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Abstract - Mobile Ad-hoc Networks (MANETs) are wireless networks composed of autonomous mobile devices that communicate 

with each other without relying on a centralized infrastructure. MANET security issues can compromise data confidentiality, 

integrity, and availability, highlighting the critical need for robust security mechanisms. Intrusion Detection Systems (I.D.S.) are 

crucial in identifying and mitigating security threats in MANETs. Designing effective I.D.S. for MANETs is inherently 

challenging due to these networks’ dynamic and resource-constrained nature. To address these challenges, this research 

proposes the Proficient Red Deer Optimization-based Relevance Vector Machine (PRDO-RVM) for intrusion detection in 

MANETs. PRDO-RVM leverages the sparsity-inducing properties of Relevance Vector Machine (RVM) and the efficient 

optimization capabilities of Red Deer Optimization to achieve accurate and efficient intrusion detection in dynamic network 

environments. By effectively identifying and classifying intrusions, PRDO-RVM enhances the security posture of MANETs, 

mitigating the risks posed by malicious actors and ensuring the integrity and availability of network communications. Using the 

NSK-KDD dataset, PRDO-RVM is evaluated for its effectiveness in detecting intrusions in MANETs. The results demonstrate 

the superior classification accuracy and efficiency of PRDO-RVM compared to existing I.D.S. solutions, affirming its potential 

as a reliable and scalable security mechanism for MANETs. 
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1. Introduction  
A Mobile Ad-hoc Network (MANET) is a decentralized 

wireless network comprising mobile nodes communicating 

without requiring a fixed infrastructure. MANETs are, hence, 

highly dynamic and self-organizing and are ideal 

for situations where traditional networks cannot be practically 

employed, such as military operations and disaster 

recovery or collaborative mobile applications. [1]. In a 

MANET, each node can act as a host and a router, allowing 

for direct peer-to-peer communication. These networks rely 

on wireless communication protocols like Wi-Fi or Bluetooth, 

ensuring adaptability and flexibility in various environments. 

MANETs have significant advantages, including rapid 

deployment, scalability, and robustness in the face of node 

mobility or network topology changes [2]. Their use extends 

beyond military applications, including emergency response, 

vehicular communication, and IoT systems. Challenges within 

MANETs include security concerns due to their openness, 

limited power supply, and the potential for network 

partitioning. Researchers have explored solutions such as 

intrusion detection, energy-efficient communication, and 

improved protocols to address these issues [3]. Intrusion 

Detection Systems (I.D.S.) are integral to network security, 

helping organizations safeguard network resources’ 

confidentiality, integrity, and availability. Their primary role 

is detecting and responding to real-time security threats [4]. 

By identifying unauthorized access attempts, malware 

infections, and denial-of-service attacks, I.D.S. contributes 

significantly to maintaining network security. They also assist 

organizations in adhering to data protection regulations by 

generating comprehensive logs and reports of security 

incidents [5]. In a constantly evolving threat landscape, I.D.S. 

is adapting to remain effective, incorporating artificial 

intelligence, machine learning, and automated threat response 

to be ahead of evolving challenges and improve accuracy in 

detecting and responding to security threats [6]. In the context 

of MANETs, I.D.S. is an indispensable tool for securing the 

network against many potential threats. MANETs are 

decentralized, self-organizing networks where nodes 

communicate directly, and as a result, they are susceptible to 
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various security vulnerabilities [7]. 

I.D.S. for MANETs monitors and analyzes the network and 

its traffic to detect intrusion by acting like vigilant 

gatekeepers. It uses heuristic analysis, anomaly detection, and 

signature-based methods to detect unauthorised access and 

other malicious routing attacks [8]. The dynamic nature of 

MANETs, characterized by node mobility and changing 

network topologies, demands I.D.S. solutions that can adapt 

and operate effectively under these conditions [9].  

Bio-inspired computation is the inspiration from natural 

systems and biological processes to support and enhance 

computational procedures and models. Mimicking behaviors 

observed in evolution, swarming, foraging, and cellular 

growth, this field addresses complex problem-solving in 

optimization, pattern recognition, and adaptive learning. 

Techniques such as genetic algorithms, bee colony 

optimization, and swarm optimizations replicate the efficiency 

and adaptability of natural organisms. Bio-inspired computing 

has advanced various domains, including robotics, machine 

learning, and engineering, by providing innovative solutions 

rooted in the intelligence of nature. 

1.1. Problem Statement 

Communication among I.D.S. nodes within the complex 

environment of MANETs must be robustly secure to 

safeguard against eavesdropping and tampering with intrusion 

alerts and collaboration messages. This added layer of security 

presents a multifaceted challenge due to the highly dynamic, 

decentralized nature of MANETs. Ensuring the confidentiality 

and integrity of communication while minimizing overhead is 

paramount for effective intrusion detection. The problem 

encompasses developing secure mechanisms, encryption 

protocols, and authentication techniques to protect the 

sensitive data exchanged among I.D.S. nodes without 

introducing excessive latency or resource overhead. 

Addressing this challenge is essential to the overall security 

and reliability of intrusion detection in MANETs, as the secure 

exchange of vital intrusion-related data is foundational to 

network defense and threat response. 

1.2. Motivation 

The motivation for addressing secure communication in 

I.D.S. for MANETs stems from the fundamental need for 

confidentiality, integrity, and trust in these dynamic and 

decentralized networks. MANETs are deployed in sensitive 

contexts like military operations, disaster response, and 

healthcare, where intrusion alerts and collaboration among 

I.D.S. nodes are pivotal for threat response and network 

security. Ensuring the confidentiality of these messages is 

essential to prevent adversaries from gaining insights into 

network defense strategies or manipulating alerts for 

malicious purposes. The risk of eavesdropping, data 

tampering, and message interception is significant. Therefore, 

developing secure communication mechanisms, encryption 

protocols, and authentication techniques is crucial to protect 

the exchange of vital intrusion-related data while minimizing 

network overhead and strengthening the trustworthiness of 

intrusion detection in MANETs. 

1.3. Research Objective 

The core research objective of this study, “Efficacious 

Krill Herd Optimized Random Forests,” is to develop and 

evaluate an Intrusion Detection System (I.D.S.) within the 

dynamic context of Mobile Ad Hoc Networks (MANETs) 

using the “Efficacious Krill Herd Optimized Random Forests” 

classification algorithm. This research is primarily driven by 

the critical need to establish a highly accurate and robust 

intrusion detection solution adept at addressing the dynamic 

and decentralized nature of MANETs. The goal is to craft an 

I.D.S. that precisely identifies security threats, optimizing the 

network’s security posture. The anticipated outcome is an 

innovative intrusion detection system capable of effectively 

distinguishing between authentic security threats and benign 

network activities, ultimately reinforcing security in mission-

critical contexts such as military operations, disaster response, 

and healthcare deployments. 

2. Literature Review  
“PSO - IDS” [10] introduces a feature selection approach 

that harnesses multi-objective Particle Swarm Optimization 

(PSO) to enhance I.D.S. The innovative method optimizes the 

selection of relevant features, effectively reducing the 

dimensionality of the dataset while retaining critical 

information. Doing so enhances the performance of I.D.S. by 

improving accuracy, reducing computational overhead, and 

bolstering network security in resource-constrained IoT 

environments. “Federated Learning for Heterogeneous 

Network IDS” [11] presents a novel I.D.S. approach that 

adapts to the challenges of heterogeneous networks. It 

employs a stacked-unsupervised federated learning strategy, 

allowing various networks with differing characteristics to 

improve I.D.S. capabilities collaboratively. This federated 

learning approach promotes model generalization, thus 

enhancing the detection of network intrusions across diverse 

network topologies, thereby strengthening security in complex 

and varied network environments. 

“Framework for Cyber Attack Detection” [12] introduces 

a comprehensive framework to facilitate cyber-attack 

detection by efficiently classifying I.D.S. datasets. The 

framework streamlines the data processing and classification 

tasks crucial for I.D.S. Providing a structured and systematic 

approach aids in developing accurate and efficient I.D.S., 

ensuring that a wide range of cyber threats are effectively 

identified and mitigated. “Anomaly-Based IoT IDS with CNN 

and MOECSA” [13] leverages a Convolutional Neural 

Network (CNN) and a multi-objective enhanced Capuchin 

Search Algorithm (MOECSA) to improve threat detection. 

The CNN is adept at identifying complex patterns within IoT 

data, while the MOECSA optimizes the I.D.S. process. This 

combination enhances network security by efficiently 
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identifying anomalies and adapting to the dynamic nature of 

IoT networks. 

“Hybrid IDS for Wireless IoT Networks” [14] proposes a 

hybrid I.D.S. system designed specifically for wireless IoT 

networks. This system combines deep learning algorithms 

with I.D.S. to enhance security. Its essential contribution lies 

in the improved detection of security threats in IoT 

environments, as deep learning techniques are applied to 

analyze data patterns and detect intrusions. This hybrid 

approach enhances network security by capitalizing on the 

strengths of both I.D.S. and deep learning. “GAN-Based 

Synthetic Attack Data Generation” [15] introduces a model 

that employs Generative Adversarial Networks (GANs) to 

generate synthetic attack data for I.D.S. The critical 

contribution is creating synthetic data, which accurately 

simulates various attack scenarios. This synthetic data 

enriches I.D.S.'s training and validation processes, ensuring 

that models are well-prepared to identify diverse intrusion 

types. 

“Ensemble Learning for IDS” [16] specializes in creating 

influential ensembles of deep neural networks for I.D.S., 

primarily aiming to enhance the precision and consistency of 

I.D.S. This research significantly bolsters network security 

measures' precision and overall efficacy by constructing a 

collaborative ensemble of models working to identify security 

threats. “AutoML-Based Ensemble for Network IDS” [17] 

presents an optimized ensemble prediction model using 

AutoML and a soft voting classifier for network I.D.S. By 

automating the model development process and utilizing 

ensemble classifiers, this system effectively improves the 

precision and efficacy of I.D.S., offering a higher degree of 

protection against security threats. “Moth-Flame Optimization 

for ITS” [18] explores the application of Moth-Flame 

Optimization in ensemble classification for I.D.S. within 

Intelligent Transport Systems (ITS) in smart cities. Employing 

Moth-Flame Optimization in ensemble classifiers 

significantly enhances the correctness and consistency of 

I.D.S. in the context of intelligent transport systems, 

contributing to safer and more secure urban environments. 

“Cooperative IDS with Deep Q Network in MEC” [19] 

introduces the concept of task offloading for a cooperative 

I.D.S. based on a Deep Q Network in Mobile Edge Computing 

(MEC). The primary objective is optimizing I.D.S. resource 

allocation in edge computing environments. By utilizing the 

Deep Q Network approach, this system enhances the 

efficiency and accuracy of I.D.S., enabling collaborative 

intrusion detection while minimizing resource consumption in 

MEC environments. “Enhanced Empirical-Based IDS” [20] 

introduces an improved empirical-based component analysis 

approach for I.D.S. in Wireless Sensor Networks (WSN), with 

a focus on enhancing the accuracy and robustness of I.D.S. By 

applying advanced component analysis techniques, this 

system effectively improves the precision and effectiveness of 

I.D.S. in identifying and mitigating security threats in WSNs. 

“Hybrid Data-Driven Model” [21] presents a hybrid data-

driven model for I.D.S. in Vehicular Ad-hoc Networks 

(VANETs), emphasizing the enhancement of security and 

threat detection capabilities within VANETs. By combining 

various data-driven techniques and models, this hybrid 

approach further improves the precision and effectiveness of 

I.D.S. in the context of VANETs, ensuring safer and more 

secure vehicular communication. 

“LSO-FFNN” [22] combines the principles of swarm 

intelligence with neural network architecture for optimization 

tasks. LSO-FFNN leverages the collective behavior of locust 

swarms to iteratively update neural network parameters, 

aiming to achieve optimal solutions. Despite its potential, 

LSO-FFNN may face challenges such as slow convergence, 

limited exploration, and sensitivity to parameter settings. 

Further research is needed to explore strategies for improving 

the convergence speed and exploration capabilities of LSO-

FFNN, as well as optimizing parameter configurations to 

enhance its overall effectiveness in various optimization and 

classification tasks. 

“ABC-DA-ANN” [23] integrates two bio-inspired 

optimization algorithms into an Artificial Neural Network 

(ANN) framework. This hybrid approach harnesses the 

exploration and exploitation capabilities of both A.B.C. and 

DA algorithms to optimize the parameters of the neural 

network, enhancing its learning and generalization abilities. 

While ABC-DA-ANN shows promise in improving 

optimization and classification tasks, challenges such as 

parameter tuning complexities and potential algorithmic 

conflicts may arise. Further research is needed to explore 

strategies for effectively balancing the optimization processes 

of A.B.C. and DA within the ANN framework, optimizing 

parameter configurations, and enhancing the overall 

performance of ABC-DA-ANN across diverse applications. 

2.1. Summary 

 The collection of studies presented encompasses a wide 

range of advancements in Intrusion Detection Systems 

(I.D.S.), each addressing specific challenges and contributing 

to improving network security. These studies introduce 

innovative approaches and techniques tailored to boost I.D.S.'s 

accuracy, robustness, and efficacy across various domains. 

From exploring machine learning algorithms for anomaly-

based detection in IoT environments to simplifying the 

deployment of I.D.S. on cloud platforms, each study 

represents a significant step forward in developing and 

implementing effective security solutions. The advancements 

in feature selection, misbehavior classification, and attack 

detection further strengthen the overall security posture of 

networked systems. Despite the diverse approaches and 

methodologies, common goals of scalability, real-time threat 

detection, and adaptability underscore the importance of 

ongoing research in intrusion detection. 
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2.2. Research Gap 

A notable research gap identified in the literature is the 

limited exploration of integrating and optimizing Intrusion 

Detection Systems (I.D.S.) for emerging technologies and 

network architectures. While existing studies have made 

significant strides in improving the accuracy and efficiency of 

I.D.S., there remains a lack of comprehensive frameworks 

tailored to novel environments such as edge computing, 5G 

networks, and Internet of Things (IoT) ecosystems. These 

environments present unique challenges, including resource 

constraints, dynamic network topologies, and heterogeneous 

device capabilities, necessitating specialized I.D.S. solutions. 

Hence, the need for research is expected to design I.D.S. 

frameworks suited to these emerging technologies, which will 

be specially designed to overcome issues such as scalability, 

real-time threat detection, and adaptability to dynamic 

conditions in the network. Integrating advanced features such 

as deep learning and reinforcement learning in I.D.S. 

frameworks tailored explicitly to the environments cited above 

can significantly promote their resilience to evolving cyber 

threats. 

3. Proficient Red Deer Optimization-Based 

Relevance Vector Machine (PRDO-RVM) 
Proficient Red Deer Optimization-based Relevance 

Vector Machine (PRDO-RVM) presents a novel fusion of two 

powerful optimization techniques, promising advancements in 

machine learning. By integrating the Red Deer Optimization 

(RDO) algorithm with the Relevance Vector Machine (RVM), 

PRDO-RVM aims to enhance classification accuracy and 

model efficiency across various domains. RDO’s inspiration 

from the herd behavior of red deer facilitates robust 

convergence towards optimal solutions, while RVM’s sparse 

representation ensures computational efficiency and 

generalization capabilities. This synergistic approach offers a 

potent framework for addressing complex classification tasks, 

demonstrating potential in various applications such as pattern 

recognition, bioinformatics, and financial forecasting. 

3.1. Initialization 

Initialization is important in the PRDO-RVM algorithm 

since it initiates the optimization process by setting the initial 

point. This section discusses the importance of initialization in 

PRDO-RVM and the involved essential considerations. The 

first step in the PRDO-RVM is initializing the population of 

red deer individuals. Let the population size be 𝑁 and the 

dimensionality of the problem space 𝐷. Each red deer 

individual is defined as a solution vector 𝑋𝑖 of dimension 𝐷, 

where 𝑖 = 1,2, … , 𝑁. The population initialization process can 

be mathematically expressed as Equation (1). 

𝑋𝑖
(0)
∈ [𝑙𝑏, 𝑢𝑏]𝐷,   𝑖 = 1,2, … , 𝑁    (1) 

Where 𝑋𝑖
(0)

 represents the initial solution vector for the 

𝑖𝑡ℎred deer individual, and [𝑙𝑏, 𝑢𝑏] denotes the lower and 

higher bounds of the exploration space. 

In addition to initializing the population, PRDO-RVM 

requires the initialization of hyperparameters for the RVM 

model. These hyperparameters include the kernel function 

parameters and the regularization parameter. Let 𝐾(⋅,⋅) denote 

the chosen kernel function, and 𝛼 represent the regularization 

parameter. The initialization of these hyperparameters can be 

described as Equation (2). 

𝐾𝑖𝑛𝑖𝑡 = 𝐾(𝑋𝑖
(𝜃)
, 𝑋𝑗

(𝜃)
),   𝛼𝑖𝑛𝑖𝑡 =

1

𝐷
, 𝑖, 𝑗 = 1,2, … . , 𝑁   (2) 

Where 𝐾𝑖𝑛𝑖𝑡  denotes the initial kernel matrix based on the 

initialized solutions and 𝛼𝑖𝑛𝑖𝑡 represents the initial value of the 

regularization parameter. Once the population and 

hyperparameters are initialized, the next step is to evaluate the 

fitness of each red deer individual. In the context of PRDO-

RVM, fitness evaluation involves training the RVM model 

with the initialized hyperparameters and measuring its 

performance on a validation dataset. Let 𝑦 represent the target 

vector, 𝑋 denote the feature matrix, and 𝑤 represent the weight 

vector of the RVM model. The fitness evaluation process can 

be formulated as Equation (3). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  𝐽(𝑤) =
1

2
‖𝑦 − 𝑋𝑤‖2 +

𝜆

2
𝑤𝑇𝐾𝑖𝑛𝑖𝑡𝑤     (3) 

Where 𝜆 represents the regularization parameter, 𝐾𝑖𝑛𝑖𝑡  is 

the initial kernel matrix and ∣∣⋅∣∣ denotes the Euclidean norm. 

Solving this optimization problem yields the weight vector 𝑤 

for each red deer individual, which is used to evaluate its 

fitness. After fitness evaluation, the best red deer individual 

(leader) is selected based on its fitness value. Let 𝑓(𝑋𝑖) denote 

the fitness value of the 𝑖𝑡ℎ red deer individual. The leader 

selection process can be mathematically expressed as 

Equation (4). 

𝐿𝑒𝑎𝑑𝑒𝑟 = 𝑎𝑟𝑔min
𝑖
𝑓(𝑋𝑖)   (4) 

Where 𝐿𝑒𝑎𝑑𝑒𝑟 represents the selected leader based on the 

minimum fitness value among all red deer individuals. In 

PRDO-RVM, it is essential to handle boundary constraints to 

ensure that the initialized solutions remain within the feasible 

region of the search space. This is particularly important to 

prevent solutions from wandering into infeasible regions, 

which could degrade the optimization process. Let 𝑙𝑏𝑑 and 

𝑢𝑏𝑑 denote the lower and upper bounds for the 𝑑𝑡ℎdimension 

of the search space, respectively. The boundary-handling 

process can be formulated as Equation (5). 

𝑋𝑖,𝑑
(0)
=

{
 

 𝑙𝑏𝑑     𝑖𝑓 𝑥𝑖,𝑑
(0)
< 𝑙𝑏𝑑

𝑢𝑏𝑑     𝑖𝑓 𝑥𝑖,𝑑
(0)
< 𝑙𝑏𝑑

𝑥𝑖,𝑑
(0)
    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

   (5) 

Where 𝑥𝑖,𝑑
(0)

 represents the 𝑑𝑡ℎcomponent of the 𝑖𝑡ℎred 

deer individual’s solution vector. This ensures that each 
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initialized solution remains within the specified bounds of the 

search space. 

Algorithm 1. Initialization 

Input: 

• Population size 𝑁 

• The dimensionality of the problem 

space 𝐷 

• Lower bound 𝑙𝑏 and upper bound 𝑢𝑏 of 

the search space 

Output: 

• The initial population of red deer 

individuals 𝑋(0) = [𝑋1
(0)
, 𝑋2

(0)
, … . . , 𝑋𝑁

(0)
] 

• Initial kernel matrix 𝐾𝑖𝑛𝑖𝑡 
• Initial regularization parameter 𝛼𝑖𝑛𝑖𝑡 

Procedure: 

1. Initialize the population: 

• For 𝑖 = 1 to 𝑁: 

• Generate a random solution vector 𝑋𝑖
(0)

of 

dimension 𝐷 within the bounds [𝑙𝑏, 𝑢𝑏]𝐷 . 

𝑋𝑖
(0)
∈ [𝑙𝑏, 𝑢𝑏]𝐷 , 𝑖 = 1,2, … , 𝑁 

• Initialize the hyperparameters: 

• Set the initial regularization parameter 𝐾𝑖𝑛𝑖𝑡  
based on the initialized solutions: 

𝐾𝑖𝑛𝑖𝑡 = 𝐾(𝑋𝑖
(0)
, 𝑋𝑗

(0)
),    𝑖, 𝑗 = 1,2, … . , 𝑁 

2. Return 𝑋(0), 𝐾𝑖𝑛𝑖𝑡 , and 𝛼𝑖𝑛𝑖𝑡 as the output of the 

initialization process. 

3.2. Objective Function Evaluation 

In PRDO-RVM, objective function evaluation is a critical 

step that determines the capability of each red deer. The 

objective function in PRDO-RVM aims to minimize the error 

between the predicted outputs of the RVM and the actual 

target values while penalizing complexity through 

regularization. Let 𝑦 represent the target vector, 𝑋 denote the 

feature matrix, 𝑤 represent the weight vector of the RVM 

model, and 𝜆 denote the regularization parameter. The 

objective function can be mathematically formulated as 

Equation (6). 

𝐽(𝑤) =
1

2
‖𝑦 − 𝑋𝑤‖2 +

𝜆

2
𝑤𝑇𝐾𝑤     (6) 

Where ∣∣⋅∣∣ denotes the Euclidean norm, and 𝐾 is the 

kernel matrix. It consists of two terms: the data fidelity term, 

measuring the difference between predicted and actual 

outputs, and a regularization term, which penalizes model 

complexity. Objective function evaluation involves training 

the RVM model with the initialized hyperparameters and 

measuring its performance on a validation dataset. The 

training aims to find the optimal weight vector 𝑤 that 

minimizes the objective function 𝐽(𝑤). This can be achieved 

through techniques such as gradient descent or Bayesian 

inference. Once the RVM model is trained, the fitness of each 

red deer individual is calculated based on its ability to 

minimize the objective function. Let 𝑓(𝑋𝑖) denote the fitness 

value of the 𝑖𝑡ℎred deer individual. This fitness calculation can 

be expressed as Equation (7). 

𝑓(𝑋𝑖) = 𝐽(𝑤𝑖)    (7) 

Where 𝑤𝑖  represents the weight vector obtained by 

training the RVM model with the solution vector 

𝑋𝑖corresponding to the 𝑖𝑡ℎ red deer individual. After fitness 

evaluation, the best red deer individual (leader) is selected 

based on its fitness value. The leader selection process aims to 

identify the solution vector that yields the minimum objective 

function value. Mathematically, the leader selection can be 

formulated as Equation (8). 

𝐿𝑒𝑎𝑑𝑒𝑟 = arg min
𝑖

𝑓(𝑋𝑖)    (8) 

Where 𝐿𝑒𝑎𝑑𝑒𝑟 represents the selected leader based on the 

minimum fitness value among all red deer individuals. In 

PRDO-RVM, this evaluation of the objective function is 

indispensable for directing the optimization procedure 

towards solutions that minimize prediction error and model 

complexity. Through training the RVM model with initialized 

hyperparameters and its evaluation in the validation dataset, 

PRDO-RVM ensures that each red deer contributes effectively 

to the overall optimization process.  

Algorithm 2. Objective function evaluation 

Input: 

• Target vector 𝑦 

• Feature matrix 𝑋 

• Kernel matrix 𝐾 

• Regularization parameter 𝜆 

• Weight vector 𝑤𝑖for each red deer individual 𝑋𝑖 
Output: 

• Fitness value 𝑓(𝑋𝑖) for each red deer individual 

𝑋𝑖 
Procedure: 

1. Training the RVM Model: 

• Train the RVM model using the provided feature 

matrix 𝑋 and target vector 𝑦, with the initialized 

hyperparameters (kernel matrix 𝐾 and 

regularization parameter 𝜆). 

• Obtain the weight vector 𝑤𝑖   for each red deer 

individual 𝑋𝑖 by solving the RVM optimization 

problem. 

2. Fitness Calculation: 

• For each red deer, an individual 𝑋𝑖 calculate the 

fitness value 𝑓(𝑋𝑖) based on the trained RVM 

model. 

• Use the obtained weight vector 𝑤𝑖to compute the 

objective function value 𝐽(𝑤𝑖) for each 

individual. 

3. Leader Selection: 
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• Select the leader red deer individual based on the 

minimum objective function value among all red 

deer individuals. 

• Identify the red deer individual 

𝑋𝐿𝑒𝑎𝑑𝑒𝑟  corresponding to the selected leader. 

The fitness values obtained through objective function 

evaluation drive the leader’s selection and influence the 

optimization algorithm’s subsequent steps, ultimately 

discovering high-quality solutions for the regression or 

classification task. 

3.3. Leader Selection 

In PRDO-RVM, leader selection is pivotal in determining 

the guiding individual for the optimization process. It is 

imperative to underscore the significance of fitness evaluation. 

Each red deer individual’s fitness is calculated based on its 

ability to minimize the objective function, as determined 

through the training of the RVM model. Mathematically, the 

fitness value 𝑓(𝑋𝑖) of the 𝑖𝑡ℎ red deer individual 𝑋𝑖 can be 

mathematically represented as Equation (9). 

𝑓(𝑋𝑖) = 𝐽(𝑤𝑖)    (9) 

Where 𝐽(𝑤𝑖) represents the objective function value 

attained by the RVM model trained with the solution vector 

𝑋𝑖 . The leader selection process aims to identify the red deer 

individual with the minimum fitness value, signifying its 

superior performance in minimizing the objective function. 

Mathematically, the leader 𝑋𝐿𝑒𝑎𝑑𝑒𝑟  is selected as Equation 

(10). 

𝑋𝐿𝑒𝑎𝑑𝑒𝑟 = arg min
𝑖

𝑓(𝑋𝑖)      (10) 

Where 𝑋𝐿𝑒𝑎𝑑𝑒𝑟  denotes the selected leader, and 𝑎𝑟𝑔𝑚𝑖𝑛 

signifies the argument that minimizes the function. Once the 

leader 𝑋𝐿𝑒𝑎𝑑𝑒𝑟  is determined and serves as the guiding 

individual for the subsequent optimization iterations. The 

leader influences the movement of other red deer individuals 

in the population, directing the search toward promising 

regions of the solution space. The leader’s solution vector may 

undergo refinement or adaptation based on the optimization 

process’s progress.  

The leader’s pivotal role in PRDO-RVM cannot be 

overstated. It serves as a reference point for other individuals 

and embodies the collective intelligence of the population, 

encapsulating the most promising solution discovered thus far.  

The dynamic leader adjusts according to the changing 

optimisation landscape and guides the population toward 

fitness regions, thus inducing efficient exploration and 

exploitation of the solution space. 

In PRDO-RVM, leader selection is intertwined with 

convergence criteria, which dictate when the optimization 

process terminates. Convergence is usually reached when the 

fitness values of consecutive leaders do not improve 

minimally or when a fixed number of iterations are achieved. 

The final leader will correspond to the best solution achieved 

by the algorithm, which gives insight into the optimal 

configuration of the RVM model for the problem at issue. 

Algorithm 3: Leader Selection 

Input: 

• Fitness values 𝑓(𝑋𝑖) for each red deer individual 

𝑋𝑖 . 
Output: 

• Selected leader red deer individual 𝑋𝐿𝑒𝑎𝑑𝑒𝑟  

Procedure: 

1. Leader Selection: 

• Identify the red deer individual 𝑋𝑖 with the 

minimum fitness value among all individuals. 

• Set the red deer individual with the minimum 

fitness value as the leader.  

3.4. Herding Behavior 

In PRDO-RVM, herding behaviour is a crucial aspect 

inspired by the collective movement tendencies observed in 

red deer populations. Herding behaviour in PRDO-RVM 

simulates the collective movement of red deer individuals 

towards regions with higher fitness values in the solution 

space. The leader, a red deer individual, plays a central role in 

guiding the herding behaviour of the population. Other 

individuals are influenced by the leader’s solution vector, 

adjusting their positions towards regions the leader indicates 

as promising. Mathematically, the adjustment of individual 

positions is governed by the leader’s solution vector and the 

diversity within the population. 

𝑋𝑖
(𝑡+1)

= 𝑋𝑖
(𝑡)
+ ∆𝑋𝑖

(𝑡)
    (11) 

Where 𝑋𝑖
(𝑡)

 represents the solution vector of the 𝑖𝑡ℎred 

deer individual at iteration 𝑡, and ∆𝑋𝑖
(𝑡)

  denotes the 

adjustment vector influenced by the leader’s solution and the 

diversity within the population. Herding behavior manifests a 

balance between exploration and exploitation of PRDO-RVM. 

Individual movement towards promising areas leads to 

exploring varied regions of the solution space while exploiting 

those areas with higher fitness to improve the quality of 

solutions. This leads to a dynamic exploration-exploitation 

trade-off, enabling more efficient and effective optimization 

processes. 

∆𝑋𝑖
(𝑡)
= α. Explore + β. Exploit      (12) 

Where 𝛼 and 𝛽 represent the exploration and exploitation 

coefficients, respectively. The adjustment vector ∆𝑋𝑖
(𝑡)

is a 

combination of exploration and exploitation components, 

guiding the movement of individuals towards promising 

regions. Herding behavior in PRDO-RVM is adaptive to 

fluctuations in the environment and landscapes of the 

problems. Individuals react to changes in movement strategy 

based on problem characteristics and leader dynamics. This 
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adaptability will ensure the optimization process stays robust 

and responsive to conditions under varying problem scenarios. 

𝐸𝑥𝑝𝑙𝑜𝑟𝑒 = ∆𝑋𝐿𝑒𝑎𝑑𝑒𝑟
(𝑡) − 𝑋𝑖

(𝑡)
     (13) 

𝐸𝑥𝑝𝑙𝑜𝑖𝑡 =
1

𝑁
∑ (𝑋𝑗

(𝑡)
− 𝑋𝑖

(𝑡)
)𝑁

𝑗=1    (14) 

Algorithm 4: Herding Behavior 

Input: 

• Current positions 𝑋(𝑡)  of all red deer individuals 

• Leader’s position 𝑋𝐿𝑒𝑎𝑑𝑒𝑟
(𝑡)

 

• Population size 𝑁 

• Exploration coefficient 𝛼 and exploitation 

coefficient 𝛽 

Output: 

• Adjustment vectors ∆𝑋𝑖
(𝑡)

for all red deer 

individuals 

Procedure: 

1. Calculate Exploration Component: 

• For each red deer individual 𝑋𝑖
(𝑡)
: 

• Compute the exploration component as 

𝐸𝑥𝑝𝑙𝑜𝑟𝑒 = 𝑋𝐿𝑒𝑎𝑑𝑒𝑟
(𝑡)

− 𝑋𝑖
(𝑡)

 

2. Calculate Exploitation Component: 

• For each red deer individual 𝑋𝑖
(𝑡)
: 

• Compute the average displacement of all 

individuals relative to the 𝑖𝑡ℎindividual as: 

𝐴𝑣𝑔𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =
1

𝑁
∑ (𝑋𝑗

(𝑡)
− 𝑋𝑖

(𝑡)
)

𝑁

𝑗=1
 

3. Adjustment Vector Calculation: 

• For each red deer individual 𝑋𝑖
(𝑡)
: 

• Compute the adjustment vector 𝑋𝑖
(𝑡)

 as a 

combination of exploration and exploitation 

components: 

∆𝑋𝑖
(𝑡)
= 𝛼. 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 + 𝛽. 𝐴𝑣𝑔𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡. 

Where 𝑋𝐿𝑒𝑎𝑑𝑒𝑟
(𝑡)

 represents the solution vector of the leader 

at iteration 𝑡, 𝑁 is the population size, and ∑ (𝑋𝑗
(𝑡)
− 𝑋𝑖

(𝑡)
)𝑁

𝑗=1  

computes the average displacement of all individuals relative 

to the 𝑖𝑡ℎ individual.  

3.5. Dynamic Parameter Adaptation 

Dynamic parameter adaptation is a crucial aspect of the 

PRDO-RVM algorithm, enabling the adjustment of control 

parameters during optimization. PRDO-RVM incorporates 

adaptive control parameters that dynamically evolve 

throughout optimization. These parameters include 

exploration and exploitation coefficients, regularization 

parameters, and step sizes. By adapting these parameters 

based on the optimization progress and problem 

characteristics, PRDO-RVM ensures efficient exploration and 

exploitation of the solution space. Dynamic parameter 

adaptation enables PRDO-RVM to adjust the balance between 

exploration and exploitation as the optimization process 

unfolds. Mathematically, the exploration and exploitation 

coefficients (𝛼 and 𝛽) are adaptively updated based on the 

performance feedback obtained during optimization. This 

adaptive adjustment ensures that the algorithm effectively 

explores diverse regions while exploiting promising areas for 

optimization. 

𝛼(𝑡+1) = 𝑓𝛼(𝛼
(𝑡))    (15) 

𝛽(𝑡+1) = 𝑓𝛽(𝛽
(𝑡))    (16) 

Where 𝛼(𝑡) and 𝛽(𝑡) represent the exploration and 

exploitation coefficients at iteration 𝑡, respectively, and 𝑓𝛼 and 

𝑓𝛽 denote the adaptive update functions. In addition to 

exploration and exploitation coefficients, PRDO-RVM 

dynamically adapts the regularization parameter (𝜆) during 

optimization. This is why adapting the regularization 

parameter ensures the RVM model remains well-regularized 

throughout the optimization process, controlling the model 

complexity tradeoff against accuracy. The adaptive update of 

the regularization parameter can be expressed as Equation 

(17). 

𝜆(𝑡+1) = 𝑓𝜆(𝜆
(𝑡))      (17) 

Where 𝜆(𝑡) represents the regularization parameter at 

iteration 𝑡, and 𝑓𝜆 denotes the adaptive update function. 

Dynamic parameter adaptation within PRDO-RVM also 

includes the adaptation of step sizes utilized in optimization 

algorithms like gradient descent and Bayesian inference. Step 

sizes are used as controls over the updated magnitude of 

parameters while also influencing the overall convergence 

behavior of the optimization process.  

 

In that sense, PRDO-RVM improves the convergence 

speed and stability by adaptively adjusting the step sizes 

according to the optimization progress. The adaptive update of 

step sizes can be mathematically formulated as Equation (18). 

 

𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒(𝑡+1) = 𝑓𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒(𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒
(𝑡))     (18) 

Where 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒(𝑡) represents the step size at iteration 𝑡, 
and 𝑓𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 denotes the adaptive update function. 

Algorithm 5: Dynamic Parameter Adaptation 

Input: 

• Current values of control parameters (exploration 

and exploitation coefficients, regularization 

parameter, step sizes) 

• Optimization progress indicators (e.g., fitness 

values, convergence criteria) 

Output: 

• Updated values of control parameters 

Procedure: 

1. Adaptive Exploration Coefficient (𝜶): 
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• Determine an adaptive update function 𝑓𝛼 based 

on the optimization progress and problem 

characteristics. 

• Update the exploration coefficient as 𝛼(𝑡+1) =
𝑓𝛼𝛼

(𝑡). 
2. Adaptive Exploitation Coefficient (𝜷): 
• Determine an adaptive update function 𝑓𝛽 based 

on the optimization progress and problem 

characteristics. 

• Update the exploitation coefficient as 𝛽(𝑡+1) =

𝑓𝛽(𝛽
(𝑡)). 

3. Adaptive Regularization Parameter (𝝀): 

• Determine an adaptive update function 𝑓𝜆 based 

on the optimization progress and problem 

characteristics. 

• Update the regularization parameter as 𝜆(𝑡+1) =
𝑓𝜆(𝜆

𝑡). 
4. Adaptive Update of Step Sizes: 

• Determine an adaptive update function 𝑓𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 

based on the optimization progress and problem 

characteristics. 

• Update the step sizes used in optimization 

algorithms (e.g., gradient descent, Bayesian 

inference) as 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒(𝑡+1) =

𝑓𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒(𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒
(𝑡)). 

3.6. Collaborative Learning 

Collaborative learning in PRDO-RVM refers to the 

cooperative exchange of information among red deer 

individuals to enhance the optimization process. Collaborative 

learning in PRDO-RVM fosters information sharing among 

red deer individuals, allowing them to benefit from the 

population’s collective knowledge and experiences. This 

information exchange occurs through communication, 

imitation, and adaptation, enabling individuals to learn from 

each other’s successes and failures. The collaborative learning 

process in PRDO-RVM facilitates knowledge transfer 

between individuals, thereby accelerating the exploration and 

exploitation of the solution space. Mathematically, knowledge 

transfer can be represented as the exchange of solution vectors 

and associated fitness values among red deer individuals. This 

exchange of information enriches the population’s collective 

understanding of the optimization problem, leading to more 

informed decision-making. 

𝑋𝑖
(𝑡+1) = 𝑋𝑖

(𝑡) + ∆𝑋𝑖
(𝑡)

    (19) 

∆𝑋𝑖
(𝑡)
= ∑ 𝑤𝑖𝑗 . (𝑋𝑗

(𝑡)
− 𝑋𝑖

(𝑡))𝑁
𝑗=1     (20) 

Where 𝑋𝑖
(𝑡)

represents the solution vector of the 𝑖𝑡ℎred 

deer individual at iteration 𝑡,∆𝑋𝑖
(𝑡)

  denotes the adjustment 

vector, 𝑁 is the population size, 𝑋𝑗
(𝑡)

represents the solution 

vector of the 𝑗𝑡ℎindividual, and 𝑤𝑖𝑗  denotes the collaboration 

coefficient between individuals 𝑖 and 𝑗. Collaboration 

coefficients in PRDO-RVM quantify the strength of 

interaction between red deer individuals during the 

collaborative learning process. These coefficients determine 

how individuals influence each other’s movements and 

decisions. Collaboration coefficients can be mathematically 

defined based on spatial proximity, fitness similarity, and 

historical performance. 

𝑤𝑖𝑗 =
1

√𝑑𝑖𝑗
      (21) 

Where in Equation (21) 𝑤𝑖𝑗represents the collaboration 

coefficient between individuals 𝑖 and 𝑗, and 𝑑𝑖𝑗  denotes the 

distance or similarity metric between their solution vectors.  

The learning process in PRDO-RVM is cooperative and 

adapts to changes in the optimization landscape and problem 

characteristics. Every individual learns to dynamically adjust 

the coefficients of collaboration during optimization progress 

and environmental conditions. Such adaptation makes the 

collaborative learning process effective and efficient during 

optimization. 

𝑤𝑖𝑗
(𝑡+1) = 𝑓𝑤(𝑤𝑖𝑗

(𝑡)
)     (22) 

Where 𝑤𝑖𝑗
(𝑡)

represents the collaboration coefficient 

between individuals 𝑖 and 𝑗 at iteration 𝑓𝑤 denotes the adaptive 

update function. 

Algorithm 6: Collaborative Learning 

Input: 

• Current positions 𝑋(𝑡)of all red deer individuals 

• Collaboration coefficients 𝑤𝑖𝑗
(𝑡)

for all pairs of red 

deer individuals 

• Population size 𝑁 

• Distance or similarity metric 𝑑𝑖𝑗between solution 

vectors 

Output: 

• Updated positions 𝑋(𝑡+1)of all red deer individuals 

after collaborative learning 

Procedure: 

1. Collaborative Learning: 

• For each red deer individual 𝑋𝑖
(𝑡)
: 

• Compute the adjustment vector ∆𝑋𝑖
(𝑡)

 based on 

collaborative information from other individuals. 

• Update the position of 𝑋𝑖
(𝑡)

 as 𝑋𝑖
(𝑡+1)

= 𝑋𝑖
(𝑡)
+

∆𝑋𝑖
(𝑡)

 

2. Adjustment Vector Calculation: 

• For each red deer individual 𝑋𝑖
(𝑡)
: 

• Compute the adjustment vector ∆𝑋𝑖
(𝑡)

 by summing 

the collaborative contributions from other 

individuals: ∆𝑋𝑖
(𝑡)
= ∑ 𝑤𝑖𝑗

(𝑡)
. (𝑋𝑗

(𝑡)
− 𝑋𝑖

(𝑡)
)𝑁

𝑗=1 . 

3. Collaboration Coefficient Update: 

• For each pair of red deer, individuals 𝑋𝑖 and 𝑋𝑗: 
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• Update the collaboration coefficient 𝑤𝑖𝑗
(𝑡+1)

 based 

on the optimization progress and environmental 

conditions. 

3.7. Environmental Adaptation 

Environmental adaptation in PRDO-RVM refers to the 

mechanism by which the algorithm dynamically adjusts its 

behaviour and parameters in response to changes in the 

optimization landscape. Environmental adaptation in PRDO-

RVM begins with sensing and monitoring the optimization 

environment. Red deer individuals continuously gather 

information about the optimization landscape, including 

changes in fitness values, gradients, and convergence patterns. 

The environmental feedback mechanism in PRDO-RVM 

enables the algorithm to interpret and respond to the sensory 

input obtained from the optimization environment. This 

feedback mechanism involves analyzing the collected 

information and identifying patterns or trends that may 

influence the optimization process. The environmental 

feedback mechanism can be mathematically represented as 

Equation (23). 

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 = 𝑓𝐸𝑛𝑣(𝑆𝑒𝑛𝑠𝑜𝑟𝑦𝐼𝑛𝑝𝑢𝑡)     (23) 

Where 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 denotes the interpreted feedback from 

the environment, 𝑆𝑒𝑛𝑠𝑜𝑟𝑦𝐼𝑛𝑝𝑢𝑡 represents the sensory input 

obtained by red deer individuals, and 𝑓𝐸𝑛𝑣 denotes the 

environmental feedback function. Environmental adaptation 

in the PRDO-RVM relies on control parameters and strategy 

adjustments inferred from the interpreted ecological feedback. 

This type of adaptive adjustment guarantees that the algorithm 

is sensitive to changes within the optimisation landscape and 

progresses with optimal solutions in view. Mathematically, 

adaptive parameter adjustment can be expressed as Equation 

(24). 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑡+1) = 𝑓𝐴𝑑𝑎𝑝𝑡(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
(𝑡), 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘)    (24) 

Where 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑡) represents the control parameter at 

iteration 𝑡, 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑡+1) denotes the updated control 

parameter, 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 signifies the interpreted environmental 

feedback, and 𝑓𝐴𝑑𝑎𝑝𝑡 denotes the adaptive adjustment 

function. Environmental adaptation in PRDO-RVM improves 

the robustness and flexibility of the algorithm in addressing 

various optimization scenarios and problem characteristics. 

PRDO-RVM continuously monitors the optimization 

environment and changes its behavior appropriately, making 

it sensitive to the shift in landscape, the level of noise, and the 

problem complexity, thereby ensuring that it consistently 

performs well in different problem domains. 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑡+1) = 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑡) + ∆𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑡)    

∆𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑡) = 𝛼. 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘                (25) 

Where 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑡) represents the control parameter at 

iteration 𝑡, ∆𝑃𝑎𝑟𝑎𝑛𝑒𝑡𝑒𝑟(𝑡) denotes the adjustment to the 

control parameter, 𝛼 represents the adaptation rate, and 

𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 signifies the interpreted environmental feedback. 

Algorithm 7: Environmental Adaptation 

Input: 

• Sensory input obtained from the optimization 

environment 

• Current values of control parameters 

• Environmental feedback function 𝑓𝐸𝑛𝑣 

• Adaptive adjustment function 𝑓𝐴𝑑𝑎𝑝𝑡 

• Adaptation rate 𝛼 

Output: 

• Updated values of control parameters after 

environmental adaptation 

Procedure: 

1. Sensing the Environment: 

• Red deer individuals continuously gather sensory 

input from the optimization environment, 

including changes in fitness values, gradients, and 

convergence patterns. 

2. Environmental Feedback Interpretation: 

• Interpret the sensory input obtained from the 

environment using the environmental feedback 

function 𝑓𝐸𝑛𝑣. 
• Obtain the interpreted environmental feedback, 

denoted as Feedback. 

3. Adaptive Parameter Adjustment: 

• For each control parameter 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑡)at 

iteration 𝑡: 
• Update the control parameter adaptively based on 

the interpreted environmental feedback using the 

adaptive adjustment function 𝑓𝐴𝑑𝑎𝑝𝑡: 

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟(𝑡+1) + 𝑓𝐴𝑑𝑎𝑝𝑡(𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟
(𝑡), 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘) 

3.8. Enhanced Exploration 

PRDO-RVM strategic enhanced exploration would 

provide the best opportunity to improve on the algorithm's 

search performance relating to the diversity of regions of 

solution space. Exploration is an important element of any 

optimization algorithm, like PRDO-RVM, because it allows 

for generating new and potentially optimal solutions. A good 

exploration strategy should ensure a broad search among 

solution candidates, which avoids early convergence to a 

suboptimal solution and increases the algorithm's robustness. 

Mathematically, the exploration-exploitation trade-off can be 

represented as Equation (26). 

𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 = 𝛼. 𝐸𝑥𝑝𝑙𝑜𝑟𝑒 + 𝛽. 𝐸𝑥𝑝𝑙𝑜𝑖𝑡   (26) 

Where 𝛼 and 𝛽 denote the exploration and exploitation 

coefficients, respectively, and Explore and Exploit represent 

the exploration and exploitation components. Enhanced 

exploration strategies incorporate adaptive mechanisms to 

dynamically adjust the exploration behaviour based on the 

optimization progress and problem characteristics. These 

adaptive strategies enable the algorithm to focus exploration 

efforts on regions with high uncertainty or low fitness values, 

thereby improving the efficiency of the exploration process. 
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𝐸𝑥𝑝𝑙𝑜𝑟𝑒 = 𝑋𝐿𝑒𝑎𝑑𝑒𝑟 − 𝑋𝑖    (27) 

𝐸𝑥𝑝𝑙𝑜𝑖𝑡 =
1

𝑁
∑ (𝑋𝑗 − 𝑋𝑖)
𝑁
𝑗=1     (28) 

Where 𝑋𝐿𝑒𝑎𝑑𝑒𝑟  represents the leader’s position, 𝑋𝑖 
represents the current position of the individual, 𝑁 denotes the 

population size, and the summation computes the average 

displacement of all individuals relative to the 𝑖𝑡ℎindividual. 

Enhanced exploration strategies in PRDO-RVM incorporate 

diversity-promoting mechanisms to encourage the exploration 

of diverse regions of the solution space. These mechanisms 

may include introducing randomness in the search process, 

promoting genetic diversity within the population, or 

employing multi-start approaches to initiate multiple search 

trajectories from different starting points. 

∆𝑋𝑖 = ∑ 𝑤𝑖𝑗
𝑁
𝑗=1 . (𝑋𝑗 − 𝑋𝑖)     (29) 

𝑤𝑖𝑗 =
1

√𝑑𝑖𝑗
    (30) 

Where ∆𝑋𝑖 represents the adjustment vector for the 

𝑖𝑡ℎindividual, 𝑤𝑖𝑗denotes the collaboration coefficient 

between individuals 𝑖 and 𝑗, and 𝑑𝑖𝑗  represents the distance or 

similarity metric between their solution vectors. 

Algorithm 8: Enhanced Exploration 

Input: 

• Current positions of red deer individuals 𝑋(𝑡) 
• Fitness values corresponding to each position 

• Local search radius 𝑟 

 

Output: 

• Refined positions of red deer individuals after 

local search 

 

Procedure: 

1. Initialize Refined Positions: 

• Initialize an empty list to store the refined 

positions of red deer individuals. 

 

2. Local Search for Each Individual: 

• For each red deer 𝑋𝑖
(𝑡)
: 

• Perform a local search within a radius 𝑟 around the 

current position 𝑋𝑖
(𝑡)
. 

• Evaluate the fitness of each candidate solution 

within the local search radius. 

 

3. Update Refined Positions: 

• Select the candidate solution with the highest 

fitness within the local search radius for each red 

deer individual. 

• Update the refined position of the red deer 

individual with the selected candidate solution. 

3.9. Adaptive Memory Mechanism 

The Adaptive Memory Mechanism in PRDO-RVM is a 

vital component that enables the algorithm to retain and utilize 

valuable information obtained during optimization. The 

Adaptive Memory Mechanism in PRDO-RVM focuses on 

retaining valuable information gathered throughout the 

optimization process. This information may include promising 

solution candidates, historical performance data, and past 

optimization trajectories. Retaining such information allows 

the algorithm to leverage past experiences to guide future 

exploration and exploitation efforts effectively. In PRDO-

RVM, the Adaptive Memory Mechanism integrates retained 

information from various sources using weighted aggregation 

techniques. The weighted information integration can be 

mathematically represented as Equation (31). 

𝑀𝑒𝑚𝑜𝑟𝑦(𝑡+1) = ∑ 𝑤𝑖
𝑁
𝑖=1 . 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖

(𝑡)
  (31) 

Where 𝑀𝑒𝑚𝑜𝑟𝑦(𝑡+1) denotes the updated adaptive 

memory at iteration 𝑡 + 1, 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖
(𝑡)

 represents the 

information retained from source 𝑖 at iteration 𝑡, and 𝑤𝑖  
denotes the weight assigned to each source of information. 

The Adaptive Memory Mechanism dynamically adjusts the 

weights assigned to different sources of information based on 

their relevance and usefulness in the optimization process. 

This adaptive weight adjustment ensures that more weight is 

transferred to reliable and informative sources while less 

weight is allocated to less relevant or outdated information. 

The adaptive weight adjustment can be mathematically 

expressed as Equation (32). 

𝑤𝑖
(𝑡+1)

= 𝑓𝑊𝑒𝑖𝑔ℎ𝑡(𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖
(𝑡)
, 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘)   (32) 

Where 𝑤𝑖
(𝑡+1)

 represents the updated weight assigned to 

source 𝑖 at iteration 𝑡 + 1, 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 denotes the 

environmental feedback obtained from the optimization 

landscape, and 𝑓𝑊𝑒𝑖𝑔ℎ𝑡denotes the adaptive weight adjustment 

function. The Adaptive Memory Mechanism employs a 

memory-updating strategy to manage the retention and 

utilization of information over time.  

This strategy may involve forgetting outdated or 

irrelevant information, updating memory based on recent 

performance feedback, and prioritizing retaining high-quality 

solution candidates. By continuously updating the adaptive 

memory, PRDO-RVM ensures that the retained information 

remains relevant and effective in optimizing the process. 

𝑀𝑒𝑚𝑜𝑟𝑦(𝑡+1) = 𝑀𝑒𝑚𝑜𝑟𝑦(𝑡) + ∆𝑀𝑒𝑚𝑜𝑟𝑦(𝑡)   (33) 

∆𝑀𝑒𝑚𝑜𝑟𝑦(𝑡) = 𝛼. 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘      (34) 

Where 𝑀𝑒𝑚𝑜𝑟𝑦(𝑡) represents the adaptive memory at 

iteration 𝑡, ∆𝑀𝑒𝑚𝑜𝑟𝑦(𝑡) denotes the adjustment to the 

memory, 𝛼 represents the adaptation rate, and 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 

signifies the interpreted environmental feedback. 
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Algorithm 9: Adaptive Memory Mechanism 

Input: 

• Current adaptive memory 𝑀𝑒𝑚𝑜𝑟𝑦(𝑡) 
• Information retained from various sources 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖
(𝑡)

 for 𝑖 = 1,2, … . , 𝑁 

• Environmental feedback 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 

Output: 

• Updated adaptive memory 𝑀𝑒𝑚𝑜𝑟𝑦(𝑡+1) 
Procedure: 

1. Weighted Information Integration: 

• To store the weighted information, initialize the 

empty list. 

• For each source 𝑖: 
• Compute the weighted information as 

𝑤𝑖 . 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖
(𝑡)
. 

• Store the weighted information in the list. 

2. Adaptive Weight Adjustment: 

• For each source 𝑖: 

• Update the weight 𝑤𝑖
(𝑡+1)

based on the relevance 

and usefulness of the information and the 

environmental feedback 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘. 
3. Memory Updating: 

• Combine the weighted information from all 

sources using the updated weights to obtain the 

updated adaptive memory. 

• Update the adaptive memory as 𝑀𝑒𝑚𝑜𝑟𝑦(𝑡+1) =

∑ 𝑤𝑖
(𝑡+1)𝑁

𝑖=1 . 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑖
(𝑡). 

3.10. Dynamic Population Management 

Dynamic Population Management in PRDO-RVM refers 

to the adaptive management of the population size and 

composition throughout the optimization process. Dynamic 

Population Management involves adapting the population size 

based on the optimization progress and problem 

characteristics. This adaptation ensures that the algorithm 

allocates resources efficiently, avoiding unnecessary 

computational overhead while maintaining exploration and 

exploitation capabilities. Mathematically, population size 

adaptation can be represented as Equation (35). 

𝑁(𝑡+1) = 𝑓𝐴𝑑𝑎𝑝𝑡(𝑁
(𝑡), 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘)      (35) 

Where 𝑁(𝑡) represents the population size at iteration 𝑡, 
𝑁(𝑡+1) denotes the updated population size at iteration 𝑡 + 1, 

Feedbackack signifies the environmental feedback obtained 

from the optimization landscape, and 𝑓𝐴𝑑𝑎𝑝𝑡 denotes the 

adaptation function. 

Dynamic population management relates to this area, as 

diversity in the population should be maintained to avoid 

premature convergence and encourage the search for different 

parts of the solution space. Ensuring this diversity means 

introducing new individuals, removing redundant or low-

quality individuals, and encouraging genetic diversity through 

crossover and mutation operations. 

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =
1

𝑁
∑ 𝐷𝑖𝑠𝑡(𝑋𝑖 , 𝑋𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑)
𝑁
𝑖=1     (36) 

𝐷𝑖𝑠𝑡(𝑋𝑖 , 𝑋𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑) = √∑ (𝑋𝑖𝑗 − 𝑋𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑗)
2

𝑑
𝑗=1     (37) 

Where 𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 represents the diversity measure within 

the population, 𝑁 denotes the population size, 𝑋𝑖 represents 

the position of the 𝑖𝑡ℎ individual, 𝑋𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑  denotes the 

centroid of the population, 𝑑 represents the dimensionality of 

the solution space, and 𝑋𝑖𝑗  represents the 𝑗𝑡ℎ  component of 

the position vector 𝑋𝑖 . Dynamic Population Management 

incorporates adaptive selection mechanisms to determine 

which individuals are retained, removed, or added to the 

population at each iteration. These selection mechanisms 

consider individual fitness, diversity, and contribution to the 

population’s overall performance. By adapting the selection 

criteria based on the optimization progress, PRDO-RVM 

ensures that the population evolves effectively towards 

optimal solutions. 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

     (38) 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 =
1

1+𝑒−𝛼.𝑓𝑖
     (39) 

Where 𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖  represents the 

probability of selecting individual 𝑖, 𝑓𝑖 denotes the fitness 

value of individual 𝑖, 𝛼 represents the adaptation rate, and 

𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖  denotes the probability of individual 

𝑖 surviving the selection process. Dynamic Population 

Management also includes adaptive evolution strategies to 

guide the evolution of the population toward regions of the 

solution space that exhibit promising characteristics. These 

strategies may involve elitism, where the best-performing 

individuals are retained in the population, and adaptive 

mutation rates, which are adjusted based on the optimization 

progress and problem complexity. 

𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑅𝑎𝑡𝑒 =
1

1+∑𝑒−𝛼.𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘
       (40) 

𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
1

1+∑𝑒𝛼.𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘
     (41) 

Where 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑅𝑎𝑡𝑒 represents the probability of 

mutation, 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 denotes the probability of 

crossover, and 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 signifies the environmental 

feedback obtained from the optimization landscape. Dynamic 

Population Management in PRDO-RVM ensures efficient 

allocation of resources, promotes exploration and exploitation, 

and maintains diversity within the population, ultimately 

leading to the discovery of high-quality solutions for 

regression or classification tasks. By incorporating adaptive 

population size adaptation, diversity maintenance strategies, 

adaptive selection mechanisms, and adaptive evolution 

strategies, PRDO-RVM enhances its ability to navigate the 

optimization landscape and achieve superior performance 

effectively. 
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Algorithm 10: Dynamic Population Management 

Input: 

• Current population 𝑃(𝑡)of red deer individuals 

• Fitness values corresponding to each individual 

• Environmental feedback 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 

• Control parameters for adaptive selection and 

evolution strategies 

Output: 

• Updated population 𝑃(𝑡+1) after dynamic 

population management 

Procedure: 

1. Population Size Adaptation: 

• Adjust the population size based on the 

optimization progress and environmental 

feedback: 

𝑁(𝑡+1) = 𝑓𝐴𝑑𝑎𝑝𝑡(𝑁
(𝑡), 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘). 

2. Diversity Maintenance: 

• Evaluate the diversity within the population using 

a diversity measure such as the average distance to 

the centroid. 

• Ensure that the diversity measure meets a 

predefined threshold by adding or removing 

individuals as necessary to maintain diversity. 

3. Adaptive Selection Mechanisms: 

• Calculate the selection probability for each 

individual based on its fitness value: 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 =
𝑓𝑖

∑ 𝑓𝑗
𝑁
𝑗=1

 

• Determine the survival probability for each 

individual based on its fitness value and control 

parameters: 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 =
1

1+𝑒−𝛼.𝑓𝑖.
 

4. Selection and Reproduction: 

• Select individuals based on their selection 

probabilities and survival probabilities. 

• Apply reproduction operators such as crossover 

and mutation to generate offspring from selected 

individuals. 

5. Adaptive Evolution Strategies: 

• Adjust mutation rates and crossover probabilities 

based on the optimization progress and 

environmental feedback: 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑎𝑡𝑒 =
1

1+∑𝑒−𝛼.𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘
 and 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =

1

1+∑𝑒𝛼.𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘
. 

6. Population Update: 

• Combine the offspring generated from 

reproduction with the current population. 

• Select the best-performing individuals to retain in 

the population using elitism or other selection 

criteria. 

• Update the population with the selected 

individuals to obtain 𝑃(𝑡+1). 

3.11. Multi-Objective Optimization Support 

Multi-Objective Optimization Support PRDO-RVM: 

Extend the algorithm to problems with multiple conflicting 

objectives. In multi-objective optimization, one tries to 

optimize several conflicting objectives concurrently to obtain 

a family of trade-off solutions, known as the Pareto front. This 

can be represented mathematically as Equation (42). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋) = (𝑓1(𝑋), 𝑓2(𝑋), … , 𝑓𝑚(𝑋))     (42) 

Where 𝑓(𝑋) represents the vector of objective functions, 

𝑓𝑖(𝑋) represents the 𝑖𝑡ℎ𝑡ℎ𝑒 objective function and 𝑋 denotes 

the decision variable vector. In multi-objective optimization, 

solutions are compared based on Pareto dominance, where one 

solution is considered superior to another if it is better in at 

least one objective and not worse in any other objective. 

Mathematically, solution 𝑋1 dominates solution 𝑋2 if 

Equations (43) and (44) are satisfied. 

∀𝑖 ∈ {1,2, … . . , 𝑚}:  𝑓𝑖(𝑋1) ≤ 𝑓𝑖(𝑋2)     (43) 

∃𝑗 ∈ {1,2, … . . , 𝑚}:  𝑓𝑗(𝑋1) ≤ 𝑓𝑗(𝑋2)     (44) 

PRDO-RVM supports multi-objective optimization by 

integrating various strategies to handle the complexity of 

multi-objective optimization problems. These strategies 

include: 

• Pareto Front Exploration: PRDO-RVM explores the 

Pareto front by simultaneously optimizing multiple 

objectives, allowing it to discover diverse trade-off 

solutions. 

• Pareto Ranking: PRDO-RVM ranks solutions based on 

their Pareto dominance relationships, allowing it to 

identify non-dominated solutions that form the Pareto 

front. 

• Diversity Preservation: PRDO-RVM maintains 

diversity within the population to ensure that a diverse set 

of Pareto-optimal solutions is explored and retained. 

• Convergence to Pareto Front: PRDO-RVM aims to 

converge to the Pareto front by adapting its search 

behavior and population management strategies to focus 

on exploring and refining solutions along the Pareto front. 

In PRDO-RVM, fitness assignment for multi-objective 

optimization involves evaluating the quality of solutions based 

on their position relative to the Pareto front. Non-dominated 

solutions are assigned a higher fitness value, indicating their 

superiority in the optimization landscape. Mathematically, 

fitness assignment can be represented as Equation (45). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) = 𝑃𝑎𝑟𝑒𝑡𝑜_𝑅𝑎𝑛𝑘(𝑋)      (45) 

Where 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑋) represents the fitness value of 

solution 𝑋, and 𝑃𝑎𝑟𝑒𝑡𝑜_𝑅𝑎𝑛𝑘(𝑋) denotes the Pareto rank of 

solution 𝑋. 
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PRDO-RVM employs evolutionary operators such as 

selection, crossover, and mutation to guide the search process 

toward Pareto-optimal solutions. These operators are adapted 

to handle multiple objectives by considering Pareto 

dominance relationships and maintaining diversity within the 

population. 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑_𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑅𝑎𝑡𝑒 = ∑
1

1+∑𝑒−𝛼.𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘
       (46) 

𝑈𝑝𝑑𝑎𝑡𝑒𝑑_𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = ∑
1

1+∑𝑒𝛼.𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘
     (47) 

Where 𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛_𝑅𝑎𝑡𝑒 represents the probability of 

mutation, 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟_𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 denotes the probability of 

crossover, and 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 signifies the environmental 

feedback obtained from the optimization landscape. 

Algorithm 11: Multi-Objective Optimization 

Support 

Input: 

• Current population 𝑃(𝑡) of red deer individuals 

• Fitness values corresponding to each individual for 

multiple objectives 

• Environmental feedback 𝐹𝑒𝑒𝑑𝑏𝑎𝑐𝑘 

• Control parameters for adaptive evolution strategies 

Output: 

• Updated population 𝑃(𝑡+1)after multi-objective 

optimization support 

 

Procedure: 

1. Pareto Front Exploration: 

• Explore the Pareto front by optimizing multiple 

objectives using the red deer optimization algorithm. 

• Generate a diverse set of solutions that represent 

different trade-offs between the objectives. 

 

2. Pareto Ranking: 

• Rank solutions in the current population based on their 

Pareto dominance relationships. 

• Identify non-dominated solutions that form the Pareto 

front. 

 

3. Diversity Preservation: 

• Maintain diversity within the population by applying 

selection, crossover, and mutation operators that 

promote genetic diversity. 

• Ensure that a diverse set of Pareto-optimal 

solutions is explored and retained. 

 

4. Convergence to Pareto Front: 

• Adapt the search behaviour and population 

management strategies to focus on exploring and 

refining solutions along the Pareto front. 

• Guide the algorithm towards convergence to the 

Pareto front by adjusting evolutionary operators 

and selection mechanisms. 

5. Fitness Assignment: 

• Evaluate the quality of solutions relative to their 

position on the Pareto front. 

• Assign the fitness values to solutions based on 

their Pareto rank, where the non-dominated 

solutions are assigned the higher values. 

 

6. Evolutionary Operators: 

• To direct the search procedure toward Pareto-

optimal solutions. 

• Adapt these operators to handle multiple 

objectives by considering Pareto dominance 

relationships and maintaining diversity within the 

population. 

 

7. Adaptive Evolution Strategies: 

• Adjust mutation rates and crossover probabilities 

based on the optimization progress and 

environmental feedback: 

3.12. Convergence Analysis 

Convergence analysis in a PRDO-RVM is essential to 

evaluate an algorithm's performance and behavior concerning 

optimization processes, among many others. Convergence 

criteria specify whether the optimization process has 

converted to a satisfactory solution. Thus, the criteria for 

convergence for PRDO-RVM can be stated as a maximum 

number of iterations achieved, a certain fitness improvement 

level reached, or a predefined tolerance level regarding 

solution accuracy. Mathematically, convergence criteria can 

be expressed as Equation (48). 

𝑆𝑡𝑜𝑝𝐶𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = {
𝑇𝑟𝑢𝑒, 𝑖𝑓 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑎 𝑚𝑒𝑡

𝐹𝑎𝑙𝑠𝑒,                                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (48) 

The convergence rate analysis studies how quickly the 

algorithm converges to an optimal solution as the number of 

iterations increases. Convergence rate can give insights into 

the efficiency of algorithms in finding high-quality solutions. 

Mathematically, the convergence rate can be quantified using 

metrics such as the rate of improvement in fitness values over 

iterations: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑅𝑎𝑡𝑒 =
𝑓(𝑡)−𝑓(𝑡−1)

𝑓(𝑡−1)
      (49) 

Where 𝑓(𝑡)represents the fitness value at iteration 𝑡, and 

𝑓(𝑡−1) denotes the fitness value at the previous iteration. 

Convergence analysis techniques used in PRDO-RVM 

monitor the various convergence indicators, including fitness 

trends, population diversity, and solution stability, across the 

optimization process. Convergence analysis techniques allow 

practitioners to evaluate the convergence behavior and 

identify potential. Convergence monitoring involves 

continuously tracking convergence indicators throughout the 

optimization process and taking corrective actions if 

convergence issues are detected. This iterative process allows 

practitioners to ensure that the algorithm progresses toward 
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convergence effectively and efficiently. Mathematically, 

convergence monitoring can be expressed as Equation (50). 

𝑀𝑜𝑛𝑖𝑡𝑜𝑟(𝑃(𝑡), 𝑓(𝑡), 𝑂𝑡ℎ𝑒𝑟𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠)     (50) 

Where 𝑃(𝑡)represents the current population, 𝑓(𝑡) denotes 

the fitness values at iteration 𝑡, and 𝑂𝑡ℎ𝑒𝑟_𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑜𝑟𝑠 

includes additional convergence indicators such as population 

diversity or solution stability. 

Algorithm 12: Convergence Analysis 

Input: 

• Current population 𝑃(𝑡)of red deer individuals 

• Fitness values corresponding to each individual 

• Convergence criteria (e.g., maximum number of 

iterations, tolerance for fitness improvement) 

• Control parameters for convergence analysis 

 

Output: 

• Convergence status (True if convergence criteria 

met, False otherwise) 

• Convergence rate 

• Convergence analysis metrics (e.g., fitness trends, 

population diversity) 

 

Procedure: 

1. Initialize Convergence Analysis: 

• Set initial iteration count 𝑡 = 0. 

• Initialize convergence status as False. 

 

2. Convergence Monitoring Loop: 

• While convergence criteria not met: 

• Increment iteration count 𝑡. 
• Perform optimization iterations using PRDO-

RVM to update the population and fitness values. 

• Check convergence criteria to determine if 

convergence has been achieved: 

• If convergence criteria are met, set convergence 

status as True and break out of the loop. 

 

3. Convergence Rate Calculation: 

• Calculate the convergence rate based on the 

change in fitness values over iterations: 

𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒_𝑅𝑎𝑡𝑒 =
𝑓(𝑡) − 𝑓(𝑡−1)

𝑓(𝑡−1)
 

where 𝑓(𝑡)represents the fitness value at iteration 𝑡, and 

𝑓(𝑡−1)denotes the fitness value at the previous iteration. 

 

4. Convergence Analysis Metrics: 

• Monitor convergence indicators such as fitness 

trends, population diversity, and solution stability 

throughout the optimization process. 

• Collect relevant convergence analysis metrics for 

further analysis and visualization. 

3.13. Result Analysis 

Result analysis is also an important constituent of the 

PRDO-RVM that offers insights into how optimization occurs 

and aids in interpreting algorithm performance. Performance 

metrics evaluation involves the assessment of the quality of 

solutions that PRDO-RVM has produced using specific 

metrics measured according to the task.  

They may include measures of predictive accuracy, model 

complexity, generalization ability, and computational 

efficiency. Mathematically, performance metrics evaluation 

can be represented as Equation (51). 

𝑀𝑒𝑡𝑟𝑖𝑐 = 𝑓(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑, 𝐴𝑐𝑡𝑢𝑎𝑙)     (51) 

Where 𝑀𝑒𝑡𝑟𝑖𝑐 represents the performance metric, 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 denotes the predicted values generated by the 

optimized model, and 𝐴𝑐𝑡𝑢𝑎𝑙 represents the ground truth or 

actual values. For multi-objective optimization problems, 

visualizing the Pareto front allows practitioners to understand 

the trade-offs between conflicting objectives and identify 

promising solutions along the front. Pareto front visualization 

techniques include scatter plots, radar charts, and parallel 

coordinate plots, which display the distribution of solutions in 

the objective space. Mathematically, the Pareto front can be 

visualized as Equations (52) and (53). 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1 = 𝑓1(𝑋)         (52) 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2 = 𝑓2(𝑋)         (53) 

Where 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒1 and 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒2 represent the two 

objectives and 𝑓1(𝑋) and 𝑓2(𝑋) denote the corresponding 

objective function values. Model interpretability analysis 

involves examining the learned model’s coefficients, support 

vectors, feature importance scores, and decision boundaries to 

gain insights into the relationships between input variables and 

output predictions. Techniques such as coefficient plots, 

feature importance plots, and decision boundary visualization 

aid in understanding the model’s behaviour and identifying 

influential features. Mathematically, model interpretability 

analysis can be expressed as Equation (54). 

𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑀𝑒𝑡𝑟𝑖𝑐 =

 𝑔(𝑀𝑜𝑑𝑒𝑙𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 , 𝑆𝑢𝑝𝑝𝑜𝑟𝑉𝑒𝑐𝑡𝑜𝑟𝑠 , 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒)      (54) 

Where 𝐼𝑛𝑡𝑒𝑟𝑝𝑟𝑒𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑀𝑒𝑡𝑟𝑖𝑐 represents a measure 

of model interpretability, and 𝑔 denotes the interpretability 

analysis function. Visualizing the convergence behaviour of 

PRDO-RVM allows practitioners to track the progress of the 

optimization process, identify convergence patterns, and 

detect convergence issues or inefficiencies. Convergence 

behaviour visualization techniques include convergence plots, 

convergence rate plots, and convergence trajectory plots, 

illustrating the evolution of fitness values over iterations. 

Mathematically, convergence behaviour visualization can be 

represented as Equation (55). 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) = ℎ(𝑡)         (55) 
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Where 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) represents the fitness value at iteration 

𝑡, and ℎ(𝑡) denotes the convergence behaviour visualization 

function. 

Algorithm 13: Analysing Results 

Input: 

• Optimized model parameters or solutions obtained by 

PRDO-RVM 

• Ground truth or actual values for evaluation 

• Control parameters for visualization 

Output: 

• Visualization of optimization outcomes 

• Performance metrics evaluation results 

• Model interpretability analysis insights 

• Convergence behavior visualization 

Procedure: 

1. Performance Metrics Evaluation: 

• Calculate relevant performance metrics (e.g., 

accuracy, precision, recall) by comparing predicted 

and actual values. 

• Store the performance metric values for further 

analysis and visualization. 

 

2. Multi-Objective Optimization: 

• Visualize the Pareto front using scatter plots or radar 

charts if the optimization task involves multiple 

objectives. 

• Plot solutions distribution in the objective space to 

identify trade-offs between conflicting objectives. 

 

3. Model Interpretability Analysis: 

• Analyze the learned model’s coefficients, support 

vectors, feature importance scores, or decision 

boundaries. 

• Generate plots (e.g., coefficient plots, feature 

importance plots, decision boundary visualization) to 

interpret the model’s behaviour and identify 

influential features. 

 

4. Convergence Behavior Visualization: 

• Visualize the convergence behaviour of PRDO-RVM 

by plotting fitness values over iterations. 

• Generate convergence plots, convergence rate plots, 

or convergence trajectory plots to track the 

optimization progress and identify convergence 

patterns or issues. 

 

5. Output Visualization: 

• Display the visualization of optimization outcomes, 

including Pareto front visualization (if applicable), 

model interpretability analysis plots, and convergence 

behaviour plots. 

• Present performance metrics evaluation results and 

insights gained from model interpretability analysis in 

a clear and accessible format. 

6. Result Analysis and Interpretation: 

• Analyze the visualization outputs and performance 

metrics evaluation results to interpret the optimization 

outcomes effectively. 

• Identify strengths, weaknesses, and areas for 

improvement in the optimized solutions or models. 

• Communicate the analysis findings and insights to 

stakeholders concisely and understandably. 

By following this algorithm, practitioners can effectively 

analyze and visualize the results obtained from PRDO-RVM, 

gain insights into the optimization process and outcomes, and 

make informed decisions to address the optimization task’s 

objectives. 

4. Dataset Information 
The NSK-KDD dataset remains the foundation of 

network security, as it contains an all-inclusive number of 

5,209,458 network traffic records. These records embrace a 

wide spectrum of network behaviors, including benign and 

malicious activities. However, network traffic data also suffers 

duplication. This may result in certain inaccuracies reflected 

during the analysis and model training process. Therefore, the 

prime focus in the NSK-KDD dataset is centered on the 

1,152,281 unique records without redundancy. These unique 

records are distinct network activity instances that maintain 

data integrity and allow for building a more reliable I.D.S. The 

unique records are very important for fine-tuning machine 

learning models to detect security threats accurately, making 

intrusion detection and security measures more precise and 

reliable. This dedicated focus on uniqueness within the NSK-

KDD dataset guarantees that network security professionals 

can construct more resilient and efficient security solutions, 

thereby fortifying network environments against potential 

attacks and vulnerabilities.  

Table 1. Dataset’s feature information 

𝑨𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆 𝑫𝒆𝒔𝒄𝒓𝒊𝒑𝒕𝒊𝒐𝒏 

𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 
𝑅𝑒𝑐𝑜𝑟𝑑𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 

𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 𝑖𝑛𝑠𝑖𝑔ℎ𝑡𝑠 

𝐹𝑎𝑖𝑙𝑒𝑑 𝐿𝑜𝑔𝑖𝑛𝑠 
𝐶𝑜𝑢𝑛𝑡𝑠 𝑢𝑛𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑙𝑜𝑔𝑖𝑛 

𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 
𝐹𝑙𝑎𝑔 𝐼𝑛𝑑𝑖𝑐𝑎𝑡𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛 𝑠𝑡𝑎𝑡𝑢𝑠 
𝐼𝑛𝑏𝑜𝑢𝑛𝑑
/𝑂𝑢𝑡𝑏𝑜𝑢𝑛𝑑 

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
𝑄𝑢𝑎𝑛𝑡𝑖𝑓𝑖𝑒𝑠 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑓𝑙𝑜𝑤 

𝐼𝑃 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠 
𝑅𝑒𝑣𝑒𝑎𝑙𝑠 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑛𝑑 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

ℎ𝑜𝑠𝑡𝑠 

𝐿𝑎𝑏𝑒𝑙 (𝐶𝑙𝑎𝑠𝑠) 
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑠 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑎𝑠 

𝑡𝑦𝑝𝑖𝑐𝑎𝑙 𝑜𝑟 𝑎𝑡𝑡𝑎𝑐𝑘 𝑡𝑦𝑝𝑒𝑠 𝑓𝑜𝑟 

𝑝𝑟𝑒𝑐𝑖𝑠𝑒 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 
𝑃𝑜𝑟𝑡 𝑁𝑢𝑚𝑏𝑒𝑟𝑠 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑠 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡𝑠 

𝑃𝑟𝑜𝑡𝑜𝑐𝑜𝑙 𝑇𝑦𝑝𝑒 
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑧𝑒𝑠 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 

𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙𝑠 
𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑠 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 
𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝐿𝑜𝑔𝑖𝑛𝑠 𝑇𝑟𝑎𝑐𝑘𝑠 𝑙𝑒𝑔𝑖𝑡𝑖𝑚𝑎𝑡𝑒 𝑢𝑠𝑒𝑟 𝑎𝑐𝑐𝑒𝑠𝑠 
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5. Performance Metrics 
Measure the efficiency, effectiveness, and quality of a 

system, process, or algorithm using quantitative indicators, 

enabling evaluation, comparison, and optimization across 

specific objectives and criteria. 

5.1. Precision 
It calculates the percentage of true positive predictions out 

of the total positive predictions, helping to understand how 

well a model identifies positive cases. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
     (56) 

5.2. Recall 

It computes the number of relevant items retrieved against 

the total number of applicable items available in a dataset to 

quantify the degree to which the system captures all relevant 

content. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑁𝑜.𝑜𝑓 𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑖𝑡𝑒𝑚𝑠
    (57) 

5.3. Classification Accuracy 

CA indicates the number of accurate classifications the 

model achieves out of the number of classifications attempted.  

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑜.𝑜𝑓 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑡𝑟𝑢𝑠𝑖𝑜𝑛𝑠
        (58) 

5.4. F-Measure 

The F-measure is a critical metric for optimizing intrusion 

detection performance in I.D.S. It helps security professionals 

fine-tune I.D.S. parameters to meet specific security and 

operational requirements by finding the optimal compromise 

between precision and recall. 

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
     (59) 

5.5. Matthews Correlation Coefficient  

MCC is a fair measure in I.D.S., considering both true 

positives and negatives, with false positives and false 

negatives taken care of. It gives a more accurate assessment of 

I.D.S.'s ability to classify intrusions and non-intrusions 

correctly. Hence, this metric is used more than others to assess 

classification quality. 

𝑀𝐶𝐶 = 
𝑇𝑃×𝑇𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁))(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 × 100   (60) 

5.6. Fowlkes-Mallows Index 

In I.D.S., the FMI can be used to assess the level of 

agreement or concordance between the clustering results 

generated by the system and the ground truth of intrusion 

categories. It helps understand how well the I.D.S. captures 

the underlying structure in intrusion data. 

𝐹𝑀𝐼 =
𝑇𝑃

√(𝑇𝑃+𝐹𝑃)(𝐹𝑃+𝐹𝑁)
 × 100       (61) 

6. Results and Discussion 
A section in research analyzes data outcomes, compares 

them with objectives, and interprets findings to highlight 

improvements, implications, and potential future 

enhancements. 

6.1. Precision and Recall Analysis 

Figure 1 provides a detailed Precision and Recall 

Analysis, essential for evaluating the efficacy of LSO-FFNN, 

ABC-DA-ANN, and PRDO-RVM classification algorithms. 

Precision and recall metrics offer nuanced insights into the 

algorithms’ performance, particularly in scenarios with 

imbalanced class distributions or varying costs associated with 

misclassifications. The tabulated precision and recall values in 

Table 2 elucidate the algorithms’ discriminative abilities. 

LSO-FFNN achieves 52.257% and 49.247%, respectively. 

Despite its potential, LSO-FFNN exhibits suboptimal 

performance, attributed to inherent limitations such as 

constrained exploration, sluggish convergence rates, and 

susceptibility to parameter sensitivity, which may hinder its 

precision and recall capabilities. In contrast, ABC-DA-ANN 

showcases improved precision and recall, recording 60.955% 

and 60.795%, respectively. This integration capitalizes on the 

synergies between optimization techniques, facilitating 

enhanced exploration and exploitation of the solution space, 

thereby elevating precision and recall metrics. The better 

performance is reached with PRDO-RVM, a fusion of 

Proficient Red Deer Optimization and Relevance Vector 

Machine, boasting precision and recall values of 86.864% and 

88.389%, respectively. 

PRDO-RVM’s superiority stems from its proficient 

optimization capabilities, robustness to noisy data, 

adaptability across diverse problem domains, mitigation of 

overfitting risks, and inherent interpretability, culminating in 

exceptional precision and recall outcomes. 

 
Fig. 1 Precision and Recall Analysis 

Table 2. Result - Precision and Recall values 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑠 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑅𝑒𝑐𝑎𝑙𝑙 
𝐿𝑆𝑂 − 𝐹𝐹𝑁𝑁 52.257 49.247 

𝐴𝐵𝐶 − 𝐷𝐴 − 𝐴𝑁𝑁 60.955 60.795 
𝑃𝑅𝐷𝑂 − 𝑅𝑉𝑀 86.864 88.389 
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Fig. 2 FMI and MCC analysis 

Figure 1 furnishes a comprehensive Precision and Recall 

Analysis, elucidating the intricate performance differentials 

among classification algorithms. By navigating the technical 

nuances of each algorithm’s strengths and limitations, 

stakeholders can make informed decisions regarding 

algorithm selection tailored to specific application necessities 

and computational constraints. 

6.2. Fowlkes-Mallows Index and Matthews Correlation 

Coefficient Analysis 

Figure 2 comprehensively analyzes the FMI and MCC for 

LSO-FFNN, ABC-DA-ANN, and PRDO-RVM. These 

metrics serve as pivotal indicators of clustering quality and 

overall classification accuracy, essential for evaluating the 

efficacy of machine learning models across various domains. 

LSO-FFNN demonstrates moderate performance in terms of 

FMI. and MCC. While this approach benefits from the 

inherent parallelism and decentralized decision-making of 

swarm intelligence, it often struggles with limited exploration 

and slow convergence. The exploration limitation arises from 

the algorithm’s reliance on local information exchange, 

potentially leading to premature convergence and suboptimal 

solutions. Additionally, the convergence rate of LSO-FFNN 

may be hindered by the complex, high-dimensional search 

spaces typical in neural network optimization tasks. The 

sensitivity of LSO-FFNN to parameter settings poses a 

challenge, requiring careful tuning to achieve optimal 

performance. ABC-DA-ANN presents improved clustering 

quality and classification accuracy compared to LSO-FFNN. 

This approach is not without its drawbacks. One significant 

challenge is the complexity associated with parameter tuning, 

as both the optimization algorithms and neural network 

architecture require careful configuration to achieve optimal 

performance. Moreover, integrating multiple optimization 

techniques may introduce algorithmic conflicts, where the 

exploration and exploitation strategies of A.B.C. and DA may 

not align seamlessly. This can result in inefficient search 

behavior and suboptimal convergence rates, particularly in 

high-dimensional search spaces. The computational costs of 

running multiple optimization algorithms concurrently can be 

substantial, potentially limiting the scalability of ABC-DA-

ANN to large-scale datasets or resource-constrained 

environments. 

Table 3. Result - FMI. and MCC 

𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝒔 𝑭𝑴𝑰 𝑴𝑪𝑪 

𝐿𝑆𝑂 − 𝐹𝐹𝑁𝑁 50.730 3.527 

𝐴𝐵𝐶 − 𝐷𝐴 − 𝐴𝑁𝑁 60.875 24.416 

𝑃𝑅𝐷𝑂 − 𝑅𝑉𝑀 87.623 74.649 

 
Fig. 3 Classification Accuracy and F-Measure analysis 

PRDO-RVM is the top performer, showcasing 

exceptional clustering quality and classification accuracy. The 

proficiency of PRDO-RVM stems from its efficient 

optimization strategies and robust classification capabilities. 

The exploration vs exploitation trade-off is balanced within 

the Red Deer Optimization algorithm to explore the solution 

space thoroughly while efficiently converging to high-quality 

solutions. The Relevance Vector Machine offers properties of 

sparsity, which reduce overfitting risk and contribute to better 

model interpretability. PRDO-RVM’s adaptability to diverse 

problem domains further solidifies its position as a compelling 

choice for clustering and classification tasks in real-world 

applications. 

6.3. Classification Accuracy and F-Measure Analysis 

Figure 3 presents an in-depth exploration of Classification 

Accuracy (CA) and F-Measure (FM), critical metrics for 

evaluating the performance of classification algorithms, 

namely LSO-FFNN, ABC-DA-ANN, and PRDO-RVM. 

These metrics offer nuanced insights into the algorithms’ 

ability to accurately classify instances and strike a balance 

between precision and recall, crucial for various real-world 

applications. The tabulated CA and FM values in Table 4 

provide a quantitative assessment of each algorithm’s 

classification performance. LSO-FFNN demonstrates 

reasonable performance with CA and FM scores of 51.741 and 

50.707, respectively. Despite its potential, LSO-FFNN may 

encounter challenges such as slow convergence and limited 

exploration stemming from the complex, high-dimensional 

search space inherent in neural network optimization tasks.  

Table 4. Result - CA and FM 

𝑪𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒄𝒂𝒕𝒊𝒐𝒏 𝑨𝒍𝒈𝒐𝒓𝒊𝒕𝒉𝒎𝒔 𝑪𝑨 𝑭𝑴 

𝐿𝑆𝑂 − 𝐹𝐹𝑁𝑁 51.741 50.707 

𝐴𝐵𝐶 − 𝐷𝐴 − 𝐴𝑁𝑁 62.255 60.875 

𝑃𝑅𝐷𝑂 − 𝑅𝑉𝑀 87.325 87.620 
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ABC-DA-ANN showcases improved performance, 

yielding CA and FM values of 62.255 and 60.875, 

respectively. This amalgamation of optimization techniques 

within a neural network framework enables ABC-DA-ANN to 

achieve better classification accuracy and a more balanced F-

Measure than LSO-FFNN.  

The challenges, such as parameter tuning complexities 

and potential algorithmic conflicts, may affect its robustness 

and scalability, necessitating careful optimization and fine-

tuning. PRDO-RVM emerges as the frontrunner, exhibiting 

remarkable CA and FM scores of 87.325 and 87.620, 

respectively. This algorithm’s proficiency lies in its efficient 

optimization strategies and robust classification capabilities, 

complemented by the sparsity-inducing properties of the 

Relevance Vector Machine. PRDO-RVM achieves high 

classification accuracy and a balanced F-Measure, making it a 

compelling choice for classification tasks across diverse 

domains. 

7. Conclusion  
This research addresses the critical need for robust I.D.S. 

in MANETs to mitigate the diverse security threats in these 

dynamic and decentralized networks. By introducing the 

PRDO-RVM, the research proposes an innovative approach to 

intrusion detection that leverages the sparsity-inducing 

properties of RVM and the efficient optimization capabilities 

of Red Deer Optimization. By evaluating PRDO-RVM using 

the NSK-KDD dataset, the study demonstrates its superior 

classification accuracy and efficiency compared to existing 

I.D.S. solutions. This underscores the potential of PRDO-

RVM as a reliable and scalable security mechanism for 

MANETs, offering enhanced protection against malicious 

activities and ensuring the integrity and availability of network 

communications.  

As MANETs continue to play a vital role in various 

applications, the findings of this research contribute 

significantly to advancing the security posture of MANETs 

and addressing the evolving challenges posed by malicious 

actors in dynamic network environments.  

Future enhancements may include integrating Krill Herd 

Optimization and RF to improve intrusion detection accuracy 

in MANETs. This hybrid approach leverages K.H.O.’s 

optimization capabilities and RF’s ensemble learning 

framework to address the dynamic nature of security threats.  
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