting 2 2 1 4

7-9 Releasing J1 pin 2 1 1 4

8-10 Releasing J2 pin 2 1 1 4

9-11 Barrel taking out 1 2 1 4

11-12 Barrel lifting (other side) 1 1 1 5

12-13 Making J3 pin free 2 1 1 4

13-14 Making J4 pin free 1 1 1 4

14-15 Barrel taking Opposite side 1 1 0 4

15-16 Bottom frame adjusting 1 0 0 1

10-16 addressing oil leaks in packages and valve maintenance 2 2 1 3

Amol Chaudhary & Sachin Meshram / IJETT, 72(12), 151-159, 2024

157

Table 3. Resource accessibility

Type Resource Max. Resource Accessibility

A Fitter 2

B Welder 2

C Helper 8

Fig. 1 Network layout for various maintenance tasks

5.2. Original Population

We begin with an empty m-element vector and repeat

the following steps to create a priority value list based on the

precedence constraints for each individual I in the initial

population:

1. Randomly choose an eligible task k.

2. Choose a random index m from the set {1, 2, ..., m}

(representing the order numbers from 1 to m).

3. Assign the priority value of task k (pvK
I) to index m.

This cycle is rehashed for a pre-indicated number of

arrangements equivalent to the size of the pop-size.

5.3. Scheduling Problem

In particular, this research focuses on planning when

maintenance tasks for the Wagon tippler will take place. The

time needed for each maintenance task is determined by the

length of regular work shifts, which are eight hours in

duration.

5.4. Genetic Ge-combination

In the following manner to members of the previous

generation:

5.4.1. Mutation Operators

Suppose we have a present population containing

individuals labeled Ii1, Ii2, and Ii3, ranging from 1 to NP. We

select a trio of these persons labeled as I1, I2, and I3. Next, we

aim to generate a fresh mutant individual by executing a

mutation operation on their priority lists. We achieve this by

randomly selecting three individuals and utilizing a factor

Fpv. Using the equation, we apply the mutation operation to

their priority lists using the scale factor Fpv.:

vni=pvi1+Fpv (pvi2- pvi3)

Where individual i's priority value list is pvx and vni is

the mutant. A new mutant with a new priority list vni is

created as a result.

Fig. 2 Suggested DE in comparison

Fig. 3 Makespan value with a number of generations

5.4.2. Crossover Operators

With a crossover rate of crpv, the crossover operator

combines bits from two individuals—one from the current

population and the other from a mutant—to create a new

member. In order to accomplish this, it selects a random

number Rj for each element k in the priority list from a

uniform distribution between 0 and 1.

If Rj is equal to or lower than crpv, the trial individual

copies the element from the mutant individual; if not, it

copies the target individual. Following the crossover

operator, the new individual's structure may not align with

the intended solution representation, as elements could have

unexpected values. In order to correct this issue, the test

subject is reverted back to the initial form using the

following process:

1. Set a counter l to 1.

2. Give the dummy start task a priority value of 1.

3. Increment l.

4. Find the set of eligible activities (EK) by looking at

which activities have already had their predecessor's

plan.

5. Choose the eligible task k with the lowest precedence:

1. Pvk
I =min { pvk

IІε EK} .

2. Set the pvk
I priority value to be the value of l priority.

6. If the dummy end task m is part of the eligible activities,

stop; otherwise, go to step 3.

0

10

20

30

40
MAKESPAN

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 1011121314151617181920

Makespan
No. of Generation

Amol Chaudhary & Sachin Meshram / IJETT, 72(12), 151-159, 2024

158

Table 4. Schedule obtained through differential evolution

Activities

Considered
1-3 1-2 3-5 2-4 5-7 5-7 4-6 11-12 6-8 12-13 8-10 13-14 14-15 10-16 15-16

Makespan 2 2 4 4 6 8 10 12 14 16 16 17 18 20 21

Total Make Span = 21

This conversion process ensures that the trial individual's

priority values align with the original representation, even if

the crossover operator has messed them up.

Acceptance operator: When the transformation and

hybrid activities have been finished, we consider the

preliminary person's goal capability esteem in contrast to the

objective person's. The trial person will be chosen for the

next generation if the evaluation result is the same or lower

than the target person's. The intended recipient moves on to

the next generation if it is higher.

6. Execution and Balancing
The widely recognized Patterson experimental setup

evaluated the suggested algorithm against different

techniques in the published studies (Wu et al., 2011). This

test environment consists of 16 tasks, with dummy activities

at the beginning and end. Three different resources are

needed in specific quantities for every task. The data required

to address the issue is presented in Figure 1. Per the

experiment setup, there are 16 activities, all with

predetermined unit demands for three resources. The

specifics of the issue are outlined in Figure 1. Implementing

the DE algorithm on Patterson's test bed revealed a total

makespan 21. The resulting timetable is shown in Table 3.

Figure 2 compares the DE algorithm and other methods; Wu

et al., 2011. The DE algorithm performs better than others, as

illustrated in the diagram. Both the DE and CBIIA

algorithms have a makespan of 21. However, the DE

algorithm can reach this solution in only 0.1 seconds

compared to the 0.51185 seconds required by the CBIIA

algorithm. Hence, the DE algorithm is the top choice

regarding the time needed to achieve a solution close to

optimal. Aside from the makespan, the number of iterations

required to achieve the final solution is also crucial when

comparing the two algorithms. The DE algorithm achieves a

great solution in just 20 iterations, whereas the CBIIA

algorithm takes 52 iterations to reach a solution. This pattern

demonstrates that exploring the solution space for larger

problem sizes will take longer iterations. Considering both

makespan and the number of iterations, the DE algorithm

with fewer iterations is preferable. Figure 3 displays the

convergence pattern of the DE algorithm.

7. Conclusion
In this study, we presented the widely recognized

challenge of RCPSP for its high computational complexity.

The significance of reducing the makespan is clear in today's

competitive business landscape. Because the problem is NP-

hard, near-optimal methods are needed to solve it efficiently.

Consequently, a productive evolutionary technique is known

as DE (Differential Evolution). Next, we evaluated the

outcomes by comparing them with various algorithms

already documented in research. The findings indicated that

DE performed better than the approaches it was

compared in terms of both solution quality and

computational efficiency, demonstrating its potential as a

robust method for addressing the RCPSP challenge.

References

[1] Sönke Hartmann, and Rainer Kolisch, “Experimental Evaluation of State-of-the-Art Heuristics for the Resource-Constrained Project

Scheduling Problem,” European Journal of Operational Research, vol. 127, no. 2, pp. 394-407, 2000. [CrossRef] [Google Scholar]

[Publisher Link]

[2] Rainer Kolisch, and Rema Padman, “An Integrated Survey of Deterministic Project Scheduling,” Omega, vol. 29, no. 3, pp. 249-272,

2001. [CrossRef] [Google Scholar] [Publisher Link]

[3] Rainer Kolisch, and Sönke Hartmann, “Experimental Investigation of Heuristics for Resource-Constrained Project Scheduling: An

Update,” European Journal of Operational Research, vol. 174, no. 1, pp. 23-37, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[4] Sönke Hartmann, “A Competitive Genetic Algorithm for Resource‐Constrained Project Scheduling,” Naval Research Logistics (NRL),

vol. 45, no. 7, pp. 733-750, 1998. [CrossRef] [Google Scholar] [Publisher Link]

[5] Sönke Hartmann, “A Self‐Adapting Genetic Algorithm for Project Scheduling Under Resource Constraints,” Naval Research Logistics

(NRL), vol. 49, no. 5, pp. 433-448, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[6] Kwan Woo Kim, Mitsuo Gen, and Genji Yamazaki, “Hybrid Genetic Algorithm with Fuzzy Logic for Resource-Constrained Project

Scheduling,” Applied Soft Computing, vol. 2, no. 3, pp. 174-188, 2003. [CrossRef] [Google Scholar] [Publisher Link]

[7] U. Kohlmorgen, H. Schmeck, and K. Haase, “Experiences with Fine‐Grainedparallel Genetic Algorithms,” Annals of Operations

Research, vol. 90, pp. 203-219, 1999. [CrossRef] [Google Scholar] [Publisher Link]

[8] Jae-Kwan Lee, and Yeong-Dae Kim, “Search Heuristics for Resource Constrained Project Scheduling,” Journal of the Operational

Research Society, vol. 47, no. 5, pp. 678-689, 1996. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/S0377-2217(99)00485-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Experimental+evaluation+of+state-of-the-art+heuristics+for+the+resource-constrained+project+scheduling+problem&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0377221799004853?via%3Dihub
https://doi.org/10.1016/S0305-0483(00)00046-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+integrated+survey+of+deterministic+project+scheduling&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0305048300000463?via%3Dihub
https://doi.org/10.1016/j.ejor.2005.01.065
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Experimental+investigation+of+heuristics+for+resource-constrained+project+scheduling%3A+An+update&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0377221705002596?via%3Dihub
https://doi.org/10.1002/(SICI)1520-6750(199810)45:7%3C733::AID-NAV5%3E3.0.CO;2-C
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+competitive+genetic+algorithm+for+resource%E2%80%90constrained+project+scheduling&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/(SICI)1520-6750(199810)45:7%3C733::AID-NAV5%3E3.0.CO;2-C
https://doi.org/10.1002/nav.10029
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+self%E2%80%90adapting+genetic+algorithm+for+project+scheduling+under+resource+constraints&btnG=
https://onlinelibrary.wiley.com/doi/10.1002/nav.10029
https://doi.org/10.1016/S1568-4946(02)00065-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Hybrid+genetic+algorithm+with+fuzzy+logic+for+resource-constrained+project+scheduling&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S1568494602000650?via%3Dihub
https://doi.org/10.1023/A:1018912715283
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Experiences+with+fine%E2%80%90grainedparallel+genetic+algorithms&btnG=
https://link.springer.com/article/10.1023/A:1018912715283
https://doi.org/10.1057/jors.1996.79
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Search+heuristics+for+resource+constrained+project+scheduling&btnG=
https://www.tandfonline.com/doi/abs/10.1057/jors.1996.79

Amol Chaudhary & Sachin Meshram / IJETT, 72(12), 151-159, 2024

159

[9] V. Jorge Leon, and Ramamoorthy Balakrishnan, “Strength and Adaptability of Problem-Space Based Neighborhoods for Resource-

Constrained Scheduling,” Operations-Research-Spektrum, vol. 17, pp. 173-182, 1995. [CrossRef] [Google Scholar] [Publisher Link]

[10] Jorge Magalhães-Mendes, Jose F. Gonçalves, and MaurÃ­cio G. C. Resende, “A Random Key Based Genetic Algorithm for the

Resource Constrained Project Scheduling Problem,” Computers and Operations Research, vol. 36, no. 1, pp. 92-109, 2009. [CrossRef]

[Google Scholar] [Publisher Link]

[11] Vicente Valls, Francisco Ballestín, and Sacramento Quintanilla, “A Hybrid Genetic Algorithm for the Resource-Constrained Project

Scheduling Problem,” European Journal of Operational Research, vol. 185, no. 2, pp. 495-508, 2008. [CrossRef] [Google Scholar]

[Publisher Link]

[12] Reza Zamani, “A Competitive Magnet-Based Genetic Algorithm for Solving the Resource-Constrained Project Scheduling Problem,”

European Journal of Operational Research, vol. 229, no. 2, pp. 552-559, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[13] Kamel Bouleimen, and H. Lecocq, “A New Efficient Simulated Annealing Algorithm for the Resource-Constrained Project Scheduling

Problem and its Multiple Mode Version,” European Journal of Operational Research, vol. 149, no. 2, pp. 268-281, 2003. [CrossRef]

[Google Scholar] [Publisher Link]

[14] Fayez Fouad Boctor, An Adaptation of the Simulated Annealing Algorithm for Solving Resource-Constrained Project Scheduling

Problems, Laval University, Research Directorate, Faculty of Administration, 1994. [Google Scholar] [Publisher Link]

[15] Daniel Merkle, Martin Middendorf, and Hartmut Schmeck, “Ant Colony Optimization for Resource-Constrained Project Scheduling,”

IEEE Transactions on Evolutionary Computation, vol. 6, no. 4, pp. 333-346, 2002. [CrossRef] [Google Scholar] [Publisher Link]

[16] Shih-Tang Lo et al., “Multiprocessor System Scheduling with Precedence and Resource Constraints Using an Enhanced ant Colony

System,” Expert Systems with Applications, vol. 34, no. 3, pp. 2071-2081, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[17] Hong Zhang, Heng Li, and C. M. Tam, “Particle Swarm Optimization for Resource-Constrained Project Scheduling,” International

Journal of Project Management, vol. 24, no. 1, pp. 83-92, 2006. [CrossRef] [Google Scholar] [Publisher Link]

[18] Qiong Jia and Yoonho Seo, “Solving Resource-Constrained Project Scheduling Problems: Conceptual Validation of FLP Formulation

and Efficient Permutation-Based ABC Computation,” Computers & Operations Research, vol. 40, no. 8, pp. 2037-2050, 2013.

[CrossRef] [Google Scholar] [Publisher Link]

[19] Rainer Storn, and Kenneth Price, “Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous

Spaces,” Journal of Global Optimization, vol. 11, pp. 341-359, 1997. [CrossRef] [Google Scholar] [Publisher Link]

[20] Najeh Damak et al., “Differential Evolution for Solving Multi-Mode Resource-Constrained Project Scheduling Problems,” Computers

and Operations Research, vol. 36, no. 9, pp. 2653-2659, 2009. [CrossRef] [Google Scholar] [Publisher Link]

[21] Jarboui Bassem et al., “A Combinatorial Particle Swarm Optimization for Solving Multi-Mode Resource-Constrained Project

Scheduling Problems,” Applied Mathematics and Computation, vol. 195, no. 1, pp. 299-308, 2008. [CrossRef] [Google Scholar]

[Publisher Link]

[22] Amir Rahimi, Hamid Karimi, and Behrouz Afshar-Nadjafi, “Using Meta-Heuristics for Project Scheduling under Mode Identity

Constraints,” Applied Soft Computing, vol. 13, no. 4, pp. 2124-2135, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[23] Jacek Blazewicz, Jan Karel Lenstra, and Alexander H. G. Rinnooy Kan, “Scheduling Subject to Resource Constraints: Classification

and Complexity,” Discrete Applied Mathematics, vol. 5, no. 1, pp. 11-24, 1983. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/BF01719262
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Strength+and+adaptability+of+problem-space+based+neighborhoods+for+resource-constrained+scheduling&btnG=
https://link.springer.com/article/10.1007/BF01719262
https://doi.org/10.1016/j.cor.2007.07.001
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+random+key+based+genetic+algorithm+for+the+resource+constrained+project+scheduling+problem&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0305054807001359?via%3Dihub
https://doi.org/10.1016/j.ejor.2006.12.033
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+genetic+algorithm+for+the+resource-constrained+project+scheduling+problem%2C%E2%80%9D+European+journal+of+operational+research&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0377221707000616?via%3Dihub
https://doi.org/10.1016/j.ejor.2013.03.005
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+competitive+magnet-based+genetic+algorithm+for+solving+the+resource-constrained+project+scheduling+problem&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0377221713002130?via%3Dihub
https://doi.org/10.1016/S0377-2217(02)00761-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+efficient+simulated+annealing+algorithm+for+the+resource-constrained+project+scheduling+problem+and+its+multiple+mode+version&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0377221702007610?via%3Dihub
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Adaptation+of+the+Simulated+Annealing+Algorithm+for+Solving+Resource-Constrained+Project+Scheduling+Problems&btnG=
https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6365666
https://doi.org/10.1109/TEVC.2002.802450
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ant+colony+optimization+for+resource-constrained+project+scheduling&btnG=
https://ieeexplore.ieee.org/document/1027745
https://doi.org/10.1016/j.eswa.2007.02.022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Multiprocessor+system+scheduling+with+precedence+and+resource+constraints+using+an+enhanced+ant+colony+system&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0957417407000851?via%3Dihub
https://doi.org/10.1016/j.ijproman.2005.06.006
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Particle+swarm+optimization+for+resource-constrained+project+scheduling&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0263786305000748?via%3Dihub
https://doi.org/10.1016/j.cor.2013.02.012
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Solving+resource-constrained+project+scheduling+problems%3A+conceptual+validation+of+FLP+formulation+and+efficient+permutation-based+ABC+computation&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S030505481300052X?via%3Dihub
https://doi.org/10.1023/A:1008202821328
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Differential+evolution%E2%80%93a+simple+and+efficient+heuristic+for+global+optimization+over+continuous+spaces&btnG=
https://link.springer.com/article/10.1023/A:1008202821328
https://doi.org/10.1016/j.cor.2008.11.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Differential+evolution+for+solving+multi-mode+resource-constrained+project+scheduling+problems%2C&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0305054808002372?via%3Dihub
https://doi.org/10.1016/j.amc.2007.04.096
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+combinatorial+particle+swarm+optimization+for+solving+multi-mode+resource-constrained+project+scheduling+problems&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S009630030700553X?via%3Dihub
https://doi.org/10.1016/j.asoc.2012.11.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Using+meta-heuristics+for+project+scheduling+under+mode+identity+constraints&btnG=
https://sciencedirect.com/science/article/abs/pii/S1568494612004607?via%3Dihub
https://doi.org/10.1016/0166-218X(83)90012-4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Scheduling+subject+to+resource+constraints%3A+classification+and+complexity&btnG=
https://www.sciencedirect.com/science/article/pii/0166218X83900124?via%3Dihub

