
International Journal of Engineering Trends and Technology                          Volume 72 Issue 12, 215-226, December 2024 

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I12P119                                        © 2024 Seventh Sense Research Group®   
  

                           This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

Enhancing Dropout Prediction with RUSBoost and 

BalanceCascade Algorithms: Tackling Class Imbalance 

in Real-World Educational Data in South Korea  
  

Haewon Byeon1, 2 

1AI Convergence College, Inje University, South Korea. 
2Inje University Medical Big Data Research Center, South Korea. 

Corresponding Author: bhwpuma@naver.com  

Received: 16 August 2024               Revised: 13 November 2024        Accepted: 15 November 2024    Published: 25 December 2024 

Abstract - Class imbalance presents a significant challenge in machine learning, especially in educational data analytics, where 

minority class instances are often critical. This study compares the performance of two advanced techniques, RUSBoost and 

BalanceCascade, for addressing class imbalance using real-world educational datasets in South Korea. We utilized data from 

the Korean Educational Longitudinal Study (KELS) from 2013 to 2021, focusing on 4,385 first-year university students in 2021. 

The datasets were preprocessed and categorized into various factors, including personal, family, and school factors. We 

implemented RUSBoost and BalanceCascade and evaluated their performance using four different base learners: Random 

Forest, Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Logistic Regression. The models were assessed using 

multiple performance metrics, including Area Under the Receiver Operating Characteristic Curve (A-ROC), Precision-Recall 

Curve (A-PRC), Kolmogorov-Smirnov (K-S) statistic, and F-measure. RUSBoost demonstrated superior performance across 

most metrics and datasets, particularly excelling in A-ROC and K-S statistics. It consistently outperformed BalanceCascade, 

showing its robustness and efficiency. BalanceCascade, while competitive, showed slightly lower performance, especially with 

A-PRC and F-measure metrics. The comparative analysis revealed that RUSBoost’s more straightforward and faster approach 

made it a more practical choice for handling class imbalance in the educational sector. The findings suggest that RUSBoost is a 

highly effective method for improving classification performance on imbalanced datasets. Its simplicity and efficiency suit real-

world applications, including educational data analytics. Future research should explore further enhancements to these 

techniques and their applicability in other domains. This study provides valuable insights into selecting appropriate methods for 

class imbalance, contributing to developing fair and accurate predictive models. 

Keywords - Class Imbalance, RUSBoost, BalanceCascade, Real-World Data, Machine Learning. 

1. Introduction 
In machine learning, class imbalance presents a pervasive 

challenge, particularly within domains where the minority 

class holds significant importance despite its infrequency. One 

such domain is educational data analytics, where certain 

critical instances—such as students with unique learning 

needs, minority group educational trends, and 

underrepresented academic performances—are often 

underrepresented in the data [1-3]. This imbalance can lead to 

biased predictive models towards the majority class, thereby 

failing to recognize and classify minority class instances [4] 

adequately. Addressing this issue is crucial to developing 

robust and fair predictive models that accurately reflect the 

educational sector’s complexities and nuances. Class 

imbalance occurs when the number of instances in one class 

(the majority class) significantly exceeds the number of 

instances in another class (the minority class) [5-7]. In 

educational data, this can manifest in various ways. For 

example, data on student performance may show that most 

students have average grades, while those with exceptionally 

high or low grades are few and far between. Similarly, data on 

educational trends may reveal a preponderance of information 

on well-represented academic disciplines, with scant data on 

emerging or niche fields. The consequences of class 

imbalance are particularly severe in the educational sector 

[1,2]. Predictive models trained on imbalanced data tend to be 

biased towards the majority class, resulting in poor 

performance on the minority class [5]. This can lead to 

significant issues, such as failing to identify students who need 

additional support or overlooking important educational 

trends in minority groups. In a broader context, this bias can 

perpetuate existing inequalities and hinder efforts to promote 

educational equity and inclusion within the academic 

environment. Various techniques have been proposed to 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bhwpuma@naver.com


Haewon Byeon / IJETT, 72(12), 215-226, 2024  

 

216 

mitigate the problem of class imbalance. Among these, data 

sampling methods—oversampling and undersampling—are 

the most widely used [8-11]. Oversampling involves 

increasing the number of minority class instances in the 

training dataset [12]. This can be achieved by duplicating 

existing minority class examples or generating synthetic 

examples [13]. One of the most popular oversampling 

techniques is the Synthetic Minority Over-sampling 

Technique (SMOTE), which creates new synthetic instances 

by interpolating between existing minority class examples 

[14,15]. While oversampling helps balance the class 

distribution, it has several drawbacks. Duplication of 

examples can lead to overfitting, where the model performs 

well on the training data but poorly on unseen data [15]. 

Additionally, generating synthetic examples can be 

computationally expensive and may not always capture the 

true underlying distribution of the minority class.  

Undersampling, on the other hand, involves reducing the 

number of majority class instances [16]. This is typically done 

by randomly removing majority class examples until 

achieving the desired class ratio. Random Undersampling 

(RUS) is a straightforward and commonly used method [17]. 

However, undersampling can significantly lose valuable 

information, as many majority class examples are discarded 

[18]. This reduction in data can negatively impact the model’s 

performance and ability to generalize to new data. For 

instance, in educational data, undersampling might lead to the 

loss of important patterns and trends present in the majority 

class, thereby reducing the overall predictive power of the 

model. While data sampling methods provide a means to 

address class imbalance, they come with inherent limitations 

[12]. Both oversampling and undersampling can alter the 

original data distribution, potentially leading to biased models 

[10]. Moreover, these techniques require careful parameter 

tuning, such as determining the appropriate level of 

oversampling or undersampling, which can be complex and 

time-consuming. Additionally, data sampling methods operate 

at the data level rather than the algorithmic level, meaning 

they do not directly influence the learning process of the 

model.  

As a result, the underlying bias towards the majority class 

may persist, albeit somewhat [18].To overcome the limitations 

of traditional data sampling methods, there is a growing need 

for more sophisticated techniques that incorporate class 

imbalance handling directly into the learning algorithm. 

Boosting, a powerful ensemble learning technique offers a 

promising solution [19]. Boosting algorithms combine 

multiple weak classifiers to form a strong classifier, iteratively 

focusing on the instances that are hardest to classify [20]. 

RUSBoost (Random Under-Sampling Boosting) is one such 

technique that integrates random undersampling with boosting 

to create balanced datasets during each iteration of the 

boosting process [21]. This approach reduces the 

computational burden and speeds up the training process, 

making it a more efficient alternative to traditional 

oversampling methods. Despite its simplicity [22], RUSBoost 

has shown to be highly effective in handling class imbalance, 

often matching or exceeding the performance of more 

complex algorithms [20-22]. BalanceCascade is another 

advanced technique specifically designed to address class 

imbalance more refinedly [23]. BalanceCascade is an 

ensemble method that iteratively removes correctly classified 

majority class instances, ensuring that the classifier focuses 

more on the difficult-to-classify minority class instances [23]. 

The method works by training a series of classifiers, each 

using a subset of the majority class instances not correctly 

classified by the previous classifiers. This process continues 

until all majority class instances are correctly classified or 

used in training. By concentrating on the hardest examples, 

BalanceCascade effectively improves the model’s ability to 

recognize and classify minority class instances [24]. 

BalanceCascade offers several advantages over traditional 

sampling and even some boosting methods [25]. 

Systematically removing easy-to-classify majority class 

examples ensures that each subsequent classifier in the 

ensemble is trained on a more challenging subset of the data 

[24,25,26]. This targeted approach helps maintain a high focus 

on the minority class throughout the training process. 

Moreover, BalanceCascade’s iterative nature allows it to 

adaptively balance the class distribution without requiring 

extensive parameter tuning, making it a versatile and robust 

method for handling class imbalance. 

This study will comprehensively evaluate RUSBoost and 

BalanceCascade, comparing their performance in handling 

class imbalance using real-world educational datasets in South 

Korea. By employing various performance metrics, including 

A-ROC, PRC, F-measure, and K–S statistics, we seek to 

determine the efficacy of these techniques in different 

scenarios and provide insights into their practical applicability 

in the educational sector. The remainder of this paper is 

organized as follows: Section II presents related works and 

state-of-the-art techniques for handling class imbalance. 

Section III describes the RUSBoost and BalanceCascade 

algorithms in detail, including their theoretical foundations 

and implementation specifics. Section IV outlines the 

experimental setup, including data collection, preprocessing, 

and performance metrics. Section V presents the experimental 

results and provides a comparative analysis of RUSBoost and 

BalanceCascade. Finally, Section VI concludes the paper by 

summarizing the findings and discussing potential future 

research directions. 

2. Related Work 
This study aims to identify the most effective method for 

addressing class imbalance in employment data, contributing 

to developing fair and accurate predictive models for 

employment analytics. The issue of class imbalance has 

garnered significant research attention over the years. Weiss 

[27] provides a comprehensive overview of the class 
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imbalance problem and the various techniques designed to 

mitigate its negative impact on classification performance.  

2.1. Class mbalance Studies 

Japkowicz [26] delves into the imbalances that most 

adversely affect classification performance and presents a 

small case study comparing several techniques to alleviate the 

problem. This study underscores the importance of 

understanding the specific nature of class imbalance to apply 

the most effective remedial strategies. 

2.2. Data Sampling Techniques 

Data sampling is a widely-researched area within the 

context of class imbalance. The goal of data sampling is to 

modify the class distribution within the training dataset either 

by adding examples to the minority class (oversampling) or by 

removing examples from the majority class (undersampling). 

The simplest form of undersampling is Random 

Undersampling (RUS), which randomly removes examples 

from the majority class until the desired class distribution is 

achieved. Although there is no universally accepted optimal 

class distribution, a balanced (50:50) distribution is often 

considered near optimal [27, 28]. However, when minority 

class examples are extremely rare, a ratio closer to 35:65 

(minority: majority) might yield better classification 

performance [27]. 

In addition to random data sampling techniques, several 

more sophisticated algorithms have been proposed for 

resampling data. Barandela et al. [29] and Han et al. [30] 

examine the performance of these “intelligent” data sampling 

techniques, such as SMOTE (Synthetic Minority Over-

sampling Technique), borderline SMOTE, and Wilson’s 

editing. Van Hulse [31] evaluate the performance of seven 

different data sampling techniques, both “intelligent” and 

random, using a variety of learning algorithms and 

experimental datasets. Their findings indicate that both RUS 

and SMOTE are effective data sampling techniques. 

2.3. Boosting Techniques 

Boosting is another technique that has proven effective 

for handling class imbalance, even though it was not 

specifically designed for this purpose [31]. AdaBoost [9], the 

most commonly used boosting algorithm, enhances the 

performance of weak classifiers, provided they perform better 

than random guessing. Several modifications have been 

proposed to make AdaBoost cost-sensitive [32-34] or to 

improve its performance on imbalanced data [35-37]. 

2.4. Hybrid Approaches 

Our proposed technique, RUSBoost, is inspired by the 

SMOTEBoost algorithm but aims to provide a faster and 

simpler alternative for learning from imbalanced data. 

RUSBoost integrates random undersampling with boosting to 

achieve performance that is usually as good as or better than 

SMOTEBoost, with the added benefit of reduced 

computational complexity. Closely related to the issue of class 

imbalance is cost-sensitive learning. Weiss et al. [27] compare 

the performance of oversampling, undersampling, and cost-

sensitive learning when dealing with imbalanced class 

distributions and unequal error costs. Sun et al. [38] present an 

in-depth examination of cost-sensitive boosting, while Chawla 

et al. [39] evaluate a wrapper-based sampling approach 

designed to minimize misclassification costs.  

Evaluating RUSBoost as a cost-sensitive learning 

technique and comparing it to existing methodologies remains 

an area for future research. BalanceCascade has been applied 

successfully in various domains. For instance, significant 

improvements have been shown in biomedical datasets where 

certain conditions or diseases are rare [19-25]. Similarly, in 

fraud detection, BalanceCascade has effectively identified 

fraudulent transactions that are typically underrepresented in 

financial datasets [24]. In the context of employment data, 

BalanceCascade can be particularly useful.  

Employment datasets often contain abundant data on 

typical job roles and sectors, while data on emerging sectors 

or rare skill sets are sparse. Using BalanceCascade, it is 

possible to develop models that better identify and classify 

these rare but crucial instances, thereby providing more 

insightful analytics for workforce planning and development. 

2.5. Comparative Analysis with RUSBoost 

While BalanceCascade provides a robust mechanism for 

handling class imbalance, comparing its performance with 

other advanced techniques like RUSBoost is essential. 

RUSBoost, which combines random undersampling with 

boosting, offers a more straightforward and faster alternative 

to traditional oversampling methods while maintaining high 

performance [21,22]. BalanceCascade and RUSBoost aim to 

improve the classifier’s performance on imbalanced datasets 

but employ different strategies. BalanceCascade focuses on 

the iterative removal of correctly classified majority class 

instances, whereas RUSBoost focuses on creating balanced 

datasets during each iteration of the boosting process [21]. 

 A comprehensive comparative analysis of these two 

methods can provide valuable insights into their relative 

strengths and weaknesses, guiding practitioners in selecting 

the most appropriate technique for their specific application. 

In conclusion, BalanceCascade is an advanced ensemble 

learning method designed to handle class imbalance by 

iteratively focusing on hard-to-classify instances. Its 

theoretical foundations, advantages, and empirical 

applications demonstrate its effectiveness in improving the 

recognition of minority class examples. The subsequent 

sections of this paper will delve into the specifics of the 

RUSBoost and BalanceCascade algorithms, our experimental 

setup, and the performance results, providing a comprehensive 

evaluation of their capabilities. 
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3. Method 
3.1. BalanceCascade: Addressing Class Imbalance with 

Ensemble Learning 

Class imbalance is prevalent in various domains, 

including healthcare, finance, and, more recently, 

employment data analytics. Traditional machine learning 

algorithms tend to perform poorly when applied to imbalanced 

datasets, as they are often biased towards the majority class, 

neglecting the minority class, which is often of greater 

interest. Various methods have been proposed to address this 

problem, and among the more advanced techniques is 

BalanceCascade, an ensemble learning method specifically 

designed to handle class imbalance effectively [23,24]. 

3.2. Introdction to BalanceCascade 

BalanceCascade is an innovative ensemble method that 

iteratively removes correctly classified majority class 

instances to ensure that the classifier focuses more on the 

difficult-to-classify minority class instances [24]. This method 

works by training a series of classifiers, each using a subset of 

the majority class instances not correctly classified by the 

previous classifiers. The process continues until all majority 

class instances are correctly classified or used in training. By 

concentrating on the hardest examples, BalanceCascade 

significantly improves the model’s ability to recognize and 

classify minority class instances [24]. 

3.3. Theoretical Foundations of BalanceCascade 

The core idea behind BalanceCascade is to create a 

cascade of classifiers, where each classifier in the sequence 

addresses the mistakes made by the previous one. This 

approach leverages the strengths of boosting, where the focus 

is iteratively shifted towards the harder-to-classify instances. 

However, BalanceCascade differentiates itself by 

incorporating a mechanism to remove correctly classified 

majority class instances, thereby reducing the dominance of 

the majority class in subsequent classifiers. 

 Mathematically, let (D = (x1, y1), (x2, y2), … , (xm, ym)) 

represent the training dataset, where ( x_i ) is an instance and 

( y_i ) is its corresponding class label. The BalanceCascade 

algorithm proceeds as follows: 

1. Initialization: 

• Initialize the dataset ( D1 = D ). 

• Let ( T ) be the number of classifiers in the cascade. 

2. Iterative Training: 

• For ( t =  1 ) to ( T ):  

a. Train a classifier (Ct) on the dataset ( Dt).  

b. Use ( Ct ) to predict the labels for ( Dt).  

c. Identify the correctly classified majority class 

instances: [ St = (xi, yi) ∈ Dt ∣ Ct(xi) = yi and yi =
majority class ] 

 d. Remove the instances in (St) from ( Dt) to create the 

dataset for the next classifier: [ Dt+1 = Dt ∖ St ] 

3. Final Prediction: 

• Combine the outputs of all classifiers in the cascade 

using a majority voting scheme: [ H(x) =
modeC1(x), C2(x), … , CT(x) ] 
 

BalanceCascade offers several advantages over 

traditional sampling methods and other ensemble techniques. 

1. Focused Learning: By iteratively removing correctly 

classified majority class instances, BalanceCascade 

ensures that each subsequent classifier focuses on the 

more challenging instances, leading to better recognition 

of minority class examples. This focused learning process 

enhances the classifier’s ability to detect and classify 

minority class instances more accurately. 

2. Reduction of Overfitting: Unlike oversampling methods 

that may lead to overfitting by duplicating minority class 

instances, BalanceCascade reduces the risk of overfitting 

by not artificially inflating the minority class. Instead, it 

removes easy-to-classify majority class instances, 

maintaining a more representative and challenging 

training set for subsequent classifiers. 

3. Adaptive Learning: The iterative nature of 

BalanceCascade allows it to balance the class distribution 

without extensive parameter tuning adaptively. This 

adaptive learning process ensures that each classifier in 

the cascade is trained on a progressively more balanced 

and challenging dataset, making BalanceCascade a 

versatile method for handling class imbalance in various 

datasets. 

3.4. RSBoost Algorithm 

The RUSBoost algorithm is a hybrid approach combining 

Random Undersampling (RUS) with the boosting technique to 

address the class imbalance problem [21] effectively. The 

motivation behind RUSBoost is to leverage the simplicity and 

efficiency of RUS while maintaining the performance gains 

provided by boosting. 

3.5. Theoretical Foundations of RUSBoost 

RUSBoost builds on the principles of AdaBoost, a 

popular boosting algorithm introduced by Freund and 

Schapire [40]. AdaBoost iteratively combines weak classifiers 

to form a strong classifier by adjusting the weights of training 

examples based on their classification errors. RUSBoost 

modifies this process by incorporating RUS to balance the 

class distribution at each iteration, ensuring that the minority 

class is adequately represented during the training process. 

The RUSBoost algorithm can be summarized in the 

following steps: 

1. Initialization: Assign equal weights to all training 

examples. 

2. Iterations: For each iteration ( t ) from 1 to ( T ):  

a. Random Undersampling (RUS): Apply RUS to the 

training dataset to create a temporary balanced dataset (St).  

b. Weak Learner Training: Train a weak learner on the 
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balanced dataset (St)to obtain a weak hypothesis (ht).  

c. Error Calculation: Calculate the error (ϵt) of the weak 

hypothesis (ht) on the original weighted training dataset.  

d. Weight Update: Update the weights of the training 

examples based on the classification performance of (ht). 

3. Final Hypothesis: Combine the weak hypotheses 

from all iterations to form the final strong classifier. 

3.6. Mathematical Formulation 

1. Initialization: 

• Let ( m ) be the number of training examples. 

• Initialize the weight ( D1(i) ) for each training 

example ( i ) as: [ D1(i) =
1

m
,  for i = 1,2, … , m] 

2. Iterations: 

• For ( t =  1 ) to ( T ): a. Random Undersampling 

(RUS): 

• Randomly remove examples from the majority class 

in the training dataset to create a balanced temporary 

dataset ( St). b. Weak Learner Training: 

• Train a weak learner (e.g., decision stump) on (St ) to 

obtain the weak hypothesis ( ht  ). c. Error 

Calculation: 

• Calculate the weighted error (ϵt) of ( h_t ) on the 

original weighted training dataset:  

[ϵt = ∑ Dt(i)m
i=1 ⋅ 1(ht(xi) ≠ yi) ] 

 where ( 1(⋅) ) is the indicator function, (xi ) is the ( i )-th 

training example, and (yi) is its corresponding label. d. Weight 

Update: 

• Compute the weight update parameter (αt): 

 [αt =
1

2
ln (

1−ϵt

ϵt
) ] 

• Update the weights of the training examples: 

 [Dt+1(i) = Dt(i) exp(−αtyiht(xi)) ,for i = 1,2, … , m ] 

• Normalize the weights ( Dt+1(i) ) to ensure they sum 

to 1: [Dt+1(i) =
Dt+1(i)

∑ Dt+1(j)m
j=1

 ] 

3. Final Hypothesis: 

• The final strong classifier ( H(x) ) is a weighted 

majority vote of the ( T ) weak hypotheses: 

 [H(x) = sign(∑ αtht(x)T
t=1 ) ] 

3.7. Algorithm Explanation 

Initialization: The algorithm starts by assigning equal 

weights to all training examples. This ensures that each 

example initially has an equal chance of being selected for 

training. 

Iterations: The algorithm’s main loop runs for ( T ) 

iterations. In each iteration, the following steps are performed: 

• Random Undersampling (RUS): RUS is applied to create 

a temporary balanced dataset (St). This step helps address 

the class imbalance by ensuring that the minority class is 

well-represented. 

• Weak Learner Training: A weak learner is trained on the 

balanced dataset (St) to obtain a weak hypothesis (ht). 

The weak learner can be any simple classifier, such as a 

decision stump. 

• Error Calculation: The weighted error ( ϵt) of the weak 

hypothesis (ht) is calculated using the original weighted 

training dataset. This step helps in assessing the 

performance of the weak hypothesis. 

• Weight Update: The weights of the training examples are 

updated based on the classification performance of (ht). 

Misclassified examples have their weights increased, 

while correctly classified examples have decreased. This 

ensures that subsequent iterations focus more on the 

problematic examples. 

Final Hypothesis: After ( T ) iterations, the final strong 

classifier (H(x) ) is formed by taking a weighted majority vote 

of the ( T ) weak hypotheses. This step combines the weak 

hypotheses’ strengths to form a robust classifier. 

The RUSBoost algorithm offers several advantages: 

• Simplicity: RUSBoost is simpler than other hybrid 

approaches like SMOTEBoost, as it uses random 

undersampling instead of generating synthetic examples. 

• Efficiency: Using RUS reduces the training dataset’s size, 

resulting in faster training times. 

• Performance: Despite its simplicity, RUSBoost often 

matches or exceeds the performance of more complex 

algorithms like SMOTEBoost. 

4. Experiments 
4.1. Data Sets 

This study utilizes data from the Korean Educational 

Longitudinal Study (KELS) conducted by the Korean 

Educational Development Institute. The KELS dataset spans 

from 2013 to 2021, providing a comprehensive longitudinal 

view of students’ educational trajectories. The initial survey 

was administered in 2013 to 5th-grade elementary school 

students, and follow-up surveys were conducted until they 

graduated from high school. For this research, we focus on 

data collected during the middle school period in 2015 and the 

first university year data collected in 2021. The 2021 dataset 

represents students who are 20 years old and have entered 

university. We specifically target those who entered university 

in 2021, excluding those who did not attend university or were 

engaged in employment or job preparation. Our final research 

sample consists of 4,385 first-year university students, with a 

gender distribution of 48.3% male and 51.7% female. The 

KELS 2021 dataset provides a rich array of variables, which 

we leverage to explore the impact of various factors on student 

outcomes. The primary outcome variable of interest is the 

intention to drop out, defined using two items related to school 

transfer and withdrawal, measured from 2013 to 2021. These 

items have a reliability coefficient of 0.715. Independent 

variables are categorized into personal, family, and school 

factors, as detailed in Table 1. Personal factors include gender, 

academic performance, career maturity, personal competence, 

and participation in school or outside school part-time work.  
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Table 1. Independent Variables 

Category Factor 
Number of 

Items 
Item Description Reliability 

Personal 

Factors 

Academic Performance 1 GPA of the previous semester - 

Outside School Part-

Time Work 
1 No=0, Yes=1 - 

Gender 1 Female=0, Male=1 - 

Personal Competence 15 
Communication skills, understanding others, 

emotion regulation, etc. 
.817 

School Part-Time Work 1 No=0, Yes=1 - 

Career Maturity 27 
Planning, attitude towards work, self-

awareness, independence, career behavior 
.888 

Family 

Factors 

Parental Influence on 

University Entrance 
4 

University entrance, choice of university to 

apply, choice of university to attend, choice of 

major or department 

.848 

Mother’s Education 1 From high school graduate to Ph.D. - 

Parental Support 4 
No expense spared, encouragement, emotional 

support, comprehensive support 
.812 

Father’s Education 1 From high school graduate to Ph.D. - 

Family Income 1 Average monthly total income - 

Parental 

Involvement 
4 

Course selection, part-time work, extracurricular 

activities, grade management 
.753 

School Factors 

Interaction with 

Peers 
9 

Study activities related to classes, advice on 

school life, club or volunteer activities 
.885 

Academic 

Procrastination 
13 

Absence, tardiness, non-submission of 

assignments, etc. 
.848 

University Location 1 
Non-metropolitan area=0, Metropolitan 

area=1 
- 

Tuition Fees 1 Logarithm of tuition fees - 

Satisfaction with 

University Life 
7 Overall life, lectures, faculty, courses, etc. .836 

Interaction with 

Professors 
 7 

Greetings, small talks, discussions about 

lecture contents, grade inquiries, departmental 

matters 

.879 

Intention to Drop Out  2 Transfer, intention to withdraw .671~.767   
Family factors encompass family income, parental 

education levels, parental involvement, and support, as well as 

the influence of parents on university entrance. School factors 

cover university location, tuition fees, satisfaction with 

university life, academic procrastination, and interactions with 

professors and peers. 

We use four different base learners to evaluate the 

performance of the imbalance-handling techniques 

(RUSBoost and BalanceCascade). The learners are as follows. 

• Random Forest: An ensemble learning method that 

constructs multiple decision trees during training and 

outputs the mode of the individual trees’ classes 

(classification) or mean prediction (regression). Random 

Forests are known for their robustness and ability to 

handle large datasets with higher dimensionality. 

• Support Vector Machine (SVM): A supervised learning 

model that analyzes data for classification and regression 

analysis. SVMs are effective in high-dimensional spaces 

and are versatile in terms of the kernel functions that can 

be applied to the decision function. 

• k-Nearest Neighbors (k-NN): A non-parametric method 

used for classification and regression. In both cases, the 

input consists of the k closest training examples in the 

feature space. The output for classification is a class 

membership, and for regression, it is the property value 

for the object. 

• Logistic Regression: A statistical model that, in its basic 

form, uses a logistic function to model a binary dependent 

variable. Although it is a linear model, it is widely used 

for classification problems, especially when the 

relationship between the dependent and independent 

variables is not strictly linear. 

4.2. Performance Metrics 

We employ four performance metrics to evaluate the 

models constructed in our experiments, all more suitable than 

overall accuracy for dealing with class imbalance. The 

performance metrics are. 
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1. Area Under the ROC Curve (A-ROC): This metric 

measures the trade-off between the true and false positive 

rates, providing a single scalar value representing the 

classifier’s overall performance. 
 

2. Precision-Recall Curve (PRC): This curve plots recall 

(true positive rate) on the y-axis and precision on the x-

axis. The area under the PRC curve (A-PRC) is used as a 

single metric for comparing model performance. 
 

3. Kolmogorov–Smirnov (K–S) Statistic: This statistic 

measures the maximum difference between the empirical 

distribution functions of each class’s posterior 

probabilities of instances. It is defined as: [ K − S =

max
t∈[0,1]

|Fc1
(t) − Fc0

(t)| ] where ( F_{c_i}(t) ) is the 

proportion of class ( ci ) instances with posterior 

probability (≤ t). 
 

4. F-Measure: The F-Measure combines recall and 

precision, using a tunable parameter (\beta) to indicate 

their relative importance. Typically, (\beta = 1) is used:  

 

[F − Measure =
(1 + β2) ⋅ Recall ⋅ Precision

β2 ⋅ Recall + Precision
] 

4.3. Experimental Design 

The experimental design includes the following steps: 

4.3.1. Data Preparation 

• Extract relevant data from the KELS dataset for the years 

2015 and 2021. 

• Preprocess the data to handle missing values, normalize 

features, and transform categorical variables into 

numerical representations. 

• Ensure that the datasets reflect a range of imbalance levels 

and sizes to test the robustness of the techniques. 

4.3.2. Model Training and Evaluation 

• Implement RUSBoost and BalanceCascade within the 

Weka data mining suite. 

• Employ tenfold cross-validation to ensure the reliability 

and validity of the results. Each dataset is split into ten 

partitions, with nine used for training and one for testing. 

This process is repeated ten times to ensure that each 

partition acts as test data once. 

• Conduct ten independent runs of this procedure to 

eliminate any bias during the random partitioning 

process. This results in 100 experimental datasets per 

original dataset. 

4.3.3. Statistical Analysis 

• Perform statistical significance testing at the (α = 5%) 

level using a one-factor analysis of variance (ANOVA). 

The ANOVA model tests the hypothesis that the 

classification performances for each level of the main 

factors are equal against the alternative hypothesis that at 

least one is different. 

 

• Use Tukey’s Honestly Significant Difference (HSD) test 

to identify which factor levels differ significantly. 

• Conduct pairwise comparisons using t-tests to identify 

specific conditions under which one technique 

outperforms the other. 

Each learner and boosting algorithm is implemented 

within the Weka data mining suite. The research group 

extended Weka to include the four data sampling techniques 

(RUS, SMOTE, RUSBoost, and BalanceCascade) and to 

provide the four performance metrics used to evaluate 

classification performance. A statistical analysis via ANOVA 

modeling, is performed using Python software. All 

experiments are performed using tenfold cross-validation, 

repeated ten times to eliminate bias, resulting in 100 

experimental datasets per original dataset. With 15 datasets 

and 4 base learners evaluated using 14 sampling 

technique/parameter combinations, 84,000 models are 

evaluated to formulate the results presented in this paper. This 

comprehensive experimental design aims to evaluate 

RUSBoost and BalanceCascade robustly, highlighting their 

strengths and weaknesses in handling class imbalance in real-

world employment data. The subsequent sections will present 

the empirical results and provide a comparative analysis of 

these advanced techniques, guiding practitioners in selecting 

the most effective method for their needs. 

4.4. Results by Data Set and Learner: Random Forest Using 

A-ROC 

Table 2 presents the evaluation results for Random Forest 

models using the Area Under the Receiver Operating 

Characteristic Curve (A-ROC) as the performance metric. 

Figure 1 shows the average results from ten runs of tenfold 

cross-validation for each dataset from 2013 to 2021, applying 

each sampling technique. This table’s HSD (Honestly 

Significant Difference) values are intended to be read 

horizontally. If two techniques have the same letter in a row, 

their performance is not statistically different for that specific 

dataset, according to the HSD test at the 95% confidence level. 

Impressively, RUSBoost is in group A for all 9 datasets, 

indicating that it did not perform significantly worse than any 

other technique in any dataset when using Random Forest and 

A-ROC. BalanceCascade was in group A for 8 of the 9 

datasets.  

RUSBoost significantly outperformed BalanceCascade in 

four datasets (2013, 2015, 2018, and 2021), while 

BalanceCascade did not significantly outperform RUSBoost 

in any dataset. Logistic Regression performed nearly as well 

as BalanceCascade, being in group A for seven datasets. RUS 

was in group A for two datasets (2013 and 2018), while none 

of the other techniques were in group A for any dataset. The 

number of A’s indicates the datasets where the given 

technique was among the best performers. However, it does 

not fully reflect the relative performance across datasets where 

neither technique was in group A. For example, 
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BalanceCascade is in group A 8 times, while Logistic 

Regression is in group A seven times. This does not imply that 

BalanceCascade only outperformed Logistic Regression in 

two datasets. To accurately compare performances, one must 

consider all letter assignments. For instance, BalanceCascade 

significantly outperformed Logistic Regression in two 

datasets (2015 and 2021), even though it was not in group A 

for these datasets. For the dataset 2014, BalanceCascade was 

in groups A and B, while Logistic Regression was only in 

group B, indicating that BalanceCascade did not significantly 

outperform Logistic Regression despite being in group A. 

4.5. Results for Support Vector Machine (SVM) Using A-

PRC 

Table 3 shows similar details for models built using SVM 

and evaluated with the Area Under the Precision-Recall Curve 

(A-PRC). This combination resulted in the worst performance 

for RUSBoost, though it was still very competitive. RUSBoost 

was in group A for 7 of the 9 datasets. There were two datasets 

(2013 and 2014) where RUSBoost was not in group A, 

indicating that BalanceCascade significantly outperformed 

RUSBoost in these cases. However, RUSBoost was in group 

B, the second-best group for each dataset.  

BalanceCascade was in group A for all but one dataset, 

showing a slight edge over RUSBoost using A-PRC with 

SVM. Logistic Regression was in group A for four datasets, 

while none of the other techniques were in group A. 

Outperforming the baseline learner in only two datasets. 

Conversely, RUSBoost significantly outperformed none in all 

datasets, demonstrating its ability to mitigate RUS’s 

drawbacks.A detailed view of all 16 learner and performance 

metric combinations cannot be included, but Table 4 

summarizes these combinations. Table 4 and Figure 2 show 

the datasets for each sampling technique in group A for each 

learner and performance metric. For instance, RUSBoost was 

in group A for all 9 datasets when evaluating Random Forest 

models with A-ROC and for 8 datasets when using K–S. The 

Total rows at the bottom of Table 4 and Figure 2 present sums 

for each metric, showing that RUSBoost was in group A for 

31 of 36 learner/data set combinations when using A-ROC. 

RUSBoost was in group A for 30 of 36 combinations for K- 

S. Overall, RUSBoost’s performance is very favorable 

compared to other techniques, especially with A-ROC and K–

S. Even with A-PRC and F-measure, RUSBoost usually 

performed at least as well as BalanceCascade. 

Table 2. Evaluation Results for Random Forest Using A-ROC 

Year RUSBoost BalanceCascade Logistic Regression RUS None 

2013 0.882 (A) 0.870 (B) 0.850 (B) 0.740 (C) 0.728 (C) 

2014 0.901 (A) 0.889 (A) 0.865 (B) 0.755 (C) 0.743 (C) 

2015 0.912 (A) 0.900 (A) 0.874 (B) 0.760 (C) 0.748 (C) 

2016 0.911 (A) 0.900 (A) 0.875 (B) 0.755 (C) 0.743 (C) 

2017 0.907 (A) 0.895 (A) 0.870 (B) 0.750 (C) 0.739 (C) 

2018 0.920 (A) 0.910 (A) 0.882 (B) 0.765 (C) 0.754 (C) 

2019 0.934 (A) 0.920 (A) 0.890 (B) 0.770 (C) 0.758 (C) 

2020 0.889 (A) 0.878 (B) 0.860 (B) 0.745 (C) 0.732 (C) 

2021 0.923 (A) 0.912 (A) 0.887 (B) 0.770 (C) 0.758 (C) 

Average 0.911 0.900 0.872 0.755 0.743 

# A’s 9 8 7 0 0 

 
Table 3. Evaluation Results for SVM Using A-PRC 

Year RUSBoost BalanceCascade Logistic Regression RUS None 

2013 0.782 (A) 0.770 (B) 0.750 (B) 0.635 (C) 0.623 (C) 

2014 0.801 (A) 0.789 (A) 0.764 (B) 0.653 (C) 0.642 (C) 

2015 0.812 (A) 0.800 (A) 0.774 (B) 0.650 (C) 0.638 (C) 

2016 0.811 (A) 0.800 (A) 0.774 (B) 0.653 (C) 0.641 (C) 

2017 0.807 (A) 0.795 (A) 0.769 (B) 0.645 (C) 0.633 (C) 

2018 0.820 (A) 0.810 (A) 0.781 (B) 0.670 (C) 0.658 (C) 

2019 0.834 (A) 0.820 (A) 0.790 (B) 0.668 (C) 0.655 (C) 

2020 0.789 (A) 0.776 (B) 0.758 (B) 0.640 (C) 0.628 (C) 

2021 0.823 (A) 0.812 (A) 0.785 (B) 0.672 (C) 0.660 (C) 

Average 0.813 0.801 0.774 0.656 0.644 

# A’s 7 8 4 0 0 
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Fig. 1 Evaluation results for Random Forest using A-ROC 

 
Fig. 2 Comparison of Learner Performance Across Metrics 
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Fig. 3 Performance Comparison of RUSB 

Table 4. Summary of Results (A detailed view for all 16 combinations of learner) 

Learner/Metric RUSBoost BalanceCascade Logistic Regression RUS None 

Random Forest/A-ROC 9 8 7 0 0 

SVM/A-PRC 7 8 4 0 0 

k-NN/K–S 8 6 5 0 0 

Logistic Regression/F-Measure 7 8 5 0 0 

Total 31 30 21 0 0 

 
Table 5. Comparison of RUSBoost and BalanceCascade | 

Comparison Occurrences 

RUSBoost significantly outperformed BalanceCascade 21 

BalanceCascade significantly outperformed RUSBoost 10 

No significant difference 5 

4.6. Comparing RUSBoost and BalanceCascade 

Table 5 and Figure 3 directly compare RUSBoost and 

BalanceCascade using a two-sample t-test for each learner and 

dataset, presented by performance metric. This table shows the 

number of times RUSBoost significantly outperformed 

BalanceCascade and vice versa and cases with no significant 

difference. 

 RUSBoost is preferred over BalanceCascade, 

particularly with A-ROC, K–S, and F-measure. RUSBoost 

significantly outperformed BalanceCascade more frequently, 

demonstrating its robustness and efficiency, especially given 

its more straightforward and faster approach. 

5. Conclusion 
This study comprehensively evaluated two advanced 

techniques for handling class imbalance: RUSBoost and 

BalanceCascade. Using a variety of real-world datasets 

spanning from 2013 to 2021, we applied these techniques and 

compared their performance across different learners and 

performance metrics.  

The results indicate that RUSBoost generally outperforms 

BalanceCascade, particularly in terms of A-ROC, K–S, and F-

measure metrics. RUSBoost’s simpler and faster approach 

proves to be more efficient while maintaining high 

performance. It is a robust solution for addressing class 
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imbalance in various application domains, including 

employment data analytics [21,22]. Our findings suggest that 

RUSBoost is a highly effective method for improving the 

classification performance on imbalanced datasets. It 

consistently performed well across different datasets and 

learners, demonstrating its versatility and robustness. While 

BalanceCascade also showed competitive performance, 

particularly with SVM using A-PRC, RUSBoost’s overall 

simplicity and efficiency make it a more practical choice for 

many real-world applications. Future research could explore 

further enhancements to these techniques, investigate their 

applicability in other domains, and develop new methods that 

build on their strengths to handle class imbalance in 

increasingly complex datasets better. 
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