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Abstract - In the environment of underwater communication networks, buoyant sensor mobility poses unique challenges that 

hinder efficient data transmission and network reliability. Traditional routing protocols struggle to navigate the dynamic 

underwater environment, leading to packet loss, high latency, and inefficient energy consumption. In response to these 

challenges, this paper introduces OctoRoute, a novel routing protocol designed to revolutionize buoyant sensor mobility in 

underwater communication networks. OctoRoute leverages Octopus Optimization (O2) and Enhanced Greedy Perimeter 

Stateless Routing (EGPSR) techniques to dynamically adapt to changing environmental conditions, optimize routing paths, and 

maximize data transmission efficiency. Through comprehensive performance evaluations, OctoRoute consistently outperforms 

traditional protocols by achieving higher packet delivery ratios, lower packet drop ratios, increased throughput, reduced delay, 

and improved energy efficiency. 

Keywords - OctoRoute, Buoyant sensor mobility, Underwater communication networks, Routing, Octopus optimization, 

Enhanced GPSR, Dynamic mobility.  

1. Introduction 
Oil spills emerge as a formidable environmental threat, 

instigating far-reaching consequences on ecosystems and the 

diverse wildlife inhabiting them. The uncontrolled discharge 

of oil into aquatic environments initiates a cascade of long-

lasting ecological damage, disrupting the intricate balance of 

marine life [1]. Underwater organisms, pivotal components of 

these ecosystems, bear the brunt of the impact as oil 

contamination permeates the water column, affecting their 

habitats and compromising their well-being [2]. The adverse 

consequences extend to coastal lands near the ocean, with the 

intricate interplay between terrestrial and marine 

environments amplifying the ecological repercussions. The 

formidable challenge lies in the immediate impact of oil spills 

and the complex difficulties associated with their timely 

detection and subsequent response [3]. To mitigate the 

profound consequences of oil spills, unravelling the nuances 

of these incidents and comprehending the intricacies inherent 

in their detection becomes paramount [2]. Buoyant Wireless 

Sensor Networks (B-WSN) are crucial guardians against oil 

spills, leveraging floating sensors on the water’s surface. With 

the ability to monitor aquatic environments in real-time, B-

WSN plays a pivotal role in preventing and mitigating oil 

spills and safeguarding ecosystems and marine life from 

potential environmental disasters[4]. B-WSN epitomizes a 

pioneering advancement in ecological monitoring, 

strategically positioning sensors to float gracefully on the 

water’s surface. This paradigm shift introduces a dynamic 

approach to real-time data acquisition, particularly in critical 

applications such as oil spill detection, water quality 

monitoring, and ecosystem analysis[5]. The buoyant design of 

these sensors not only permits seamless adaptability to water 

movements but also poses unique challenges that necessitate 

innovative solutions in developing robust communication 

protocols, efficient routing strategies, and sustainable power 

management systems. By venturing into the intricacies of B-

WSN, researchers and engineers aim to unlock new frontiers 

in surface-level wireless sensing, offering unparalleled 

insights into aquatic ecosystems [6]. In B-WSN, routing 

complexities unfold within the context of floating sensors on 

the water’s surface. The limited operating range, influenced 

by acoustic or radio wave propagation in water, adds a layer 

of intricacy to routing protocols [7]. The highly mobile nature 

of buoyant nodes and unpredictable movement patterns 

necessitates routing algorithms capable of dynamically 

adapting to changing topologies. Efficient data aggregation 

and fusion are essential in managing communication costs and 

conserving energy in this distinctive network[8]. Routing 

protocols must seamlessly navigate mobility, communication 

constraints, and environmental variability in the buoyant 

sensor network, ensuring adequate data transmission and 

network longevity[9]. 

https://www.internationaljournalssrg.org/
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1.1. Problem Statement 

The challenge of Buoyant Sensor Mobility within the 

context of oil spill monitoring presents a formidable obstacle 

in the realm of wireless sensor networks deployed on the 

water’s surface. Developing effective routing algorithms 

tailored to the unpredictable movement patterns of buoyant 

sensors is imperative for ensuring efficient and timely 

detection of oil spills. Navigating water currents, tides, and 

environmental fluctuations, these sensors exhibit dynamic 

trajectories, necessitating innovative routing strategies 

capable of real-time adaptation. Traditional routing 

approaches prove inadequate in the face of such 

unpredictability. The problem underscores the urgency of 

creating adaptive solutions that enable seamless 

communication paths despite erratic movements and enhance 

the overall effectiveness of oil spill detection in Buoyant 

Wireless Sensor Networks in aquatic environments. 

Addressing this challenge is pivotal for unleashing the full 

potential of B-WSN in combating oil spills and fostering 

advancements in environmental monitoring, disaster response, 

and other applications reliant on robust wireless 

communication in dynamic aquatic settings. 

1.2. Motivation 

The motivation for addressing the challenge of Buoyant 

Sensor Mobility, particularly in the context of oil spill 

monitoring, emanates from the paramount importance of 

timely and effective detection in environmental preservation. 

The dynamic nature of aquatic environments necessitates the 

development of routing algorithms capable of adapting 

seamlessly to the unpredictable movement patterns exhibited 

by buoyant sensors on the water’s surface. The urgency lies in 

mitigating the devastating consequences of oil spills, where 

swift detection is pivotal for initiating prompt response and 

containment measures. Overcoming the challenges posed by 

Buoyant Sensor Mobility paves the way for enhancing the 

capabilities of Buoyant Wireless Sensor Networks in real-time 

oil spill monitoring, ensuring the resilience of ecosystems and 

minimizing the ecological impact of such incidents. The 

motivation extends beyond oil spill scenarios, influencing a 

broader spectrum of applications reliant on robust wireless 

communication in dynamic aquatic settings, thereby 

contributing to advancements in environmental monitoring, 

disaster response, and scientific research. 

1.3. Objective 

This research aims to develop a bio-inspired routing 

protocol specifically tailored to address the challenge of 

Buoyant Sensor Mobility in the context of oil spill monitoring. 

The aim is to draw inspiration from collective behaviours 

observed in marine organisms to create an innovative routing 

solution. This bio-inspired protocol seeks to enhance the 

efficiency, reliability, and adaptability of B-WSN, focusing on 

optimizing communication paths among sensors for improved 

and timely oil spill detection. The research aims to contribute 

to advancements in environmental monitoring technologies, 

minimize ecological impact, and foster sustainable solutions 

for safeguarding aquatic ecosystems. The developed bio-

inspired routing protocol may have broader applications in B-

WSN operating in dynamic aquatic environments, impacting 

disaster response, ecological research, and environmental 

management.  

2. Literature Review 
 “FuzzyClust”[10] proposes an effective data 

transmission strategy that combines energy-efficient 

clustering with a Fuzzy-Based Intrusion Detection System 

(IDS) routing approach. The system forms clusters of sensor 

nodes to streamline data transmission, reducing energy 

consumption. The fuzzy logic-based IDS enhances network 

security by detecting and mitigating potential threats. This 

dual approach ensures both energy efficiency and security in 

data transmission processes. “GenRoute”[11] introduces a 

cluster-based routing protocol designed for high scalability 

and low latency in time-sensitive wireless sensor networks. 

Utilizing genetic algorithms, the protocol efficiently organizes 

sensor nodes into clusters and optimizes routing paths. This 

ensures rapid data transmission and minimal delay, making it 

suitable for applications requiring timely data delivery, such 

as real-time environmental monitoring. 

“HawkTrans”[12] offers an optimal data transmission 

solution for decentralized IoT and wireless sensor networks, 

utilizing Type-2 Fuzzy Harris Hawks Optimization. This 

approach combines the robustness of fuzzy logic with the 

adaptive capabilities of the Harris Hawks algorithm to 

optimize routing decisions. The result is efficient and reliable 

data transmission, enhancing the performance and longevity 

of decentralized networks. “AntLife”[13] focuses on 

extending the network lifetime of wireless sensor networks by 

implementing a modified Ant Colony Optimization (ACO) 

algorithm. This algorithm mimics the foraging behavior of 

ants to discover optimal routing paths, reducing energy 

consumption across the network. The modifications enhance 

the standard ACO algorithm, further improving its efficiency 

in maintaining network sustainability.  

“AE-Leach”[14] introduces an incremental clustering 

approach to reduce energy consumption in wireless sensor 

networks. Building on the Low-Energy Adaptive Clustering 

Hierarchy (LEACH) protocol, AE-Leach incrementally forms 

clusters to balance energy use among sensor nodes. This 

approach minimizes redundant data transmission and extends 

the network’s operational life by ensuring more efficient 

energy distribution. “MarineFusion”[15] presents a method 

for target localization in marine search and rescue operations 

using information fusion in wireless sensor networks. The 

system integrates data from multiple sensors to enhance the 

accuracy of target detection and positioning. This multi-sensor 

fusion approach improves the reliability of search and rescue 

missions, ensuring more precise and timely localization of 

targets in marine environments. “PowerQ”[16] presents a 
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routing protocol that integrates power control with Q-learning 

for optical-acoustic hybrid underwater sensor networks. This 

protocol dynamically adjusts transmission power and 

optimizes routing paths based on learned experiences. Key 

contributions include combining power control with machine 

learning, improving energy efficiency, and routing reliability 

in hybrid communication environments. “AUVCollect”[17] 

introduces a power-efficient data collection scheme using 

Autonomous Underwater Vehicles (AUVs) for magnetic 

induction and acoustic hybrid networks. The scheme 

leverages AUVs to gather data from dispersed sensor nodes, 

optimizing energy use and ensuring reliable data transmission. 

Key contributions include using AUVs to enhance data 

collection efficiency and integrating hybrid communication 

methods for robust underwater connectivity. 

“DepthSelect”[18] proposes a cluster-based routing 

protocol focusing on underwater sensor networks' depth 

source selection. This protocol organizes sensor nodes into 

clusters based on depth, optimizing data routing paths to 

minimize energy consumption and enhance communication 

reliability. Key contributions include the development of a 

depth-based clustering approach that improves routing 

efficiency and extends the network’s operational lifespan. 

“DeployModel”[19] presents an efficient deployment scheme 

coupled with network performance modeling for underwater 

sensor networks. This scheme focuses on optimal sensor node 

placement to maximize coverage and connectivity while 

minimizing deployment costs. Key contributions include 

integrating performance modeling to predict network behavior 

and formulating a deployment strategy that enhances overall 

network performance and reliability. “MARoute”[20] 

introduces a multi-agent reinforcement learning-based routing 

protocol that incorporates the concept of Value of Information 

(VoI) for underwater sensor networks. This protocol employs 

multiple agents to collaboratively learn and optimize routing 

paths, prioritizing data with higher informational value. Key 

contributions include applying multi-agent reinforcement 

learning to routing and using VoI to enhance data transmission 

efficiency, ensuring that critical information is delivered 

promptly. 

“AUVLearn”[21] presents a data collection scheme for 

underwater sensor networks using Autonomous Underwater 

Vehicles (AUVs) and reinforcement learning. This scheme 

considers the influence of ocean currents on AUV navigation, 

optimizing data collection routes through learned experiences. 

Key contributions include integrating reinforcement learning 

to adapt to dynamic underwater conditions and using AUVs to 

improve data collection efficiency. “RouteReview”[22] 

comprehensively reviews routing protocols for underwater 

wireless sensor networks. It categorizes existing protocols into 

a detailed taxonomy and explores future research directions. 

Key contributions include a thorough analysis of current 

routing strategies, identifying gaps in the existing literature, 

and recommendations for future underwater sensor network 

routing developments. “CoverConnect”[23] introduces a 

deployment scheme for Autonomous Underwater Vehicles 

(AUVs) that ensures optimal coverage and connectivity. This 

scheme strategically positions AUVs to maximize the 

network’s coverage area and maintain robust communication 

links. Key contributions include the development of an AUV 

deployment strategy that enhances both coverage and 

connectivity, crucial for effective underwater monitoring and 

data collection.  

“IoTRoute”[24] presents a novel routing method 

designed to increase efficiency in underwater wireless sensor 

networks by leveraging Internet of Things (IoT) principles. 

This method integrates IoT technologies to optimize routing 

paths and improve data transmission efficiency. Key 

contributions include the application of IoT concepts to 

underwater routing, providing a more efficient and scalable 

solution for underwater sensor networks. “RoboDeploy”[25] 

introduces a node deployment optimization strategy using 

intelligent algorithms and robotic collaboration. This 

approach employs advanced optimization techniques and 

coordinated robot deployment to position sensor nodes 

optimally. Key contributions include the combination of 

intelligent algorithms with robotic systems, enhancing 

deployment accuracy and network performance in underwater 

environments. 

Bio inspired optimization is a concept of implementing 

the behavioral patterns of biologically living things from the 

real world into the digital world. The reason for implementing 

bio-inspired computing in computational tasks is to reduce 

complexity and simplify.“HOCOR”[26] introduces a hybrid 

optimization-based cooperative opportunistic routing protocol 

designed for underwater sensor networks. This protocol 

combines various optimization techniques to enhance routing 

decisions, ensuring efficient data transmission.  

It leverages cooperative strategies among sensor nodes to 

dynamically adjust routing paths based on real-time network 

conditions. Key contributions include integrating hybrid 

optimization methods with cooperative routing, which 

significantly improves the network’s adaptability and 

performance in underwater environments. “MO-

CBACORP”[27] proposes a multi-objective, cluster-based 

adaptive cognitive routing protocol designed for underwater 

monitoring wireless sensor networks. The protocol focuses on 

energy efficiency and security, utilizing cognitive techniques 

to route data while conserving energy adaptively. It enhances 

network resilience against potential threats and ensures 

efficient data transmission in underwater environments. 

3. OctoRoute 
The proposed protocol enhances the performance of the 

traditional EGPSR by bio inspired computing specifically 

inspired by the characteristics of the octopus. 
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3.1. Enhanced Greedy Perimeter Stateless Routing (EGPSR) 

Greedy Perimeter Stateless Routing (GPSR) is a robust 

routing protocol employed in Wireless Sensor Networks 

(WSNs) to manage efficiently and direct data packets. Its 

primary objective within buoyant sensor mobility is to 

facilitate seamless communication and data transmission 

across a dynamic network topology without reliance on pre-

established routing paths. By utilizing local information and 

leveraging geographic positioning, GPSR optimizes packet 

forwarding to conserve energy and ensure timely delivery.The 

purpose of GPSR in buoyant sensor mobility is to address the 

challenges posed by the unpredictable movement of sensors in 

aquatic environments. Traditional routing protocols may 

struggle to adapt to the dynamic nature of such environments, 

leading to increased latency and energy consumption. GPSR 

circumvents these issues by employing a greedy forwarding 

strategy, wherein each sensor node selects the next hop based 

on its proximity to the destination. This enables efficient 

routing even as sensors drift or reposition themselves 

underwater. 

The Adam-Bashforth method can be integrated to 

enhance GPSR’s effectiveness in buoyant sensor mobility 

scenarios. This numerical integr ation technique allows for 

predicting future sensor positions based on historical data, 

enabling proactive routing decisions to be made. By 

extrapolating sensor trajectories using velocity and 

acceleration information, GPSR can anticipate node 

movements and adjust routing paths accordingly, minimizing 

packet loss and optimizing network performance. By 

integrating the Adam-Bashforth method into GPSR for 

buoyant sensor mobility, the routing protocol becomes more 

proactive and adaptive, effectively addressing the challenges 

of dynamic underwater environments. This enhanced 

approach ensures efficient data transmission, minimizes 

energy consumption and enhances the overall resilience of the 

WSN. 

3.1.1. Data Collection 

GPSR starts with data collection to gather crucial 

information regarding the dynamic nature of sensor nodes in 

the buoyant environment. This step lays the foundation for 

subsequent routing decisions by providing essential input 

parameters such as position, velocity, and acceleration. The 

collected data predicts future sensor movements, which are 

vital for proactive routing strategies. Initially, let us denote the 

position of sensor node 𝑖 at time 𝑡 as shown in Equation (1). 

𝑃𝑜𝑠𝑖(𝑡) = (𝑥𝑖(𝑡)), 𝑦𝑖(𝑡), 𝑧𝑖(𝑡)) (1) 

where𝑥𝑖(𝑡), 𝑦𝑖(𝑡), and 𝑧𝑖(𝑡) represent the Cartesian 

coordinates in the three-dimensional space. The position data 

is continuously updated as the sensor nodes move within the 

aquatic environment. To estimate the velocity of sensor node 

𝑖 at time 𝑡, we can employ numerical differentiation 

techniques such as finite differencing. Let ∆𝑡 denote the time 

interval between successive position updates. Then, the 

velocity components 𝑣𝑥𝑖
(𝑡), 𝑣𝑦𝑖

(𝑡), and 𝑣𝑧𝑖
(𝑡) can be 

calculated is shown in Equations (2)-(4). 

𝑣𝑥𝑖
(𝑡) =

𝑥𝑖(𝑡) − 𝑥𝑖(𝑡 − ∆𝑡)

∆𝑡
 (2) 

𝑣𝑦𝑖
(𝑡) =

𝑦𝑖(𝑡) − 𝑦𝑖(𝑡 − ∆𝑡)

∆𝑡
 (3) 

𝑣𝑧𝑖
(𝑡) =

𝑧𝑖(𝑡) − 𝑧𝑖(𝑡 − ∆𝑡)

∆𝑡
 (4) 

These equations provide the instantaneous velocity of 

sensor node 𝑖 along the three spatial dimensions based on 

position updates over a finite time interval.To estimate the 

acceleration of sensor node 𝑖 at time 𝑡, we can further 

differentiate the velocity data obtained from the previous step. 

Let ∆𝑡 remain at the same time interval. The acceleration 

components 𝑎𝑥𝑖
(𝑡), 𝑎𝑦𝑖

(𝑡), and 𝑎𝑧𝑖
(𝑡) can be mathematically 

represented in Equations (5)-(7). 

𝑎𝑥𝑖
(𝑡) =

𝑣𝑥𝑖
(𝑡) − 𝑣𝑥𝑖

(𝑡 − ∆𝑡)

∆𝑡
 (5) 

𝑎𝑦𝑖
(𝑡) =

𝑣𝑦𝑖
(𝑡) − 𝑣𝑦𝑖

(𝑡 − ∆𝑡)

∆𝑡
 (6) 

𝑎𝑧𝑖
(𝑡) =

𝑣𝑧𝑖
(𝑡) − 𝑣𝑧𝑖

(𝑡 − ∆𝑡)

∆𝑡
 (7) 

These equations yield the instantaneous acceleration of 

sensor node 𝑖 along the three spatial dimensions based on 

velocity updates over a finite time interval. 

3.1.2. Prediction 

The prediction phase in enhanced GPSR plays a pivotal 

role in anticipating the future movements of sensor nodes 

within the buoyant environment. This step enables the 

protocol to proactively adjust routing paths and optimize 

packet forwarding strategies by extrapolating from historical 

data. Utilizing the collected position, velocity, and 

acceleration data, the Adam-Bashforth method can be 

employed to predict the future positions of sensor nodes. This 

numerical integration technique extrapolates the trajectory of 

each sensor node based on its current state and dynamics. Let 

𝛥𝑡 denote the time step for prediction. The position of sensor 

node 𝑖 at time 𝑡 + 𝛥𝑡can be estimated, mathematically 

represented in Equations (8)-(10). 

𝑃𝑜𝑠𝑖(𝑡 + ∆𝑡) = 𝑃𝑜𝑠𝑖(𝑡) + 𝑣𝑥𝑖
(𝑡). ∆𝑡

+
1

2
𝑎𝑥𝑖

(𝑡). (∆𝑡)2 
(8) 

𝑃𝑜𝑠𝑖(𝑡 + ∆𝑡) = 𝑃𝑜𝑠𝑖(𝑡) + 𝑣𝑦𝑖
(𝑡). ∆𝑡

+
1

2
𝑎𝑦𝑖

(𝑡). (∆𝑡)2 
(9) 

𝑃𝑜𝑠𝑖(𝑡 + ∆𝑡) = 𝑃𝑜𝑠𝑖(𝑡) + 𝑣𝑧𝑖
(𝑡). ∆𝑡

+
1

2
𝑎𝑧𝑖

(𝑡). (∆𝑡)2 
(10) 
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These equations represent the predicted positions of 

sensor node 𝑖 along the 𝑥, 𝑦, and𝑧 dimensions at time 𝑡 + ∆𝑡, 
respectively. The first term accounts for the displacement 

based on current velocity, while the second term incorporates 

the effect of acceleration over the time interval ∆𝑡. Higher-

order Adam-Bashforth methods can be employed to refine the 

accuracy of the prediction. For instance, the second-order 

Adam-Bashforth method incorporates information from two 

previous time steps to enhance prediction precision. The 

predicted position of sensor node 𝑖 at time 𝑡 + 𝛥𝑡 using the 

second-order method can be expressed as Equations (11)-(13). 

𝑃𝑜𝑠𝑖(𝑡 + ∆𝑡) = 𝑃𝑜𝑠𝑖(𝑡) + 𝑣𝑥𝑖
(𝑡). ∆𝑡 +

1

2
𝑎𝑥𝑖

(𝑡). (∆𝑡)2

+
5

12
(𝑎𝑥𝑖

(𝑡) − 𝑣𝑥𝑖
(𝑡 − 𝛥𝑡)) . (𝛥𝑡)3 

(11) 

𝑃𝑜𝑠𝑖(𝑡 + ∆𝑡) = 𝑃𝑜𝑠𝑖(𝑡) + 𝑣𝑦𝑖
(𝑡). ∆𝑡

+
1

2
𝑎𝑦𝑖

(𝑡). (∆𝑡)2
5

12
(𝑎𝑦𝑖

(𝑡)

− 𝑣𝑦𝑖
(𝑡 − 𝛥𝑡)) . (𝛥𝑡)3 

(12) 

𝑃𝑜𝑠𝑖(𝑡 + ∆𝑡) = 𝑃𝑜𝑠𝑖(𝑡) + 𝑣𝑧𝑖
(𝑡). ∆𝑡 +

1

2
𝑎𝑧𝑖

(𝑡). (∆𝑡)2

+
5

12
(𝑎𝑧𝑖

(𝑡) − 𝑣𝑧𝑖
(𝑡 − 𝛥𝑡)) . (𝛥𝑡)3 

(13) 

These equations incorporate additional acceleration 

information from the previous time step, improving the 

accuracy of the predicted positions. 

3.1.3. Routing Decision 

Routing decisions connect the extrapolated future 

positions of sensor nodes to determine optimal routing paths. 

This phase facilitates proactive routing decisions aimed at 

minimizing latency and conserving energy within the wireless 

sensor network by considering the predicted locations of both 

source and destination nodes.  

Initially let 𝑃𝑜𝑠𝑠(𝑡) and 𝑃𝑜𝑠𝑑(𝑡) denote the predicted 

positions of the source and destination nodes, respectively, at 

time 𝑡.These positions are obtained through the prediction 

phase using the Adam-Bashforth method. Then the distance 

𝑑𝑠𝑑(𝑡) between the predicted positions of the source and 

destination nodes can be calculated using the Euclidean 

distance formula, which is represented as Equation (14). 

𝑑𝑠𝑑(𝑡)

= √(𝑥𝑠(𝑡) − 𝑥𝑑(𝑡))2 + (𝑦𝑠(𝑡) − 𝑦𝑑(𝑡))2 + (𝑧𝑠(𝑡) − 𝑧𝑑(𝑡))2 
(14

) 

where(𝑥𝑠(𝑡), 𝑦𝑠(𝑡), 𝑧𝑠(𝑡)) and (𝑥𝑑(𝑡), 𝑦𝑑(𝑡), 𝑧𝑑(𝑡))  

represent the predicted positions of the source and destination 

nodes, respectively, at time 𝑡.To determine the optimal next 

hop for packet forwarding, the routing decision step involves 

selecting neighbouring sensor nodes approaching the final 

destination node rather than the source node. This greedy 

forwarding strategy ensures progress towards the destination 

while exploiting local geographic information. Let 𝑁𝑖(𝑡) 

denote the set of neighbouring sensor nodes of sensor node 𝑖 

at time 𝑡. The routing decision can be mathematically 

expressed as Eq.(15). 

𝑁𝑜𝑝𝑡(𝑡) = {𝑛 ∈  𝑁𝑠(𝑡)|𝑑𝑛𝑑(𝑡) < 𝑑𝑠𝑑(𝑡)} (15) 

where𝑁𝑜𝑝𝑡(𝑡) represents the set of optimal next-hop 

neighbours at time 𝑡, 𝑛 is a neighbouring sensor node, and 

𝑑𝑛𝑑(𝑡) is the distance between the sensor node 𝑛 and the 

destination node at time 𝑡. To account for potential obstacles 

or boundary conditions in the network, a threshold distance 𝛿 

can be introduced. Sensor nodes within this threshold distance 

of the destination node are considered candidate next-hop 

neighbours. The routing decision can be modified as shown in 

Equation (16).  

𝑁𝑜𝑝𝑡(𝑡) = {𝑛 ∈  𝑁𝑠(𝑡)|𝑑𝑛𝑑(𝑡) < 𝑑𝑠𝑑(𝑡) + 𝛿} (16) 

This modification ensures robustness and adaptability in 

the face of changing network conditions. 

3.1.4. Forwarding: 

The forwarding phase in enhanced GPSR ensures 

efficient packet transmission from source to destination nodes 

within the wireless sensor network. Leveraging the optimal 

next-hop neighbours determined in the previous step, this 

phase involves greedily forwarding data packets toward the 

destination while considering the dynamic nature of the 

network topology.Initially let 𝑁𝑜𝑝𝑡(𝑡) represent the optimal 

next-hop neighbours determined in the routing decision phase 

at time 𝑡. When a sensor node receives a data packet to be 

forwarded, it selects the nearest neighbour from the set 

𝑁𝑜𝑝𝑡(𝑡) as the next hop for packet transmission. Then 𝑛𝑚𝑖𝑛(𝑡) 

denote the sensor node from the set 𝑁𝑜𝑝𝑡(𝑡) that is closest to 

the destination node at time 𝑡. The forwarding decision can be 

mathematically expressed in Equation (17). 

𝑛𝑚𝑖𝑛(𝑡) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑛∈𝑜𝑝𝑡(𝑡)𝑑𝑛𝑑(𝑡) (17) 

where𝑑𝑛𝑑(𝑡) represents the distance between sensor node 

𝑛 and the destination node at time 𝑡. Once the nearest 

neighbour 𝑛𝑚𝑖𝑛(𝑡) is determined, the data packet is forwarded 

to this neighbour for further transmission toward the 

destination node. The packet forwarding process continues 

iteratively until the packet reaches the destination node. To 

ensure robustness and adaptability in dynamic environments, 

the forwarding step may incorporate mechanisms for packet 

retransmission or route repair in case of packet loss or route 

failures. These mechanisms help maintain the reliability and 

resilience of data transmission within the wireless sensor 

network. 

3.1.5. Adaptation 

The Adaptation phase in enhanced GPSR is crucial for 

maintaining the efficiency and resilience of the routing 

protocol in dynamic wireless sensor networks. This phase 

involves continuously monitoring and updating the network 

state to adapt to changes in node mobility, topology, and 
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environmental conditions. Let 𝑑𝑛𝑑(𝑡) represent the distance 

between the current position of a sensor node and the 

destination node at time 𝑡. As the network topology evolves, 

this distance dynamically changes, impacting the routing 

decisions made by individual sensor nodes. To adapt to node 

mobility and topology changes, sensor nodes periodically 

update their position, velocity, and acceleration information 

based on new data collected from the environment. Let 

𝑃𝑜𝑠𝑖(𝑡), 𝑣𝑖(𝑡), and 𝑎𝑖(𝑡) denote the position, velocity, and 

acceleration of sensor node 𝑖 at time 𝑡, respectively. The 

position update can be mathematically expressed in Equation 

(18). 

𝑃𝑜𝑠𝑖(𝑡 + ∆𝑡) = 𝑃𝑜𝑠𝑖(𝑡) + 𝑣𝑖(𝑡). ∆𝑡

+
1

2
𝑎𝑖(𝑡). (∆𝑡)2 

(18) 

where∆𝑡 represents the time interval between position 

updates, the velocity update equation can be shown in 

Equations (19). 

𝑎𝑖(𝑡 + ∆𝑡) = 𝑣𝑖(𝑡) + 𝑎𝑖(𝑡) + ∆𝑡 (19) 

The acceleration update equation can be mathematically 

expressed as Equations (20). 

𝑎𝑖(𝑡 + ∆𝑡) =
𝑣𝑖(𝑡 + ∆𝑡) − 𝑣𝑖(𝑡)

∆𝑡
 (20) 

These equations allow sensor nodes to adapt to 

environmental changes by continuously updating their 

kinematic parameters. Sensor nodes may adjust their 

neighbour selection criteria based on the changing network 

topology to ensure efficient routing decisions. The adaptation 

step also encompasses mechanisms for handling network 

dynamics, such as node failures or link disruptions. In such 

cases, sensor nodes may initiate route repair procedures to 

establish alternative paths for data transmission. Route repair 

algorithms aim to restore network connectivity while 

minimizing disruption to ongoing communication. 

3.1.6. Error Handling 

Error handling in enhanced GPSR is essential for 

maintaining the reliability and robustness of the routing 

protocol in the face of unforeseen events such as packet loss, 

node failures, or link disruptions. This phase involves 

implementing mechanisms to detect, diagnose, and recover 

from errors to ensure uninterrupted data transmission within 

the wireless sensor network. Initially 𝑃𝑙𝑜𝑠𝑠 represent the 

probability of packet loss during transmission. Packet loss can 

occur due to various factors, such as signal interference, 

channel fading, or congestion. The probability of successful 

packet delivery 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 can be expressed as: 

𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 = 1 − 𝑃𝑙𝑜𝑠𝑠 (21) 

where𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 represents the probability that a packet 

successfully reaches its destination. Sensor nodes may employ 

acknowledgement (ACK) mechanisms or timeout-based 

retransmission schemes to detect packet loss. Let 𝑇𝑡𝑖𝑚𝑒𝑜𝑢𝑡  

denote the timeout period for packet retransmission. After the 

allotted time has elapsed, the sender will presume packet loss 

and begin retransmission if they have not received an 

acknowledgement. The probability of successful packet 

delivery can be affected by factors such as network congestion 

or node failures. To mitigate the impact of these factors, sensor 

nodes may implement congestion control mechanisms or route 

repair algorithms to establish alternative paths for data 

transmission. Sensor nodes may maintain backup routes or 

establish redundant links to handle node failures or link 

disruptions to ensure network connectivity. Let 

𝑁𝑏𝑎𝑐𝑘𝑢𝑝represent the set of backup routes available to a sensor 

node. In the event of a failure or disruption, the node can 

switch to a backup route for continued data transmission. 

Metrics like packet delivery ratio and end-to-end latency may 

be used to quantify the dependability of data transmission 

inside the wireless sensor network. The packet delivery ratio, 

abbreviated as 𝑃𝐷𝑅, is the percentage of transmitted packets 

that reach their destination without a hitch. The time a packet 

gets from its source to its destination node is called the end-

to-end delay. This packet delivery ratio and delay are 

represented mathematically in Equations (22) and (23). 

𝑃𝐷𝑅

=
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑 𝑝𝑎𝑐𝑘𝑒𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑠𝑒𝑛𝑡
 

(22) 

𝐷𝑒𝑙𝑎𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑎𝑐𝑘𝑒𝑡

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 ℎ𝑜𝑝𝑠
 

(23) 

These metrics provide insights into the reliability and 

performance of the routing protocol and help guide error-

handling strategies. 

3.2. Octopus Optimization: 

Metaheuristic optimization method Octopus 

Optimization (O2) takes its cues from how octopuses behave 

in the natural world. O2 mimics the hunting behaviour of 

octopuses, which utilize their tentacles to explore and exploit 

their surroundings to capture prey efficiently. This algorithm 

is particularly effective for solving optimization problems, 

especially those with complex search spaces and multiple 

local optima. 

3.2.1. Tentacle Movement 

The Tentacle Movement is pivotal in exploring the search 

space and locating potential solutions. This step mimics 

octopus tentacles' flexible and adaptive movement, allowing 

them to navigate complex environments and search for prey 

efficiently. The movement of each tentacle can be represented 

using a stochastic process that incorporates both exploration 

and exploitation. Let 𝑃𝑖(𝑡) denote the position of tentacle 𝑖 in 

the search space at time 𝑡. The tentacle’s motion is represented 

in Equation (24). 

𝑃𝑖(𝑡 + ∆𝑡) = 𝑃𝑖(𝑡) + ∆𝑃𝑖(𝑡) (24) 
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where∆𝑃𝑖(𝑡) represents the incremental movement of 

tentacle 𝑖 at time 𝑡. The variables, such as the tentacle’s 

present location, the available local information, and random 

disturbances designed to promote exploration, come together 

to decide this gradual movement. To promote exploration, 

stochastic perturbations can be introduced to the movement of 

tentacles, simulating the unpredictable nature of 

environmental conditions. Let  ∈𝑖 (𝑡) denote the random 

perturbation applied to tentacle 𝑖 at time 𝑡. The incremental 

movement of the tentacle can be modified, as shown in 

Equation (25). 

∆𝑃𝑖(𝑡) = 𝛼. ∇𝑓(𝑃𝑖(𝑡)) + 𝛽. 𝜖𝑖(𝑡) (25) 

where𝛼 and 𝛽 are scaling factors that control the 

influence of the gradient of the objective function 𝑓 and the 

stochastic perturbation, respectively. To ensure efficient 

search space exploration, tentacles may exhibit adaptive 

movement strategies that adjust their exploration based on the 

local characteristics of the optimization landscape. Let 

∇𝑓(𝑃𝑖(𝑡)) denote the gradient of the objective function 𝑓 at 

the current position of tentacle 𝑖. The movement of the tentacle 

can be guided by the gradient direction, which is 

mathematically represented in Equation (26). 

∆𝑃𝑖(𝑡) = 𝛼. ∇𝑓𝑃𝑖(𝑡)) (26) 

This equation ensures that the tentacle moves toward the 

steepest ascent or descent of the objective function, facilitating 

efficient exploration and exploitation of promising regions of 

the search space. To prevent premature convergence and 

encourage diversity in exploration, tentacles may incorporate 

mechanisms for adaptive step size adjustment. Let 𝜂𝑖(𝑡) 

denote the step size of tentacle 𝑖 at time 𝑡. The movement of 

the tentacle with adaptive step size adjustment can be 

mathematically represented as Equation (27). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝜂𝑖(𝑡). ∆𝑃𝑖(𝑡)) (27) 

where𝜂𝑖(𝑡) is dynamically adjusted based on the 

convergence status and the quality of solutions encountered, 

ensuring a balance between exploration and exploitation. 

3.2.2. Local Search 

In this phase, each tentacle performs a local search around 

its current position to exploit promising regions of the search 

space. This step aims to refine the solutions obtained during 

the exploration phase and improve their quality by focusing 

on local neighbourhoods. The local search can be 

mathematically formulated, let 𝑃𝑖(𝑡) denote the position of 

tentacle 𝑖 in the search space at time 𝑡. The objective function 

𝑓 evaluates the quality of a solution at a given position in the 

search space. The local search aims to find a nearby position 

that improves the objective function value. One common 

strategy for local search is gradient descent, where the tentacle 

iteratively moves toward the direction of the steepest descent 

of the objective function. Let∆𝑓(𝑃𝑖(𝑡))  denote the gradient of 

the objective function at the current position of tentacle 𝑖. The 

gradient direction that can guide the tentacle's movement in 

the local search phase is mathematically represented as 

Equation (28). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) − 𝛾. ∆𝑓(𝑃𝑖(𝑡)) + 𝛽. 𝜖𝑖(𝑡) (28) 

where𝛽 controls the influence of the stochastic 

perturbation on the movement of the tentacle. Furthermore, 

tentacles may adjust their step size dynamically to ensure 

efficient exploration of the local neighbourhood based on the 

convergence status and the quality of solutions encountered. 

Let 𝜂𝑖(𝑡) denote the step size of tentacle 𝑖 at time 𝑡. The 

movement of the tentacle with adaptive step size adjustment 

can be represented as Equation (29). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) − 𝜂𝑖(𝑡). ∆𝑓(𝑃𝑖(𝑡)) (29) 

where𝜂𝑖(𝑡) is dynamically adjusted based on the 

convergence status and the quality of solutions encountered 

during the local search. 

3.2.3. Global Exploration 

Tentacles collaborate to share information and 

collectively explore diverse regions of the search space to 

prevent premature convergence and discover high-quality 

solutions. Global exploration involves leveraging the 

collective intelligence  of tentacles to guide the search towards 

promising regions of the search space. Let 𝑃𝑖(𝑡) denote the 

position of tentacle 𝑖 in the search space at time 𝑡. The 

objective function 𝑓 evaluates the quality of a solution at a 

given position in the search space. One common strategy for 

global exploration is to promote diversity in the search by 

encouraging tentacles to explore regions of the search space 

that have not been adequately explored. This can be achieved 

through mechanisms such as random perturbation or adaptive 

exploration. Let 𝜖𝑖(𝑡)denote the random perturbation applied 

to tentacle 𝑖 at time 𝑡. The movement of the tentacle with 

stochastic perturbation for global exploration can be 

represented mathematically in Equation (30). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛽. 𝜖𝑖(𝑡) (30) 

where𝛽 controls the influence of the stochastic 

perturbation on the movement of the tentacle. To ensure that 

tentacles explore diverse regions of the search space, global 

exploration may incorporate mechanisms for information 

sharing and collaboration among tentacles. Tentacles may 

exchange information about their experiences and solutions 

encountered during the search to guide the exploration 

towards promising regions. Let 𝑃𝑏𝑒𝑠𝑡(𝑡)denote the best 

solution encountered by tentacles up to time 𝑡. Tentacles may 

adjust their movement based on the distance between their 

current position and the best solution encountered. The 

movement of the tentacle towards the best solution can be 

represented as Equation (31). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛾. (𝑃𝑏𝑒𝑠𝑡(𝑡) − 𝑃𝑖(𝑡)) (31) 
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where𝛾 controls the magnitude of the movement towards 

the best solution. To prevent premature convergence and 

encourage exploration, tentacles may adjust their movement 

dynamically based on the convergence status and the quality 

of solutions encountered. The movement of the tentacle with 

adaptive step size adjustment for global exploration can be 

represented mathematically in Equation (32). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝜂𝑖(𝑡). (𝑃𝑏𝑒𝑠𝑡(𝑡) − 𝑃𝑖(𝑡)) (32) 

where𝜂𝑖(𝑡) is dynamically adjusted based on the 

convergence status and the quality of solutions encountered 

during the search. 

3.2.4. Dynamic Adjustment 

Dynamic adjustment dynamically adjusts their movement 

strategies based on the convergence status and the quality of 

solutions encountered during the search. This dynamic 

adjustment ensures adaptability and responsiveness to 

changes in the optimization landscape. It involves modifying 

the movement parameters of tentacles in real time to balance 

exploration and exploitation effectively. Let 𝑃𝑖(𝑡) denote the 

position of tentacle 𝑖 in the search space at time 𝑡. The 

objective function 𝑓 evaluates the quality of a solution at a 

given position in the search space. One common strategy for 

dynamic adjustment is to adapt the tentacles' step size based 

on the search's convergence status. Let 𝜂𝑖(𝑡)denote the step 

size of tentacle 𝑖 at time 𝑡. The step size can be dynamically 

adjusted using a feedback mechanism that evaluates the 

progress of the search. The movement of the tentacle with 

adaptive step size adjustment is represented in Equation (33). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝜂𝑖(𝑡). ∆𝑃𝑖(𝑡) (33) 

where∆𝑃𝑖(𝑡) represents the incremental movement of 

tentacle 𝑖 at time 𝑡. To ensure efficient exploration and 

exploitation, tentacles may adjust their movement based on 

the quality of solutions encountered during the search. Let 

𝑓𝑏𝑒𝑠𝑡(𝑡)denote the best objective function value encountered 

by tentacles up to time 𝑡.  

Tentacles may adjust their movement towards regions of 

the search space that show improvement over time. The 

movement of the tentacle towards the best solution is 

represented mathematically in Equation (34). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛾. (𝑓𝑏𝑒𝑠𝑡(𝑡) − 𝑓(𝑃𝑖(𝑡))) (34) 

where𝛾 controls the magnitude of the movement towards 

regions of improvement. To prevent stagnation and encourage 

exploration, tentacles may incorporate mechanisms for 

random perturbation or diversification of movement.  

Let 𝜖𝑖(𝑡) denote the random perturbation applied to 

tentacle 𝑖1 at time 𝑡. The movement of the tentacle with 

stochastic perturbation for dynamic adjustment can be 

depicted in Equation (30).Where𝛽 controls the influence of 

the stochastic perturbation on the movement of the tentacle. 

3.2.5. Flexible Exploration 

This phase exhibits flexibility in exploration, allowing 

tentacles to adapt their movements based on the optimisation 

problem's characteristics and the search's convergence status. 

The flexible exploration involves incorporating diverse 

movement strategies that adapt to the local landscape of the 

search space. Let 𝑃𝑖(𝑡) denote the position of tentacle 𝑖 in the 

search space at time 𝑡. The objective function 𝑓 evaluates the 

quality of a solution at a given position in the search space. 

One strategy for flexible exploration is to dynamically adjust 

the movement parameters of tentacles based on the 

characteristics of the optimization problem. Let 𝛼 denote a 

parameter that controls the influence of a particular movement 

strategy. Tentacles may switch between different movement 

strategies based on the characteristics of the optimization 

landscape. The movement of the tentacle with flexible 

exploration can be represented as Equation (35). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛼. ∆𝑃𝑖(𝑡) (35) 

where∆𝑃𝑖(𝑡) represents the incremental movement of 

tentacle 𝑖 at time 𝑡 based on a particular movement strategy. 

To promote efficient exploration, tentacles may incorporate 

mechanisms for adaptive step size adjustment that vary based 

on the local curvature of the optimization landscape. Let 

𝜂𝑖(𝑡)denote the step size of tentacle 𝑖 at time 𝑡. The step size 

can be dynamically adjusted based on local gradient 

information. The movement of the tentacle with adaptive step 

size adjustment for flexible exploration can be represented 

mathematically in Equation (36). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝜂𝑖(𝑡). ∇𝑓(𝑃𝑖(𝑡)) (36) 

where∇𝑓(𝑃𝑖(𝑡)) represents the gradient of the objective 

function at the current position of tentacle 𝑖. To encourage 

exploration in regions of the search space that have not been 

adequately explored, tentacles may incorporate mechanisms 

for random perturbation or diversification of movement. Let 

𝜖𝑖(𝑡) denote the random perturbation applied to tentacle 𝑖 at 

time 𝑡 as expressed mathematically in Equation (30), 𝜖𝑖(𝑡) 

represents a random perturbation applied to the movement of 

tentacle 𝑖.  

3.2.6. Adaptive Strategy 

In this phase, the algorithm adapts its search strategy 

based on the convergence status and the quality of solutions 

encountered during the search. This adaptive strategy ensures 

responsiveness to changes in the optimization landscape and 

promotes efficient convergence towards high-quality 

solutions. The adaptive strategy involves dynamically 

adjusting the movement parameters and exploration strategies 

of tentacles based on the convergence status of the search. Let 

𝑃𝑖(𝑡) denote the position of tentacle 𝑖 in the search space at 

time 𝑡. The objective function 𝑓 evaluates the quality of a 

solution at a given position in the search space.One strategy 

for adaptive strategy is to adjust the movement parameters of 

tentacles based on the convergence status of the search. Let 
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𝛾(𝑡) denote a parameter that controls the magnitude of the 

movement towards regions of improvement. Tentacles may 

increase their movement towards regions of improvement as 

the search progresses. The movement of the tentacle with an 

adaptive strategy can be mathematically represented as 

Equation (37). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛾(𝑡). (𝑓𝑏𝑒𝑠𝑡(𝑡) − 𝑓(𝑃𝑖(𝑡))) (37) 

where𝑓𝑏𝑒𝑠𝑡(𝑡) represents the best objective function value 

encountered by tentacles up to time 𝑡. To prevent premature 

convergence and encourage exploration, tentacles may adjust 

their movement strategies based on the quality of solutions 

encountered during the search. Let 𝛼(𝑡) denote a parameter 

that controls the influence of a particular movement strategy. 

Tentacles may switch between different movement strategies 

based on the convergence status of the search. The movement 

of the tentacle with an adaptive strategy is shown in Equation 

(38). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛼(𝑡). ∆𝑃𝑖(𝑡) (38) 

where∆𝑃𝑖(𝑡) represents the incremental movement of 

tentacle 𝑖 at time 𝑡 based on a particular movement strategy. 

To promote efficient exploration, tentacles may incorporate 

mechanisms for adaptive step size adjustment that vary based 

on the convergence status of the search. Let 𝜂𝑖(𝑡)denote the 

step size of tentacle 𝑖 at time𝑡. The step size can be 

dynamically adjusted based on the convergence status of the 

search. The movement of the tentacle with adaptive step size 

adjustment for adaptive strategy can be shown in Equation 

(39). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝜂𝑖(𝑡). ∆𝑓(𝑃𝑖(𝑡)) (39) 

where∆𝑓(𝑃𝑖(𝑡))represents the gradient of the objective 

function at the current position of tentacle 𝑖. 

3.2.7. Convergence Mechanism 

Convergence Mechanism focuses on fine-tuning the 

convergence behaviour of the algorithm to ensure it efficiently 

converges towards high-quality solutions while preventing 

premature convergence. It involves incorporating mechanisms 

to balance exploration and exploitation to guide the search for 

optimal solutions. Let 𝑃𝑖(𝑡)denote the position of tentacle 𝑖 in 

the search space at time 𝑡. The objective function 𝑓 evaluates 

the quality of a solution at a given position in the search space. 

One common strategy for the convergence mechanism is to 

adaptively adjust the movement parameters and exploration 

strategies of tentacles based on the convergence status of the 

search. Let 𝛽(𝑡) denote a parameter that controls the influence 

of the convergence mechanism. Tentacles may increase their 

movement towards regions of improvement as the search 

progresses while ensuring sufficient exploration to prevent 

premature convergence. The movement of the tentacle with a 

convergence mechanism can be mathematically represented in 

Equation (40). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛽(𝑡) (𝑓𝑏𝑒𝑠𝑡(𝑡) − 𝑓(𝑃𝑖(𝑡)))

+ (1 − 𝛽(𝑡)). ∆𝑃𝑖(𝑡) 
(40) 

where𝑓𝑏𝑒𝑠𝑡(𝑡) represents the best objective function value 

encountered by tentacles up to time 𝑡, and∆𝑃𝑖(𝑡) represents 

the incremental movement of tentacle 𝑖 at time 𝑡 based on a 

particular movement strategy. To promote efficient 

convergence, tentacles may incorporate mechanisms for 

adaptive step size adjustment that vary based on the 

convergence status of the search. Let 𝛾(𝑡) denote a parameter 

that controls the magnitude of the movement towards regions 

of improvement. The step size can be dynamically adjusted 

based on the convergence status of the search. The movement 

of the tentacle with convergence mechanism and adaptive step 

size adjustment can be represented in Equation (41). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡)

+ 𝛾(𝑡) (𝑓𝑏𝑒𝑠𝑡(𝑡)

− 𝑓(𝑃𝑖(𝑡))) . ∇𝑓(𝑃𝑖(𝑡)) 

(41) 

where∇𝑓(𝑃𝑖(𝑡)) 𝑟epresents the gradient of the objective 

function at the current position of tentacle 𝑖. To prevent 

stagnation and encourage exploration, tentacles may 

incorporate mechanisms for random perturbation or 

diversification of movement. Let 𝜖𝑖(𝑡)denote the random 

perturbation applied to tentacle 𝑖 at time 𝑡. The movement of 

the tentacle with stochastic perturbation for the convergence 

mechanism is represented mathematically in Equation (30), 

where 𝜖𝑖(𝑡)represents a random perturbation applied to the 

movement of tentacle 𝑖. 

3.2.8. Efficient Convergence 

In this phase, the algorithm focuses on further improving 

the convergence speed and efficiency towards high-quality 

solutions while ensuring robustness and stability throughout 

the optimization process. Efficient convergence involves fine-

tuning the convergence behaviour of the algorithm by 

dynamically adjusting the movement parameters, exploration 

strategies, and step sizes of tentacles based on the convergence 

status and the quality of solutions encountered during the 

search. Let 𝑃𝑖(𝑡)denote the position of tentacle 𝑖 in the search 

space at time 𝑡. The objective function 𝑓 evaluates the quality 

of a solution at a given position in the search space. One 

strategy for efficient convergence is to incorporate 

mechanisms for dynamic step size adjustment that adapt based 

on the convergence status of the search. Let 𝛿(𝑡) denote a 

parameter that controls the magnitude of the movement 

towards regions of improvement. The step size can be 

dynamically adjusted based on the convergence status of the 

search. The movement of the tentacle with efficient 

convergence and adaptive step size adjustment is shown in 

Equation (42). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡)

+ 𝛿(𝑡). (𝑓𝑏𝑒𝑠𝑡(𝑡)

− 𝑓(𝑃𝑖(𝑡))) . ∇𝑓(𝑃𝑖(𝑡)) 

(42) 
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where𝑓𝑏𝑒𝑠𝑡represents the best objective function value 

encountered by tentacles up to time 𝑡, and∇𝑓(𝑃𝑖(𝑡)) 

represents the gradient of the objective function at the current 

position of tentacle 𝑖. To prevent stagnation and encourage 

exploration, tentacles may incorporate mechanisms for 

random perturbation or diversification of movement. Let 

𝜁𝑖(𝑡)denote the random perturbation applied to tentacle 𝑖 at 

time 𝑡. The movement of the tentacle with stochastic 

perturbation for efficient convergence is depicted in Equation 

(43). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝜁𝑖(𝑡) (43) 

where𝜁𝑖(𝑡)represents a random perturbation applied to 

the movement of tentacle 𝑖. To promote efficient convergence 

towards high-quality solutions, tentacles may dynamically 

adjust their movement strategies based on the search's 

convergence status and the optimisation landscape's 

characteristics. The movement of the tentacle with an efficient 

convergence strategy is mathematically represented in 

Equation (44). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝜔(𝑡). (𝑓𝑏𝑒𝑠𝑡(𝑡) − 𝑓(𝑃𝑖(𝑡)))

+ (1 − 𝜔(𝑡)). ∆𝑃𝑖(𝑡) 
(44) 

where𝜔(𝑡) represents a parameter that controls the 

influence of the efficient convergence strategy on the 

movement of tentacle 𝑖. 

3.3. OctoRoute Formation 

OctoRoute is a fusion of O2 with EGPSR tailored for B-

WSNs. A dynamic routing protocol orchestrates the 

movement of tentacle-like nodes to optimize data routing in 

B-WSNs. It synergizes O2’s adaptability with EGPSR’s 

efficiency in navigating the dynamic underwater environment. 

This amalgamation achieves robust and efficient data delivery 

while accommodating buoyant sensor mobility. OctoRoute 

combines the resilience and adaptability of O2 with the 

efficiency and scalability of EGPSR, providing a versatile 

solution for buoyant WSNs. This fusion enables seamless 

communication in dynamic underwater environments, 

supporting various applications such as environmental 

monitoring, underwater exploration, and marine research. 

3.3.1. Tentacle Formation 

Tentacle Formation establishes a dynamic network 

topology resembling tentacles in B-WSNs. This phase 

orchestrates the deployment and coordination of nodes to 

create a flexible and adaptive infrastructure. Tentacle 

formation involves positioning nodes underwater to maximize 

network coverage and connectivity while minimizing energy 

consumption. Let 𝑃𝑖(𝑡) represent the position of node 𝑖 in the 

three-dimensional Cartesian coordinate system at time 𝑡. The 

objective is to distribute nodes evenly across the underwater 

space to ensure efficient communication and data relay. One 

approach to tentacle formation is to employ a distributed 

deployment strategy that leverages spatial distribution 

algorithms. Let 𝐷𝑖denote the desired spatial distribution of 

node 𝑖 within the underwater environment. The movement of 

nodes towards their desired positions can be depicted in 

Equation (45). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛼. (𝐷𝑖 − 𝑃𝑖(𝑡)) (45) 

where𝛼 controls the rate of movement towards the desired 

spatial distribution. To optimize network coverage and 

connectivity, nodes may adjust their positions based on local 

environmental factors and neighbouring node positions. Let 

𝑁𝑖(𝑡)represent the set of neighbouring nodes of node 𝑖 at time 

𝑡. The movement of nodes towards optimal positions 

considering local information can be represented 

mathematically in Equation (46). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + ∑ 𝛽𝑖𝑗 . (𝑃𝑗(𝑡) − 𝑃𝑖(𝑡))
𝑗∈𝑁𝑖(𝑡)

 (46) 

where𝛽𝑖𝑗represents the influence of neighbouring node 𝑗 

on the movement of node 𝑖. To ensure robustness and 

adaptability, nodes may adjust their positions dynamically 

based on changes in environmental conditions. Let 

𝐸𝑖(𝑡)denote the environmental parameters affecting node 𝑖 at 

time 𝑡. The movement of nodes with dynamic environmental 

adaptation can be shown in Equation (47). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛾.
𝜕𝐸𝑖(𝑡)

𝜕𝑡
 (47) 

where𝛾 controls the magnitude of adjustment based on 

the rate of change in environmental parameters. 

3.3.2. Local Exploration 

Expanding from the tentacle formation phase, the second 

step in OctoRoute is “Local Exploration.” In this phase, nodes 

conduct localized searches to identify nearby nodes and assess 

their connectivity and proximity. This localized exploration 

facilitates the establishment of efficient communication links 

and enables nodes to gather information about their immediate 

surroundings. Mathematically, local exploration involves 

nodes dynamically adjusting their positions based on local 

environmental conditions and the positions of neighbouring 

nodes. Let 𝑃𝑖(𝑡)denote the position of node 𝑖 in the three-

dimensional Cartesian coordinate system at the time 𝑡′and 

𝑁𝑖(𝑡)represent the set of neighbouring nodes of node 𝑖 at time 

𝑡. One strategy for local exploration is to employ a gradient 

descent approach to move nodes towards regions of higher 

connectivity or information density. Let 𝐶𝑖(𝑡)represent the 

connectivity or information density at node 𝑖 at time 𝑡. The 

movement of node 𝑖 towards regions of higher connectivity or 

information density can be mathematically represented in 

Equation (48). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛼. ∇𝐶𝑖(𝑡) (48) 

where∇𝐶𝑖(𝑡)represents the gradient of connectivity or 

information density at node 𝑖 at time 𝑡, and 𝛼 controls the rate 

of movement towards regions of higher connectivity or 
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information density. To optimize local exploration, nodes may 

adjust their positions based on the positions and movements 

of neighbouring nodes. Let 𝑉𝑖𝑗(𝑡)represent the relative 

velocity between nodes 𝑖 and 𝑗 at time 𝑡. The movement of a 

node 𝑖 considering the relative velocities of neighboring nodes 

can be shown in Equation (49). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + ∑ 𝛽𝑖𝑗 . 𝑉𝑖𝑗(𝑡)
𝑗∈𝑁𝑖(𝑡)

 (49) 

where𝛽𝑖𝑗 represents the influence of neighbouring node 𝑗 

on the movement of node 𝑖. To ensure adaptability and 

responsiveness to changes in local environmental conditions, 

nodes may incorporate mechanisms for dynamic adjustment 

of movement parameters. Let 𝐸𝑖(𝑡)denote the environmental 

parameters affecting node 𝑖 at time 𝑡. The movement of node 

𝑖 with dynamic environmental adaptation can be 

mathematically represented in Equation (50). 

𝑃𝑖(𝑡 + Δ𝑡) = ∑ 𝑃𝑖(𝑡)

𝑁−1

𝑗=0

+ 𝛾.
𝜕𝐸𝑖(𝑡)

𝜕𝑡
 (50) 

 

where𝛾 controls the magnitude of adjustment based on 

the rate of change in environmental parameters. 

3.3.3. Global Pathfinding 

In this phase, nodes collaborate to explore diverse paths 

and collectively identify the optimal route towards the 

destination. This global pathfinding strategy enables efficient 

data transmission and ensures robustness in communication 

links. It involves nodes exchanging information and 

collectively determining the optimal route towards the 

destination. Let𝑃𝑖(𝑡)denote the position of node 𝑖 in the three-

dimensional Cartesian coordinate system at time 𝑡, and 𝐷 

represents the destination node. One approach to global 

pathfinding is to employ a distributed routing algorithm that 

utilizes information exchange among neighbouring nodes to 

propagate routing information. Let 𝑅𝑖(𝑡)denote the routing 

information available at node 𝑖 at time 𝑡. The propagation of 

routing information among neighbouring nodes is represented 

mathematically in Equation (51). 

𝑅𝑖(𝑡 + Δ𝑡) = ∑ 𝛽𝑖𝑗 . 𝑅𝑗(𝑡)
𝑗∈𝑁𝑖(𝑡)

 (51) 

where𝛽𝑖𝑗 represents the influence of neighbouring node 𝑗 

on the routing information at node 𝑖. Additionally, nodes may 

exchange information about the quality of communication 

links and the distance to the destination to determine the 

optimal route towards the destination. Let 𝑄𝑖(𝑡) represent the 

quality of communication link at node 𝑖 at time 𝑡, and 𝐷𝑖(𝑡) 

denote the distance to the destination from node 𝑖 at time 𝑡. 

The optimal route computation considering link quality and 

distance to the destination can be depicted in Equation (52). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) − 𝛼. 𝑄𝑖(𝑡) − 𝛾. 𝐷𝑖(𝑡) (52) 

where𝛼 and 𝛾 control the influence of link quality and 

distance to the destination, respectively. 

Furthermore, to ensure robustness in communication 

links and adaptability to changes in the network topology, 

nodes may incorporate mechanisms for dynamic adjustment 

of routing paths. Let 𝐸𝑖(𝑡)denote the environmental 

parameters affecting the node  

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) − 𝛿.
𝜕𝐸𝑖(𝑡)

𝜕𝑡
 (53) 

where in Equation (53), 𝛿 controls the magnitude of 

adjustment based on the rate of change in environmental 

parameters. 

3.3.4. Adaptive Navigation 

Nodes dynamically adjust their movements based on 

environmental factors, such as current velocity and water 

depth, to optimize path traversal. This adaptive navigation 

strategy enhances the efficiency and robustness of data 

transmission in B-WSNs. Adaptive navigation involves nodes 

dynamically adjusting their positions and movement 

parameters based on environmental conditions.  

Let 𝑃𝑖(𝑡) denote the position of node 𝑖 in the three-

dimensional Cartesian coordinate system at time 𝑡, and 

𝑉𝑖(𝑡)represent the velocity of node 𝑖 at time 𝑡. One strategy 

for adaptive navigation is to incorporate mechanisms for 

adjusting movement parameters based on the current velocity 

of nodes. Let 𝑉𝑐𝑢𝑟𝑟(𝑡)denote the current velocity of nodes at 

time 𝑡. The adjustment of movement parameters based on 

current velocity can be represented mathematically in 

Equation (54). 

𝑉𝑖(𝑡 + Δ𝑡) = 𝑉𝑖(𝑡) − 𝛼. (𝑉𝑐𝑢𝑟𝑟(𝑡) − 𝑉𝑖(𝑡)) (54) 

where𝛼 controls the rate of adjustment based on the 

difference between the current velocity and the velocity of 

node 𝑖. To optimize path traversal in varying water depths, 

nodes may adjust their positions and movement parameters 

based on the water depth encountered along the route. Let 

𝐷𝑖(𝑡)denote the water depth encountered by node 𝑖 at time 𝑡. 

Adjusting positions and movement parameters based on water 

depth can be mathematically represented as Eq.(55) and 

Equation (56). 

𝑃𝑖(𝑡 + Δ𝑡) = 𝑃𝑖(𝑡) + 𝛽. ∇𝐷𝑖(𝑡) (55) 

𝑉𝑖(𝑡 + Δ𝑡) = 𝑉𝑖(𝑡) + 𝛽. ∇𝐷𝑖(𝑡) (56) 

where𝛽 and 𝛾 control the magnitude of adjustment based 

on the water depth gradient encountered by node 𝑖. To ensure 

adaptability to changing environmental conditions, nodes may 

incorporate mechanisms for dynamic adjustment of 

movement parameters based on environmental parameters. 

Let 𝐸𝑖(𝑡)denote the environmental parameters affecting node 

𝑖 at time 𝑡. The adjustment of movement parameters based on 

environmental conditions can be depicted in Equation (57). 

𝑉𝑖(𝑡 + Δ𝑡) = 𝑉𝑖(𝑡) + 𝛿.
𝜕𝐸𝑖(𝑡)

𝜕𝑡
 (57) 



J. Divya Jose & D. Vimal Kumar / IJETT, 72(12), 269-284, 2024  

 

280 

where𝛿 controls the magnitude of adjustment based on 

the rate of change in environmental parameters. 

3.3.5. Efficient Data Transmission 

In Efficient Data Transmission, the nodes utilize 

optimized routes to relay data packets efficiently, minimizing 

latency and maximizing throughput. This efficient data 

transmission approach improves the communication 

network’s overall performance and reliability in buoyant 

WSNs. It involves nodes dynamically adjusting their positions 

and movement parameters to optimize the transmission of data 

packets. Let 𝑃𝑖(𝑡)denote the position of node 𝑖 in the three-

dimensional Cartesian coordinate system at time 𝑡, and 𝑅𝑖(𝑡) 

represent the routing information available at node 𝑖 at time 𝑡. 

One strategy for efficient data transmission is to incorporate 

mechanisms for selecting the optimal route based on the 

available routing information. Let 𝐷 represent the destination 

node. The optimal route selection towards the destination can 

be mathematically represented in Equation (58). 

𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑅𝑜𝑢𝑡𝑒𝑖(𝑡)

= 𝑎𝑟𝑔𝑚𝑖𝑛𝑗∈𝑅𝑖(𝑡)𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃𝑖(𝑡), 𝑃𝑗(𝑡)) 
(58) 

where𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑃𝑖(𝑡), 𝑃𝑗(𝑡)) represents the distance 

between node 𝑖 and node 𝑗 at time 𝑡. To minimize latency and 

maximize throughput, nodes may adjust their transmission 

rates based on the quality of communication links and the 

distance to the destination. Let 𝑄𝑖(𝑡)represent the quality of 

communication link at node 𝑖 at time 𝑡. The adjustment of 

transmission rates based on link quality is shown in Equation 

(59). 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑅𝑎𝑡𝑒𝑖(𝑡) =
1

𝑄𝑖(𝑡)
 (59) 

To ensure reliable data transmission, nodes may 

incorporate error detection and correction mechanisms. Let 

𝐸𝑖(𝑡)denote the error rate at node 𝑖 at time 𝑡. The adjustment 

of transmission parameters based on error rate is shown in 

Equation (60). 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦𝑖(𝑡) = 1 − 𝐸𝑖(𝑡) (60) 

3.3.6. Resilient Adaptation 

In Resilient Adaptation, nodes continuously adapt to 

changes in the underwater environment, ensuring robust and 

reliable data delivery despite fluctuations in network 

conditions. Resilient adaptation enhances the overall 

resilience and stability of the communication network in 

buoyant WSNs. It involves nodes dynamically adjusting their 

positions, movement parameters, and transmission strategies 

based on changes in environmental conditions. Let 

𝑃𝑖(𝑡)denote the position of node 𝑖 in the three-dimensional 

Cartesian coordinate system at time 𝑡, and 𝐸𝑖(𝑡)represent the 

environmental parameters affecting node 𝑖 at time 𝑡. 

Incorporate mechanisms for dynamic adjustment of 

movement parameters based on changes in environmental 

conditions. Let 
𝜕𝐸𝑖(𝑡)

𝜕𝑡
 denote the rate of change in 

environmental parameters affecting node 𝑖 at time 𝑡. Adjusting 

movement parameters based on environmental conditions can 

be represented mathematically in Equation (57).where𝛿 

controls the magnitude of adjustment based on the rate of 

change in environmental parameters. To ensure robust and 

reliable data delivery, nodes may adapt their transmission 

strategies based on changes in network conditions. Let 𝑄𝑖(𝑡) 

represent the quality of communication link at node 𝑖 at time 

𝑡, and 𝐸𝑚𝑎𝑥denote the maximum allowable error rate. The 

adjustment of transmission strategies based on changes in link 

quality can be mathematically represented in Equation (61). 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦𝑉𝑖(𝑡)

= {
𝐻𝑖𝑔ℎ,    𝑖𝑓 𝑄𝑖(𝑡) > 𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝐿𝑜𝑤,                         𝑜𝑡ℎ𝑒𝑟𝑖𝑠𝑒
 

(61) 

where𝑄𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  represents the minimum acceptable link 

quality for a high transmission strategy, 𝜂 represents the 

efficiency factor in case of node fault. 

3.5. Advantages of OctoRoute 

OctoRoute, the fusion of O2 with EGPSR for B-WSNs, 

offers several advantages that make it a promising solution for 

underwater communication. 

• Optimized Routing: OctoRoute leverages the adaptability 

and efficiency of Octopus Optimization to establish 

optimized routing paths in B-WSNs. By dynamically 

adjusting node movements and transmission strategies, 

OctoRoute optimizes path traversal, minimizing latency 

and maximizing throughput. This optimized routing 

ensures efficient data transmission and enhances the 

overall performance of the communication network. 

• Flexible Network Topology: One of the significant 

advantages of OctoRoute is its ability to establish a 

flexible network topology resembling tentacles in B-

WSNs. The distributed deployment strategy employed in 

tentacle formation enables nodes to position themselves 

adaptively, ensuring comprehensive coverage and 

connectivity throughout the underwater environment. 

This flexible network topology facilitates robust 

communication links and enables effective data relay in 

dynamic underwater scenarios. 

• Dynamic Adaptation: OctoRoute excels in dynamic 

adaptation to changes in the underwater environment. 

Through resilient adaptation mechanisms, nodes 

continuously adjust their positions, movement 

parameters, and transmission strategies based on 

environmental conditions. This dynamic adaptation 

ensures robust and reliable data delivery despite 

fluctuations in network conditions, enhancing the overall 

resilience and stability of the communication network. 

• Efficient Data Transmission: Efficient data transmission 

is another key advantage of OctoRoute. By selecting 

optimal routes, adjusting transmission rates based on link 

quality, and incorporating mechanisms for error detection 
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and correction, OctoRoute optimizes data transmission 

efficiency. This efficient data transmission minimizes 

latency, maximizes throughput, and ensures timely 

delivery of critical information in buoyant WSNs. 

• Adaptive Navigation: OctoRoute’s adaptive navigation 

strategy enables nodes to navigate efficiently underwater. 

Nodes optimise path traversal and ensure efficient 

communication links by dynamically adjusting their 

positions and movement parameters based on 

environmental factors such as current velocity and water 

depth. By improving the communication network’s 

overall performance and reliability, this adaptive 

navigation makes data transfer in dynamic underwater 

circumstances smooth. 

• Resilient Communication: OctoRoute enhances the 

resilience of communication in buoyant WSNs through 

its robust fault tolerance mechanisms. By incorporating 

fault detection and recovery strategies, nodes can quickly 

recover from communication failures and maintain 

uninterrupted data transmission. This resilient 

communication ensures continuous operation of the 

network, even in challenging underwater conditions, 

enhancing the reliability and availability of the 

communication infrastructure. 

4. Simulation Settings and Parameters 
Simulation involves creating a model or representation of 

a real-world process or system to study its behavior under 

different conditions. It allows for experimentation and 

analysis without the need for physical prototypes. NS-3 is a 

discrete-event network simulator primarily used for research 

and educational purposes.  

Table 1. Simulation Settings and Parameters 

Parameter Setting / Values 

Simulator ns-3 

Simulation Time 1000 seconds 

Network Topology 3D Grid 

Number of Nodes 100 

Node Placement Random (buoyant movement) 

Mobility Model Random Waypoint 

Routing Protocol 
GPSR (Greedy Perimeter Stateless 

Routing) 

Channel Model Two-Ray Ground Reflection 

Transmission 

Range 
1250 meters 

Packet Size 64 bytes 

Traffic Type CBR (Constant Bit Rate) 

Application Layer UDP 

Propagation Delay Uniform Random Variable(0.01) 

MAC Layer IEEE 802.15.4 

Energy Model Basic Energy Model 

Simulation Output Trace files and pcap files 

It provides a comprehensive set of tools for simulating 

various types of networks, including WSNs. NS-3 supports 

different routing protocols, mobility models, and network 

topologies, making it a versatile platform for simulating 

complex network scenarios. The settings outlined in this table 

provide a comprehensive framework for simulating buoyant 

WSNs using the GPSR protocol in ns-3. 

5. Results and Discussions 
The packet delivery ratio (PDR) was evaluated across 

node densities using three routing protocols: MO-CBACORP, 

HOCOR, and OctoRoute. As depicted in Figure 1, OctoRoute 

consistently outperformed MO-CBACORP and HOCOR 

across all node densities. At 50 nodes, OctoRoute achieved a 

PDR of 74.36%, compared to MO-CBACORP (56.55%) and 

HOCOR (62.91%). This trend persisted as node density 

increased, with OctoRoute maintaining the highest PDR. On 

average, OctoRoute demonstrated the highest PDR at 

68.253%, followed by HOCOR (54.456%) and MO-

CBACORP (45.498%).  

The results suggest that OctoRoute is more robust in 

delivering packets across varying node densities than the other 

protocols, making it a promising choice for wireless network 

routing. The Packet Drop Ratio (PDPR) is another crucial 

metric for assessing the performance of routing protocols in 

B-WSNs. PDPR represents the percentage of packets that fail 

to reach their intended destinations due to various network 

factors. As illustrated in Figure 1, OctoRoute consistently 

exhibits the lowest packet drop ratio across different node 

densities compared to MO-CBACORP and HOCOR. At a 

node density of 500, OctoRoute achieves the lowest PDR of 

37.74%, followed by HOCOR (54.16%) and MO-CBACORP 

(66.96%). On average, OctoRoute maintains the lowest PDPR 

of 31.747%, demonstrating its robustness in packet delivery 

under buoyant WSN conditions. These results highlight 

OctoRoute as the preferred routing protocol for minimizing 

packet loss and ensuring reliable data transmission in 

underwater sensor networks. Selecting OctoRoute can 

significantly enhance the network’s performance and 

reliability in real-world applications. 

 
Fig. 1 Packet Delivery Ratio and Packet Drop Ratio 



J. Divya Jose & D. Vimal Kumar / IJETT, 72(12), 269-284, 2024  

 

282 

Throughput refers to the rate of successful data 

transmission over a communication channel within a specified 

period, typically measured in bits per second (bps) or packets 

per second (pps). In the context of B-WSNs, throughput 

indicates the network’s capacity to deliver data packets 

efficiently under varying node densities. As portrayed in 

Figure 2, OctoRoute consistently demonstrates higher 

throughput than MO-CBACORP and HOCOR across 

different node densities. At a node density of 500, OctoRoute 

achieves the highest throughput of 72.48 kbps, outperforming 

MO-CBACORP (43.79 kbps) and HOCOR (56.34 kbps). On 

average, OctoRoute sustains a superior throughput of 64.457 

kbps, which facilitates faster and more reliable data 

transmission in B-WSN environments. These results 

emphasize OctoRoute as a preferred routing protocol for 

maximizing network efficiency and ensuring timely data 

delivery in underwater sensor networks, enhancing overall 

system performance. Delay in a network context refers to 

when a packet travels from its source to its destination. It 

encompasses various factors such as processing, queuing, 

transmission, and propagation delays. In B-WSNs, delay is a 

critical metric affecting the responsiveness and efficiency of 

data transmission. As shown in Figure 3, OctoRoute 

consistently exhibits lower delay than MO-CBACORP and 

HOCOR across different node densities. At a node density of 

500, OctoRoute achieves the lowest delay of 9521.25 ms, 

followed by HOCOR (12646 ms) and MO-CBACORP (13916 

ms). On average, OctoRoute maintains the lowest delay of 

9193.76 ms, indicating its superior performance in minimizing 

packet transit times and enhancing network responsiveness in 

B-WSN scenarios. These results underscore OctoRoute as the 

preferred routing protocol for reducing communication 

latency and ensuring timely data delivery in underwater sensor 

networks, optimizing overall network performance and 

reliability. Energy consumption is a crucial aspect in 

evaluating the performance of routing protocols in B-WSNs, 

as it directly impacts the network’s operational lifespan and 

sustainability. Energy consumption refers to the power 

network nodes utilise to transmit and receive data packets. As 

depicted in Figure 4, OctoRoute consistently demonstrates 

lower energy consumption than MO-CBACORP and HOCOR 

across node densities. At a node density of 500, OctoRoute 

exhibits the lowest energy consumption of 62.451%, followed 

by HOCOR (81.888%) and MO-CBACORP (94.080 %). On 

average, OctoRoute maintains the lowest energy consumption 

of 55.309%, indicating its efficiency in optimizing power 

usage and prolonging the network’s operational lifetime. 

Fig. 2 Throughput 
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These findings highlight OctoRoute as the preferred 

routing protocol for minimizing energy consumption and 

maximizing the energy efficiency of underwater sensor 

networks. By selecting OctoRoute, network operators can 

effectively conserve energy resources and ensure prolonged 

network functionality, thereby enhancing the overall 

sustainability and reliability of B-WSN deployments. 

6. Conclusion 
Evaluating routing protocols in B-WSNs highlights 

OctoRoute as the superior choice for underwater 

communication. OctoRoute consistently outperforms MO-

CBACORP and HOCOR across multiple performance 

metrics, including Packet Delivery Ratio (PDR), Packet Drop 

Ratio (PDPR), Throughput, Delay, and Energy Consumption. 

Its robust performance in delivering packets, maximizing 

throughput, minimizing delay, and optimizing energy usage 

underscores OctoRoute’s effectiveness in real-world 

underwater scenarios. OctoRoute ensures reliable data 

transmission, efficient network operation, and prolonged 

lifespan of B-WSNs. These findings emphasize OctoRoute’s 

significance in enhancing the performance, reliability, and 

sustainability of underwater sensor networks, thereby 

advancing the capabilities of underwater communication 

technology. OctoRoute is a promising solution for addressing 

the unique challenges of underwater communication and 

facilitating efficient data exchange in underwater 

environments. 
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