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Abstract - Valuable asset bound project Planning with Inexhaustible assets is a point that has been quite examined. Basically, 

you have a list of things you need to do in a project, and you have a limited amount of stuff you can use to do those things. 

There is only one way to do each task, and the resources can be used repeatedly. To address this problem, we used Differential 

Evolution (DE) to discover first-class work scheduling in an undertaking so that you can reduce the entire mission's final touch 

time (referred to as the makespan). The number of sources to be had and the duties that may be completed earlier than or after 

one another (referred to as precedence regulations) should be considered. We used a sequential era method to assemble the 

challenge schedule and a prioritized fee-driven method to describe it if you want to streamline the procedure. Subsequent, we 

contrasted our DE set of rules with some different algorithms that had already been created by using other academics. Using 

Patterson's check bed, we assessed each one and discovered that the DE algorithm finished pretty well, supplying attainable 

solutions for most problems. This is a remarkable new approach to the problem of RCPSP involving scarce and renewable 

resources. 

Keywords - DE algorithm, RCPSP, Time period optimization, Branch & Bound Approach, Makespan.  

1. Introduction 
Task managers confront a challenging project when 

faced with the mission scheduling challenge with limited 

resources (RCPSP), which requires careful planning and 

proper sequencing while also dealing with resources like 

time, money, and labor. Schedule the use of all renewable 

and limited resources. There are three basic approaches to 

addressing this issue: precise techniques, heuristics, and a 

near-optimal course of action. Definite techniques strive to 

discover the optimal answer, but they may take a long time 

and may not always be effective for large projects. Heuristics 

are more like rules of thumb that help you develop a decent 

answer fast, but they may not necessarily provide the greatest 

solution. Meta-heuristic approaches are similar to intelligent 

strategies that try to find the best answer by investigating 

numerous choices, albeit they may take some time. 

Researchers have written countless publications on such 

responses throughout the years, recommending ways to boost 

their potential. The study references many well-known 

experts on the issue, including Hartmann and Kolisch [1], 

Kolisch and Padman [2], and Kolisch and Hartmann [3]. 

RCPSP is classified as an NP-hard optimization problem, as 

previously stated. While bigger operations are concerned, 

using real algorithms may result in excessively lengthy 

execution durations. Metaheuristic methodologies are used in 

various research projects to solve this issue. Here is a quick 

review of some of those tactics. Among these tactics is the 

genetic set of rules (GA), which is entirely based on global 

evolution and herbal selection concepts. It was successfully 

used to handle a variety of project scheduling challenges [4]-

[11]. It compares issues that must be addressed to a network 

of living objects found in the environment, with the answers 

preserved in something known as a "chromosome."Rather 

than depending on sheer force to find the best solution, the 

method uses specialized operators to improve the fitness of 

the chromosomes. By simulating natural selection, GA 

produces a more efficient and adaptive outcome. 

Zamani (2013) [12] developed a novel genetic algorithm 

that stands out for using a magnet-based crossover operator. 

This operator may keep up to two connected segments from 

the recipient and one from the donor in their genetic 

composition. This guarantees that the recipient's genes 

correspond with the donor's genetic composition. This 

crossover operator retains up to three interlocked segments 

rather than merely distinguishing it from the usual-factor 

crossover. Only two connected segments are kept inside the -

factor crossover and must come from the same figure. 

GA handles optimization problems using simulated 

annealing, a probabilistic approach. This approach 

incorporates "annealing," which involves gradually reducing 
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the temperature so the algorithm can discover a high-quality 

solution. While it has reached its lowest temperature. GA 

may address task scheduling challenges, as shown in studies 

by Bouleimen and Lecocq [13] and Boctor [14]. It does this 

by avoiding being trapped in neighboring peaks. ACO is 

used in this method. This strategy is comparable to how ants 

look for food. It works by regularly altering pheromone 

pathways among a group of simulated ants, enabling them to 

choose the optimum solution while adhering to the rules. 

Merkle et al. [15] and Lo et al. [16] have described this 

method more specifically. 

Zhang et al. (2006) [17] demonstrate how PSO has been 

used for scheduling challenging scenarios. Debris in PSO 

moves about the answer area, each representing a possible 

solution. The PSO and DE algorithms and the artificial Bee 

Colony (ABC) approach proportionally manage factors such 

as colony length and cycle amount. 

Jia [18] and search engine optimization (2013) improved 

the efficiency of the helpful resource-restricted mission 

scheduling hassle (RCPSP) by using the facility layout hassle 

(FLP) technique. They developed new ways using the 

Permutation-primarily based synthetic Bee Colony (PABC) 

principles. The first method is to immediately use the FLP 

concept to plot activities within time and aid limitations with 

no conflicts or collection violations occurring. While the 

second strategy is similar to the first, it tackles large 

instances of the problem categorized as NP-hard using the 

Permutation Illustration Scheme from the PABC set of rules. 

They eventually added a new layer of complexity by 

using Variable Neighborhood Search (VNS) to find virtually 

flawless solutions. VNS is related to a strategy that 

systematically adjusts the environment and employs basic 

local search techniques for greater solutions. It has already 

been used to solve scheduling challenges, as shown by 

Fleszar and Hindi's 2004 study. This paper studies how to 

calculate RCPSP and how to use it in the Differential 

Evolution (DE) meta-heuristic technique. In 1997, Storn and 

Fee [19] created DE, a powerful approach that combines 

classic crossover, mutation, and reputation operators with 

basic mathematical operators. DE's core system begins with 

developing trial parameter vectors, which are subsequently 

formed by crossover and mutation. Choice determines which 

vectors will be surpassed down to the next period. 

The use of DE to address scheduling challenges in 

projects has been investigated. For example, Damak et 

al.;2009 [20] employed DE to solve resource-constrained 

challenge scheduling problems (MRCPSP) in a variety of 

modalities. This approach represents solutions as a vector of 

coordinates and a vector of mode assignments. The choice 

operator penalizes unrealistic solutions based on the purpose 

characteristic's values. Preferred scenarios were used to test 

the algorithm's performance, and the results were compared 

to those of particle swarm optimization by Jarboui et al. 

(2008) [21] and simulated annealing by Bouleimen and 

Lecocq [13]. A differential evolution (DE) technique change 

was used by Rahimi et al. (2013) [22] to resolve the mode 

identity constraints venture scheduling problem (MIRCPSP). 

The approach was coupled with a module for nearby search 

and gaining knowledge to improve the current DE's efficacy. 

The objective function and computing instances of the 

solutions to several take a look at issues have been compared 

statistically to evaluate the performance of the DE. 

2. Resource-Constrained Project Scheduling 

Problem (RCPSP) 
The issue with project planning is sorting out what 

amount of time it will require to do an undertaking's 

exercises to accomplish a specific objective. In primary 

research on project scheduling, it was assumed that a 

project's activities are only described by the time it takes to 

carry them out. After that, strategies like the basic way 

strategy (CPM) and the program assessment and survey 

method (Energetic) are suggested by considering the most 

important connections between tasks. Constraints will be 

applied, and their effects will be evaluated because assuming 

that precedence relationships are independent appears 

unreasonable. The Resource-Constrained Project Scheduling 

Problem, or RCPSP, is considered a typical project 

scheduling issue. This problem considers a project with J 

activities labeled j=1,..., J. They are one of the major 

limitations of project scheduling. In addition, the duration of 

an activity j, or processing time, is represented by dj, 

indicating that the activity must be finished immediately after 

beginning. Technological requirements are generally placed 

in order of precedence among the activities. These 

connections are shown by sets of prompt ancestors Pj, 

demonstrating that an action j cannot be begun before the 

fruition of every one of its ancestors (iεPj). Furthermore, 

these connections can be addressed as an organization. A 

specific measure of assets is expected for every movement to 

be performed. Attributable to a full limit accessible in each 

period, the assets are perceived as sustainable. Altogether, 

we have K sorts of inexhaustible assets named k=1,…, K. It 

is assumed that a constant amount of Rk is available prior to 

the beginning of each period for each resource k. It is 

necessary to have rjk units of resource k in each period 

where the processing is carried out to carry out activity j. 

Additionally, two additional activities, j=0 and j=J+1, signify 

the project's beginning and end, respectively, are considered. 

Since both are fictitious activities, there is no processing time 

or use of resources. The problem's information is taken to be 

definite and deterministic, and the parameters are taken to be 

integer-valued and non-negative. In this issue, the point is to 

carve out the beginning opportunity (Sj) for the exercises 

j=0,1,…, J+1, such that the consummation season of the 

venture is limited Hartmann, 2002[5]. As previously 

mentioned, this is the fundamental form of the resource-

constrained project scheduling problem. Nonetheless, since 
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the circumstances are totally divergent practically, changes 

have been made to the essential suspicions by the analysts 

over the long run. In addition, the RCPSP problem is one of 

the strongly NP-hard problems, as demonstrated by 

Blazewicz et al. [23]. As a result, various solutions are 

utilized based on the changes in the fundamental 

assumptions. 

3. Problem Definition 
Experience demonstrates that resources are incredibly 

crucial for every project. This phase will deal with the 

fundamental resource-restrained undertaking scheduling 

hassle, typically called the RCPSP. It is a common issue 

involving splitting time into specific periods and breaking 

tasks into various activities. We will have a collection of n 

activities, each with a duration di, where i ranges from 1 to 

m. Certain activities cannot begin until others have been 

completed, necessitating us to consider this factor. There are 

several periods of time within the planning span, and the 

number of activities needed for each job is limited to a 

certain amount. To make things more organized, we will 

label all the activities from A0 to An+1, where A0 is the first 

thing we need to do (the source) and Am+1 is the last thing 

we need to do (the sink). Without a source or sink, a dummy 

task will be included with zero duration and no resource 

needs. However, every task requires resources to be 

completed. The total number of resources is R, and we can 

only have a maximum of Rj units of resource j at any given 

period. The resources are renewable, so we can use them as 

much as we want, but we can only use them when they are 

available. The RCPSP aims to parent out a way to do all the 

duties using the least amount of resources. To do this, we 

must determine when each task starts and finishes, 

considering all the resources we need and the order of things. 

The RCPSP is an integer programming problem that can 

be represented by xkt as a variable set to 1 if task Ak is 

scheduled to finish at the end of period t and 0 if not. For 

every task, Ak is assigned the Earliest Finish Time (EFT), 

EFk, and the latest finish time (LST), LFk, which is allocated 

using the Kelley and Walker (1959) technique. LFm+1 is 

assigned a value of H, which will never exceed the total 

duration of all activities. 

Minimize ∑ 𝑡𝑋𝑚 + 1, 𝑡𝑡=𝐿𝐹 𝑚+1
𝑡=𝐸𝐹 𝑚+1    (1) 

Subject to : ∑ 𝑋𝑘𝑡
𝐿𝐹𝑗
𝑡=𝐸𝐹𝑘 = 1 for k=0,…..,n+1  (2) 

∑ 𝑡𝑋𝑖𝑡𝐿𝐹𝑖
𝑡=𝐸𝐹𝑖  ≤ ∑ 𝑡𝑋𝑘𝑡 − 𝑑𝑘𝐿𝐹𝑘

𝑡=𝐸𝐹𝑘    (3) 

for  all (Ai, Aj) ε P 

∑ 𝑟𝑗𝑘𝑋𝑗𝑞
min{𝑡+𝑑𝑘−1,𝐿𝐹𝑘}
𝑞=max {𝑡,𝐸𝐹𝑘}  ≤ Rj for k=1,..R  (4) 

xkt ε {0,1} for i=0,…..,m+1; t= EFk,….,LFi  (5) 

(2) Constraints ensure that each task is carried out only 

once. P is the assortment of all sets of exercises (Ai, Ak) with 

computer-based intelligence going before Ak, addressed by 

disparities (3) to show the prioritized imperatives. The use of 

binary decision variables is specified by restriction (5), and 

restriction (4) ensures that the utilization of each resource 

does not continue to exceed the quantity that is currently 

available. An ideal schedule showing the times at which each 

task can be completed can be obtained by solving problems 

(1) to (5). 

4. Implementation 
Our work's Genetic Algorithm is a combination of 

proposed and proven components. Literature-collected 

proven components are adapted for use by incorporating 

variations. Controlled random numbers have been 

extensively used, as in most genetic algorithms.  

From a convenience standpoint, we use software and 

platforms that are widely available for implementation. This 

also puts us on par with the majority of other research, 

making it easier to make straightforward comparisons. 

4.1. Stage Depiction (Equipment, Programming, and so 

forth)  

The algorithm is implemented in Structured C and 

compiled using Borland® C++. We took advantage of a 

compiler feature unique to (Kernighan/Ritchie) C by doing 

so. For instance, we consolidated elements of C++ for record 

perusing and composing. Under Microsoft Windows XP, the 

program is run on a 2GHz Intel Pentium4 computer with 

2GB of RAM. Contingent upon informational collection and 

boundaries chosen for testing and observing, the run time for 

a complete informational collection went from under seven 

minutes (averaging 875 milliseconds for each occurrence) to 

simply over 24 hours (averaging three minutes for every 

occasion). 

4.2. Input Information- The Test Data-Set 

4.2.1. The Input Data-set 

To evaluate scheduling strategies for the RCPSP, we put 

our algorithm through its paces on internationally recognized 

standard benchmark instances provided by Kolisch in 2000 

[1]. It is known as PSPLIB, and the scientific literature 

acknowledges its usefulness. We used the PSPLIB's standard 

SMFF (Single Mode, Full Factorial) set as test cases. The 

Project lengths are indicated by the labels J30, J60, J90, and 

J120 on these. We used J30 and J60 as our test data set 

because they each have (48 X 10 =) 480 project instances.  

Every one of the sets manages four compelled 

inexhaustible assets. One mode of execution governs each 

task. The interconnectedness of the task dependencies, the 

number of resource types, and the quantity of available 

resources are roughly equivalent to the three parameters on 
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which this set is dependent. The PSPLIB also provides 

SMCP, MMCP, and MMFF sets as test problems. The library 

moderators regularly compile a performance comparison 

between the algorithms of various researchers who utilize 

this data set. We use Kolish and Hartmann's (2006) [3] 

refreshed correlation for benchmarking our exploratory 

outcomes. In this case, the paper's authors have invited 

"future studies" to use the compiled results as benchmarks. 

Hartmann and Kolisch [1] and Kolisch and Padman [2] made 

previous comparisons in the literature in 2000 and 1996. The 

most recent, up-to-date list of the best results on each 

instance set by various researchers can be found in the same 

library. 

4.2.2. Other Test Data-set 

SMFF informational collection of PSPLIB is the most 

generally involved test information for the RCPSP. This 

library contains additional benchmarking-useful standard 

data sets and those available from other libraries and authors. 

A short portrayal of these is given here.  

a) PAT: James Patterson presented this simple arrangement 

of occurrences in his correlation of careful arrangement 

techniques for asset-obligated project planning. There are 

110 project scheduling issues in the Patterson set (PAT) 

whose tasks have a single execution mode and multiple 

resources. The optimal resource-constrained solution is 

frequently identical to the optimal resource-unconstrained 

solution because the resource constraints are not particularly 

strict. 

b) SMCP: The Single Mode Ceteris Paribus set is similar to 

the Patterson set but has more resource restrictions and ten to 

forty tasks. There are 200 problems in the set, ranging from 

one to four types of renewable resources. There is only one 

execution mode for each task.  

c) MMFF: The Multi-Mode Full Factorial set includes four 

different resource types, two of which are renewable and two 

of which are not. Only about 85% of the cases in this set are 

known to have solutions that could be implemented. The 

addition of non-renewable resources raises the possibility of 

creating unsolvable issues.  

d) BMRX: At the beginning of 1995, Barry Fox and Mark 

Ringer proposed the Bench MaRX problem. There are 

twelve parts to this one problem. Each component tests 

various aspects of a solution strategy by adding additional 

constraints or problem modifications. The first four sections 

use pretty standard language. From there, it gets harder. 

There are 575 tasks, three types of labor resources, and 

fourteen location-based resources in the problem. It includes 

numerous temporal restrictions in addition to resource and 

location constraints, such as three shifts per day, resources 

restricted to specific shifts, and task start and finishes 

required within a shift or permitted to cross shifts. The final 

of the twelve sections has multiple goals. By fluctuating asset 

accessibility and work orders after a timetable is not entirely 

settled, the issue likewise tests the capacity of arrangement 

techniques to adjust to dynamic changes.  

e) Boctor Sets: Boctor has given a bunch of test information, 

which 1s named as boctor 50mm boctor 100mm.  

f) Alvarez-Tamarit sets: The authors created prob 103, prob 

27, and prob 51, three test data sets. As previously stated, we 

have experimented with the Kolisch [1] SMFF set. We refer 

to the PSPLIB for additional information on the instance 

generation mechanism, the instance generator (Pro Gen), 

solution sets, and other topics. We portray our test 

information (SMFF) arrangement as given in the PSPLIB in 

Figure. The library has converted it from Pro Gen format to 

Patterson format. Let us denote 

j=1,…..;J : jobs 

r=1…..,R : resource types 

S(j) : number of immediate successor-jobs of job j 

S(j,s) : s-th immediate successor-job of job j 

D(j) : non-preemptable duration of job j 

K(r) 
: resource availability of resource type r within 

each period 

K(j,r) : resource usage of job j w.r.t. resource type r 

Keep in mind that the instance size (j) for a project with 

30 activities is 32. The initial and conclusion points are 

dummy tasks that make up the two additional tasks. (For the 

purposes of this discussion, the term "tasks" refers to a toy or 

a project size that includes the dummy activities.)  

An example of a test project with 32 tasks (or 30 

activities) is provided based on the above format definition. 

Even though we used the SMFF data set, we were able to test 

our algorithm's adaptability to other datasets by making a 

small change to our program. 

The format is : 

J R        

K(1) K(2) .. .. K(R)     

d(1) k(1,1) .. k(1,R) S(1) S(1,1) ... .. S(a,S(1)) 

..         

..         

d(J) k(J,1) .. k(J,R) S(J) 0    
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Table 1. Instance example of the J30 test data-set; File name : J301_1.rcp 

32 4        

12 13 4 12      

0 0 0 0 0 3 2 3 4 

8 4 0 0 0 3 6 11 15 

4 10 0 0 0 3 7 8 13 

6 0 0 0 3 3 5 9 10 

3 3 0 0 0 1 20   

8 0 0 0 8 1 30   

5 4 0 0 0 1 27   

9 0 1 0 0 3 12 19 27 

2 6 0 0 0 1 14   

7 0 0 0 1 2 16 25  

9 0 5 0 0 2 20 26  

2 0 7 0 0 1 14   

6 4 0 0 0 2 17 18  

3 0 8 0 0 1 17   

9 3 0 0 0 1 25   

10 0 0 0 5 2 21 22  

6 0 0 0 8 1 22   

5 0 0 0 7 2 20 22  

3 0 1 0 0 2 24 29  

7 0 10 0 0 2 23 25  

2 0 0 0 6 1 28   

7 2 0 0 0 1 23   

2 3 0 0 0 1 24   

3 0 9 0 0 1 30   

3 4 0 0 0 1 30   

7 0 0 4 0 1 31   

8 0 0 0 7 1 28   

3 0 8 0 0 1 31   

7 0 7 0 0 1 32   

2 0 7 0 0 1 32   

2 0 0 2 0 1 32   

0 0 0 0 0 0    
 

There are four parts to each data set:  

• Tasks (or activities, or nodes, depending on which term 

the authors prefer), 

• Assets (we zeroed in on the amount compelled 

sustainable assets),  

• Precedence Constraints (which predecessor or successor 

is shown)  

• Time taken to finish the task  

The position format of the preceding four components is 

the primary difference between the input and output data 

sets. Whenever this is broken down and grasped, and 

imperative changes are made in the 'input data' capability, the 

rest of our program continues as before. However, the Single 

Mode aspect was our primary focus at all times. 

5. Differential Evolution (DE) 
DE is based on populations and randomness, which 

takes inspiration from Evolutionary Algorithms (EAs) in 

general and, more specifically, the Genetic Algorithm (GA). 

It tries to find a solution close to optimal or satisfactory by 

combining existing ones using techniques like mutation, 

crossover, and acceptance.  

In differential advancement, people are signified by D-

layered vectors known as xi, with D addressing the number 

of genuine boundaries and NP as the populace size. 

Beginning with a group of beings with randomly generated 

values for their components (genes), evolution begins. 

Initially, the mutation process takes place by randomly 

selecting three individuals and blending their gene values in 

various ways. More specifically, the differences in gene 

values between the other two individuals and the initial 

person are combined. This procedure can be summed up as 

follows: 

DE = (xi1 - xi2) + xi1 + (xi2 - xi3) + xi2 + (xi3 - xi1) + xi3 

Vi= xi1 + F ….. (xi2- xi3   (6) 
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i1, i2, i3, and ε are distinct integers between 1 and NP (the 

population size) are distinct integers that do not include the 

vector's index i. The difference between two vectors is 

affected by the constant F greater than zero. A crossover 

between the mutated individual (vi) and a target individual 

from the current population (xi), known as the trial 

individual, produces a trial individual. During the crossover 

operation, it is necessary to abide by these regulations. 

yi (j)= {vi (j), if Rj ≤ cr or j= jrandom    (7) 

xi (k), otherwise 

The crossover rate constant, cr ε is defined as (0,1), and 

each Rj is randomly selected with values between 0 and 1. In 

this simulation, there are D possible values for randomly 

chosen j, from the set {1, 2, ..., D}, for each individual. 

Following mutation and crossover, the trial individual is then 

subject to acceptance. The trial individual's fitness is 

evaluated against the target individual's, and the one with the 

higher fitness level is chosen to advance to the next 

generation. The trial person's fitness is then compared to that 

of the fitter person, and if it is higher, the trial person is 

chosen as the new target person for the next generation. 

xi = {yi , if f(yi) ≤ f(xi)     (8) 

xi, otherwise 

A fresh group of people is formed by following the 

same steps with each person from the initial group, and this 

cycle continues until a specific requirement is fulfilled. The 

solution to the problem is determined by selecting the top 

individual from the previous generation.  

5.1. Representation of a Solution 

A vector (I) of size m with one element for each task 

solves this issue. The kth element represents the priority of 

task k in the solution (a priority list). The kth element pvk
I ε 

{1,2,…..,n} , which can have values from 1 to m:  

I= (pv1
I, pv2

I,….. pvm
I)     (9) 

The Serial Schedule Generation Scheme (SSGS) creates 

a schedule for a single person. Essentially, SSGS focuses on 

the makespan criterion, a standard measure of performance 

that improves as task completion times decrease. Using the 

serial SGS guarantees that no best schedules will be 

overlooked, allowing us to utilize it for this task confidently. 

With a specific individual I, we can determine their 

respective schedule by adhering to these steps: 

• Check if there is only one task for I. If so, then the 

schedule is just that one task. 

• Otherwise, we make a list of all the activities in 

increasing order of their completion times. 

• Then, we go through the list and add each task to the 

schedule one at a time, in the order they appear in the 

list. The first task is added to the schedule immediately, 

while the last one is added at the end. 

• Once we have added all the activities, the schedule is 

complete. 

1) Let P= 1. 

2) Set the dummy start task 1 at time 0. 

3) P= P+ 1. 

4) Select the task k with the priority value pvkI = P. 

5) Compute the earliest precedence and resource 

feasible start time of task k. 

6) If the dummy end task m is on the schedule, halt. If 

not, proceed to step 3. 

Table 2. Time needed for operation  

Task Task 
Duration 

(Shifts) 

Resource 

Type A Type B Type C 

1-2 Gearbox taking out 2 1 1 3 

1-3 Bottom frame Removing 2 1 1 5 

2-4 Bottom frame fabrication 2 1 1 4 

3-5 Gearbox fitting 2 1 1 4 

4-6 Gearbox alignment 2 1 1 5 

5-7 Motor fitting and alignment 2 1 1 4 

6-8 barrel lifting 2 2 1 4 

7-9 Releasing J1 pin 2 1 1 4 

8-10 Releasing J2 pin 2 1 1 4 

9-11 Barrel taking out 1 2 1 4 

11-12 Barrel lifting (other side) 1 1 1 5 

12-13 Making J3 pin free 2 1 1 4 

13-14 Making J4 pin free 1 1 1 4 

14-15 Barrel taking Opposite side 1 1 0 4 

15-16 Bottom frame adjusting 1 0 0 1 

10-16 addressing oil leaks in packages and valve maintenance 2 2 1 3 
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Table 3. Resource accessibility 

Type Resource Max. Resource Accessibility 

A Fitter 2 

B Welder 2 

C Helper 8 
 

 
Fig. 1 Network layout for various maintenance tasks 

5.2. Original Population 

We begin with an empty m-element vector and repeat 

the following steps to create a priority value list based on the 

precedence constraints for each individual I in the initial 

population: 
 

1. Randomly choose an eligible task k. 

2. Choose a random index m from the set {1, 2, ..., m} 

(representing the order numbers from 1 to m). 

3. Assign the priority value of task k (pvK
I) to index m. 

This cycle is rehashed for a pre-indicated number of 

arrangements equivalent to the size of the pop-size. 
 

5.3. Scheduling Problem 

In particular, this research focuses on planning when 

maintenance tasks for the Wagon tippler will take place. The 

time needed for each maintenance task is determined by the 

length of regular work shifts, which are eight hours in 

duration. 
 

5.4. Genetic Ge-combination 

In the following manner to members of the previous 

generation: 
 

5.4.1. Mutation Operators 

Suppose we have a present population containing 

individuals labeled Ii1, Ii2, and Ii3, ranging from 1 to NP. We 

select a trio of these persons labeled as I1, I2, and I3. Next, we 

aim to generate a fresh mutant individual by executing a 

mutation operation on their priority lists. We achieve this by 

randomly selecting three individuals and utilizing a factor 

Fpv. Using the equation, we apply the mutation operation to 

their priority lists using the scale factor Fpv.: 
 

vni=pvi1+Fpv (pvi2- pvi3) 
 

Where individual i's priority value list is pvx and vni is 

the mutant. A new mutant with a new priority list vni is 

created as a result. 

 
Fig. 2 Suggested DE in comparison  

 
Fig. 3 Makespan value with a number of generations 

5.4.2. Crossover Operators 

With a crossover rate of crpv, the crossover operator 

combines bits from two individuals—one from the current 

population and the other from a mutant—to create a new 

member. In order to accomplish this, it selects a random 

number Rj for each element k in the priority list from a 

uniform distribution between 0 and 1.  

 

If Rj is equal to or lower than crpv, the trial individual 

copies the element from the mutant individual; if not, it 

copies the target individual. Following the crossover 

operator, the new individual's structure may not align with 

the intended solution representation, as elements could have 

unexpected values. In order to correct this issue, the test 

subject is reverted back to the initial form using the 

following process: 

 

1. Set a counter l to 1. 

2. Give the dummy start task a priority value of 1. 

3. Increment l. 

4. Find the set of eligible activities (EK) by looking at 

which activities have already had their predecessor's 

plan. 

5. Choose the eligible task k with the lowest precedence: 

1. Pvk
I =min { pvk

IІε EK} . 

2. Set the pvk
I priority value to be the value of l priority. 

6. If the dummy end task m is part of the eligible activities, 

stop; otherwise, go to step 3. 
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Table 4. Schedule obtained through differential evolution 

Activities 

Considered 
1-3 1-2 3-5 2-4 5-7 5-7 4-6 11-12 6-8 12-13 8-10 13-14 14-15 10-16 15-16 

Makespan 2 2 4 4 6 8 10 12 14 16 16 17 18 20 21 

Total Make Span = 21 

 

This conversion process ensures that the trial individual's 

priority values align with the original representation, even if 

the crossover operator has messed them up. 

Acceptance operator: When the transformation and 

hybrid activities have been finished, we consider the 

preliminary person's goal capability esteem in contrast to the 

objective person's. The trial person will be chosen for the 

next generation if the evaluation result is the same or lower 

than the target person's. The intended recipient moves on to 

the next generation if it is higher. 

6. Execution and Balancing 
The widely recognized Patterson experimental setup 

evaluated the suggested algorithm against different 

techniques in the published studies (Wu et al., 2011). This 

test environment consists of 16 tasks, with dummy activities 

at the beginning and end. Three different resources are 

needed in specific quantities for every task. The data required 

to address the issue is presented in Figure 1. Per the 

experiment setup, there are 16 activities, all with 

predetermined unit demands for three resources. The 

specifics of the issue are outlined in Figure 1. Implementing 

the DE algorithm on Patterson's test bed revealed a total 

makespan 21. The resulting timetable is shown in Table 3. 

Figure 2 compares the DE algorithm and other methods; Wu 

et al., 2011. The DE algorithm performs better than others, as 

illustrated in the diagram. Both the DE and CBIIA 

algorithms have a makespan of 21. However, the DE 

algorithm can reach this solution in only 0.1 seconds 

compared to the 0.51185 seconds required by the CBIIA 

algorithm. Hence, the DE algorithm is the top choice 

regarding the time needed to achieve a solution close to 

optimal. Aside from the makespan, the number of iterations 

required to achieve the final solution is also crucial when 

comparing the two algorithms. The DE algorithm achieves a 

great solution in just 20 iterations, whereas the CBIIA 

algorithm takes 52 iterations to reach a solution. This pattern 

demonstrates that exploring the solution space for larger 

problem sizes will take longer iterations. Considering both 

makespan and the number of iterations, the DE algorithm 

with fewer iterations is preferable. Figure 3 displays the 

convergence pattern of the DE algorithm. 

7. Conclusion 
In this study, we presented the widely recognized 

challenge of RCPSP for its high computational complexity. 

The significance of reducing the makespan is clear in today's 

competitive business landscape. Because the problem is NP-

hard, near-optimal methods are needed to solve it efficiently. 

Consequently, a productive evolutionary technique is known 

as DE (Differential Evolution). Next, we evaluated the 

outcomes by comparing them with various algorithms 

already documented in research. The findings indicated that 

DE performed better than the approaches it was 

compared   in terms of both solution quality and 

computational efficiency, demonstrating its potential as a 

robust method for addressing the RCPSP challenge. 
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