
International Journal of Engineering Trends and Technology Volume 72 Issue 2, 9-18, February 2024

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V72I2P102 © 2024 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Iterative Feature Elimination Method Using Artificial

Neural Network for Software Effort Estimation
Pranay Tandon1, Ugrasen Suman2

1,2 School of Computer Science s& IT, Devi Ahilya University, Indore, M.P., India.

1Corresponding Author: pranay.tandon@live.com

Received: 26 June 2023 Revised: 30 August 2023 Accepted: 06 January 2023 Published: 03 February 2024

Abstract - Effort estimation is one of the critical tasks for any software development team because estimation is the key to

planning the software development life cycle activities with proper timeline and cost. On-time and quality delivery is most

important to build customer trust and certainty. There are many features to be considered while estimating the efforts, but

removing the weak features and finding the set of the strongest features for any estimation process is difficult. Deep learning

is the most popular prediction technique for effort estimation because of its capacity to adapt and be accurate on different

types of datasets. Artificial Neural Network is best suited to deep learning techniques for predicting effort, per industrial

research. In this paper, a novel model based on artificial neural networks and an iterative feature elimination-based method

has been proposed to estimate the efforts. With ranking features, the proposed method can find the optimized set of features

to be used in the model and final efforts. COCOMO NASA 2 dataset is used to find the results.

Keywords - Iterative feature elimination, Artificial Neural Network, Software effort estimation, Machine Learning, Deep

learning.

1. Introduction
Estimation is one of the most critical activities of

project management. For many years, Information

technology professionals have faced problems with

accurately estimating the effort, cost, and time required to

develop any piece of work. Forecasting all the required

parameters in the very initial stage of the software

development life cycle is very challenging when boundaries

of all requirements need to be established and when

unpredictability regarding the functionalities of the final

product is substantial.

Mostly, limited knowledge of influencing factors,

associated risks, and legacy software estimation techniques

may lead to imprecise and inaccurate estimates; as a result,

they may severely impact project delivery schedule, budget,

and quality [11] where a better estimation leads to efficient

project planning, better resource management, on-time

delivery, improved client relationship, standard quality of

product and strong reputation of organization.

Many researchers and professionals have worked on

this problem of software estimation, from expert judgment

planning poker to Machine Learning (ML) techniques that

have been explored and innovated. Deep learning, a part of

advanced ML, is a very popular and modern technique for

prediction based on data.

Artificial neural network (ANN) works on deep

learning concepts to find the value of a dependent variable

with the help of other variables’ values. ANN works with

features and the weightage of each feature in a multi-layer

perceptron architecture, where many layers are included,

such as the input layer, hidden layer, and output layer, as the

features perform the most important role in ANN model;

that is why the selection of features is very critical and key

activity.An optimal set of features may lead to accurate

results, time-saving, memory-saving, simple processes, and

tuned models.

There are many features of the project to be considered

while estimating the efforts, but removing the weak features

and finding the set of the strongest features for any

estimation process is difficult. The main problem being

rectified in this research is the difficulty in selecting the

most significant features. The objective of this research is to

find a robust method to get the set of most significant

features that perform a vital role in any prediction process

and obtain the better accuracy of a model.

In the proposed method, the weakest features are

eliminated from the set of all features, and an optimized set

of features is found as a result of the overall method. An

ANN is used to develop a classifier model. In each phase of

this proposed method, an ANN classifier is used with a

different set of features per the algorithm’s

requirements.This paper is organized as follows: Section 2

describes some important literatures and research on

software effort estimation. Section 3 briefly explained the

methodology, including the Iterative feature elimination

method and the ANN model as the classifier. Section 4

describes the proposed method with the flow diagram and

algorithm. Section 5 outlines the setup and analysis part of

the experiment.

Section 6 presents the experiment result and discussion

of the result of the proposed method compared to other

related work. Finally, Section 7 concluded the work with

possible future directions.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pranay.tandon@live.com

Pranay Tandon & Ugrasen Suman / IJETT, 72(2), 9-18, 2024

10

2. Literature Review
As we are focusing mainly on ML techniques for effort

estimation, many software effort estimation approaches

have been used till now, such as Planning Poker (PP),

function points, expert judgment, analogy, disaggregation,

and algorithmic approach. Nowadays, ML is a new and

popular tool for effort estimation.

In recent years, ML-based methods have received

increasing attention in software development effort

estimation research. Many ML techniques have been

reviewed in this literature survey. A Decision Tree (DT) is

used with PP, and it is found that PP with DT and PP with a

logistic model tree are better than PP alone. Multiple ML

algorithms or ensemble-based algorithms can be used with

PP [1].

Linear regression and K-nearest neighbours ML

techniques were compared, and from the results Linear

Regression model is found better estimator than K-nearest

neighbours on the data sets COCOMO81, COCOMO

NASA, COCOMO NASA 2 by having higher correlation

coefficient value and low Relative Absolute Error (RAE),

Root Relative Squared Error (RRSE), Mean Absolute Error

(MAE), Root Mean Squared Error (RMSE) [16].

Naïve Bayes (NB), Logistic Regression (LR), and

Random Forest (RF) are explored and compared. In

conclusion, RF obtained the best performance among these.

This research can be extended with data mining ML

methods [2]. Term Frequency - Inverse Document

Frequency (TF-IDF) and doc2vec text vectorization are

used with Gaussian Naive Bayes and SVM ML methods and

found that better estimations can be obtained than

COCOMO. Large data sets may be used in future [3].

Different ML techniques such as DT, RF, and Stochastic

Gradient Boosting (SGB) are used with the Story Point

Approach (SPA), and compared, SGB is found to be the best

among them. Limitations are the small size data set and

assumptions of the initial project velocity value of the team.

Further extreme learning machines and Bayesian Networks

(BN) on the SPA-related dataset can be used [4].The BN

model is explored for estimation with more accuracy than

other ML techniques. The proposed model is relatively

simple and small; all the input data are easily evoked, so the

impact on agility is minimal. The model can predict the

efforts of a task, and it is independent of the agile methods

used. It is also suitable to be used in the early project phase,

but all influencing factors were not utilized in this approach

[17].

In other research, the limitation of the BN model is the

validation for future research; it validates the model in two

stages: node probability tables validation and model

validation. It can define more scenarios and can be

compared in collaboration with experts [5]. Evolutionary

Cost Sensitive Deep Belief Network (ECS-DBN) is

introduced. This ECS-DBN model is relatively concise and

uncomplicated, and all the input data are easily evoked. The

scope of application can be increased to other deep learning

techniques with higher dimensional data for better

performance [6].ANN-feedforward back-propagation

neural network, cascade-correlation neural network, and

Elman neural network are compared. The Feedforward

back-propagation network calculated better Effort

estimation than 2 others. In the future, more ANNs can be

compared using a large enough data set [7]. Long Short

Term Memory (LSTM) is applied with regression as an

activation function and recurrent highway network. This

approach performed better than the existing TF-IDF

technique in estimating the story points. The data set is

small; this is the main limitation of this research. The feature

selection process can be improved in the future [8].

Systematic Literature Review (SLR) is performed on

ML methodologies, Ordinary least squares regression,

selection operator regression, Ridge regression least

absolute shrinkage, elastic-net regression, least angle

regression, classification and regression tree, Analogy-

Based Estimation (ABE), Support Vector Regression

(SVR), adaptive boosting, RF, deep neural networks, ANN,

bootstrap aggregating, and gradient boosting machine.

Ensemble learning algorithms based on the principle of

bootstrap aggregating, for example, Bagging and RF,

performed the best overall over the 13 datasets. ABE

appeared to be the highest-performing non-ensemble

learning algorithm [9].

Ensemble-based model is also explored, and an

application of this ensemble-based predictive model is

developed. The ensemble-based prediction method is

proven to be better than other prediction approaches. This

approach is limited to the dataset from a particular

organization, and some predictive algorithms in the

ensemble provided better prediction results than this

ensemble algorithm. For improvement, it can include

human experts in ensembles and consider developing

efficient optimization techniques at the project level

[10].Another study used the ranking of features with

Recursive Feature Elimination (RFE) and cross-validated

selection of the feature numbers with the RF Classifier. The

RF tree structure is used as the elimination classifier.

The dataset is reduced by 95% compared to the original

size. The deep learning - DMLP model develops a smaller

and more meaningful dataset by achieving an accuracy of

89% [12].In another experimental study, authors have

proposed LR-RFE with a cross-validation-based feature

selection method for classification. To avoid the overfitting

problem with RFE, 10-fold stratified cross-fold validation

is applied. After including top-ranked features, the pre-

processed dataset is then applied to different ML models;

LR performs best on all model evaluation measures used. It

was also observed that the feature selection method on the

few dimensions (8 independent features) has contributed to

improving the model accuracy and has helped to avoid

severe concerns like multicollinearity. [13].

In another proposed paper, an intrusion detection

technique has been implemented that has been trained and

tested on three ML classifiers, i.e., SVM, RF, and DT. In-

depth research on the ML classifiers for all the features has

Pranay Tandon & Ugrasen Suman / IJETT, 72(2), 9-18, 2024

11

been conducted, and it has been found that some features

are irrelevant and redundant in the dataset. Hence, RFE is

used to reduce the dimensionality of the dataset. After

comparing all three classification techniques, RF proved to

perform better than SVM before feature selection. However,

after implementing feature selection, SVM performed better

than RF and DT. [14].

An effective method of software effort estimation

based on RFE has been evolved, and the model has been

tested with seven ML-based classifiers. From the output of

this method, the ranking of features is decided, and the best

features are passed as input to another model based on

ensemble-based learning. In the proposed ensemble-based

learning process, all seven methods are taken part and

predicted the actual cost and Lines Of Code (LOC).

Simulation results prove that out of the fifteen features

considered, four features, database size, required software

reliability, process complexity, and main memory

constraint, are the least significant for both targets. The

performance of this method in terms of both targets LOC

and actual cost is quite encouraging compared to the

individual ML methods [15].

As per the literature survey, there are some limitations

in previous research, such as all the influencing factors and

features were not selected, features were not optimized in a

proper set of most impacting features, most of the

algorithms were not giving a properly optimized set as final

output rather giving just a way to select them with the

manual intervention of an expert.As a solution, to resolve

the problem of feature selection and overcome all the

limitations of the literature survey, an automated iterative

feature elimination method with a final optimized set of

features as output can be evolved.

3. Methodology
The methodology includes the artificial neural network

classification model, the iterative feature elimination

method for finding rank, and an iterative set of feature

elimination methods to find an optimized set. The flow of

methodology is shown in Figure 1. In the proposed method,

the ANN model is used for classification, and ANN is one

of the most used supervised model functions, which can be

seen as a multi-layer network of neurons. An ANN

classification model is developed with 3 layers: input layer,

hidden layer, and output layer. The model is trained and

tested with different features of the data set in each iteration,

and accuracy is found; all hyperparameters in this ANN

model are used per output classes, dataset type, and size.

The model is tuned for best performance.

Training and testing the ANN model with the set of

optimized features is considered a critical task, as selecting

an optimized set of features from any dataset is a

complicated process. The iterative feature elimination

method is the way to efficiently select the required set of

features to train and test the ANN classification model. This

method is used to eliminate the weakest features per rank

from weaker to stronger and find the set of the features to

be used finally in the model. The model’s accuracy with all

the features is compared to the model’s accuracy after

eliminating one feature, and this process continues for each

feature to find the rank of features. After finding the rank of

features from weaker to stronger, the iterative set of feature

elimination method is used to remove the weakest set of

features from a set of all features to find an optimized set of

features to be used in the ANN model. This final set is used

to train and test the resultant model, ready for effort

estimation.

The novelty of the proposed method is a multilevel

iteration process in an ANN prediction model. The first

level finds the rank of the weakest features, and the second

level finds the rank of the weakest set of features to be

finally eliminated from the dataset. This method actually

fine-tunes the performance of the model by selecting only

the most eligible features for the model.

4. Iterative Feature Elimination Method with

Classification Model
The proposed method consists of an Iterative feature

elimination method and an ANN classification model.

Accuracy is computed after each elimination of feature

iteratively with the help of the ANN classification model,

the rank of all features is decided, and then accuracy is

computed after each elimination of a set feature iteratively

as per the feature’s rank with the help of the ANN

classification model. Finally, the optimized set of features

is found. Features and targets of the COCOMO NASA 2

dataset are shown in Table 1 and Table 2, respectively. 21

features and 2 targets are there in the dataset.

Table 1. COCOMO NASA 2 dataset features

Column Number Attribute Name

0 project name

1 category of application

2 flight or ground system

3 NASA centre

4 year of development

5 development mode

6 Database size

7 Process complexity

8 Required software reliability

9 Time constraint for CPU

10 main memory constraint

11 machine volatility

12 turnaround time

13 analysts capability

14 application experience

15 programmers capability

16 virtual machine experience

17 language experience

18 modern programming practices

19 use of software tools

20 schedule constraint

Table 2. COCOMO NASA 2 Dataset Targets

Column Number Attribute Name

21 LOC

22 Actual Efforts

Pranay Tandon & Ugrasen Suman / IJETT, 72(2), 9-18, 2024

12

Fig. 1 Methodology

An ANN model for classification is developed with 3

layers: input layer, hidden layer, and output layer. The

RELU activation function is used in layers, and the negative

log-likelihood function is used as a loss function. The

dataset was split into 65% for training and 35% for model

testing.

The accuracy of the ANN classifier is observed

separately for all twenty-one features with respect to LOC

and actual cost target.In various steps of the proposed

algorithm, this classifier is trained and tested with different

inputs to find accuracy for ranking the features and set of

features, followed by finding the final optimized set. Once

the final optimized set is found, this classifier is used again

for prediction after training and testing.

In the first step, the features affecting LOC and Actual

cost in software effort estimation are ranked as per accuracy

obtained by the ANN model for each feature eliminated.

COCOMO Nasa 2 dataset has been considered in this work,

having twenty-one number of features required, such as

project name, category of application, flight or ground

system, NASA centre, year of development, development

mode, Database size, Process complexity, Required

software reliability, a Time constraint for CPU, main

memory constraint, machine volatility, turnaround time,

analysts capability, application experience, programmers

capability, virtual machine experience, language

experience, modern programming practices, use of software

tools and schedule constraint, and with two number of class

labels such as LOC and actual cost.

This data set has been divided into two sets. In the first

set, twenty-one features have been considered with the

target LOC and others with the target actual cost. Both sets

of datasets are being processed through the iterative

elimination of features algorithm shown in Algorithm 1 and

flow shown in Figure 2, where a single feature is eliminated

at a time, and the remaining twenty features with LOC class

label are input to the ANN classifier.

After building the classifier model with all the dataset

features, the model is trained and tested, and found the

accuracy A. In an iterative fashion, each feature is

eliminated from the dataset, and found the accuracy A’ with

the remaining features in the dataset. The percentage

difference in A’ against A is considered for the ranking of

features. After completing all the features using the above

process, the rank of all features is found.

Algorithm 1: Ranking of features

Input : Dataset S = {f1, f2, …fn}

Output : rank of features RF = {rf1, rf2, …rfn}

1. Build a classifier using dataset S

2. Prepare train data from dataset S and then train

the classifier

3. Prepare test data from dataset S and then test the

classifier

4. Find the accuracy of classifier for dataset S

5. For each feature fi in S

1. S’ = S – fi

2. Prepare train data from dataset S’ and then

train the classifier

3. Prepare test data from dataset S’ and then

test the classifier

4. Find the accuracy of classifier for dataset S’

5. Find the accuracy loss of classifier due to

elimination of fi

6. Create the accuracy loss set of features {f1, f2, …fn}

7. Sort the set to find rank of features RF = {rf1, rf2,

…rfn}

After the first step, the rank of features from weakest to

strongest is found, which will be inputted in this second

step. Starting from the weakest feature, the set of features is

created by adding features one by one as per ranking. This

set of features is eliminated from all the features in the

dataset and found the accuracy of classifier after training

and testing. This process continues until all the input set is

iterated.

Fig. 2 Ranking of feature

Dataset
Iterative

Elimination

Algorithm

Artificial Neural

Network

Classifier

Compute

Accuracy

Cocomo Dataset

Cocomo Dataset

with target

LOC

Cocomo Dataset

with target

Actual Cost

Iterative

Elimination of

Features

Neural Network

Classifier
Compute

Accuracy Loss

Feature

Ranking

Pranay Tandon & Ugrasen Suman / IJETT, 72(2), 9-18, 2024

13

Fig. 3 Ranking of the set of features and finding an optimized set

Fig. 4 Iterative feature elimination method and finding an optimized set

The rank of the set of features is found, the weakest set

of features is removed from all the features in the dataset,

and finally, the optimized set is found. The flow is presented

in Figure 3, and the algorithm is shown in Algorithm 2. The

full flow combining all steps with two algorithms and one

classification model is depicted in Figure 4 below, and a full

algorithm is also described in Algorithm 3.

Algorithm 2: Ranking of a set of features and finding an

optimized set

Input : rank of features RF = {rf1, rf2, …rfn}

Output : Optimized set of features OS = {f1, f2, …fn}

1. For each feature in set RF

1. Removed features set ReFi = ReFi-1 + rfi

2. S’ = S – ReFi

3. Prepare train data from dataset S’ and then

train the classifier

4. Prepare test data from dataset S’ and then

test the classifier

5. Find the accuracy of classifier for dataset S’

6. Find the accuracy loss of classifier due to

elimination of ReFi

2. Create the accuracy loss set of features set {ReF1,

ReF2, …ReFn}

3. Sort the set to find rank of features set RReF =

{rReF1, rReF2, …rReFn}

4. Find removed features set with the most accuracy

RReF

5. Finally, find the optimized set OS = S – RReF

Algorithm 3 Iterative feature elimination method and

finding optimized set

Input : Dataset S = {f1, f2, …fn}

Output : Optimized set of features OS = {f1, f2, …fn}

1. Build a classifier using dataset S

2. Prepare train data from dataset S and then train the

classifier

3. Prepare test data from dataset S and then test the

classifier

4. Find the accuracy of classifier for dataset S

5. For each feature fi in S

1. S’ = S – fi

2. Prepare train data from dataset S’ and then train

the classifier

3. Prepare test data from dataset S’ and then test the

classifier

4. Find the accuracy of classifier for dataset S’

5. Find the accuracy loss of classifier due to

elimination of fi

6. Create the accuracy loss set of features {f1, f2, …fn}

7. Sort the set to find rank of features RF = {rf1, rf2, …rfn}

8. For each feature in set RF

1. Removed features set ReFi = ReFi-1 + rfi

2. S’ = S – ReFi

3. Prepare train data from dataset S’ and then train

the classifier

4. Prepare test data from dataset S’ and then test the

classifier

Feature Ranking

Iterative Elimination

of set of Features as

per ranking

Neural Network

Classifier

Compute Accuracy

Loss

Optimized set

Removing weakest set

of feature as per

ranking

Set of Feature Ranking

Cocomo

Dataset

Cocomo

Dataset with

target LOC

Cocomo Dataset

with target

Actual Cost

Iterative

Elimination of

Features

Neural

Network

Classifier

Compute

Accuracy Loss

Feature

Ranking

Iterative Elimination

of set of Features as

per ranking

Optimized set
Removing weakest

set of feature as per

ranking

Set of Feature

Ranking

Compute

Accuracy Loss

Neural

Network

Classifier

Pranay Tandon & Ugrasen Suman / IJETT, 72(2), 9-18, 2024

14

5. Find the accuracy of classifier for dataset S’

6. Find the accuracy loss of classifier due to

elimination of ReFi

9. Create the accuracy loss set of features set {ReF1,

ReF2, …ReFn}

10. Sort the set to find rank of features set RReF =

{rReF1, rReF2, …rReFn}

11. Find removed features set with the most accuracy

RReF

12. Finally, find the optimized set OS = S – RReF

5. Experimental Setup and Analysis
This experiment was performed using a system having

Intel(R) Core(TM) i5-8250U CPU @1.60 GHz, 1800 MHz,

4 Core(s), 8 Logical Processor(s), 8.00 GB RAM, and 64-

bit OS Windows 10 configurations. The simulation

environment includes Java JDK 11, deeplearning4j and nd4j

API, and Eclipse 2022 -12 IDE. All hyperparameters of the

classifier are set by selecting suitable values on a trial-and-

error basis.

Fig. 5 Accuracy for target LOC after one feature elimination

Fig. 6 Accuracy for target actual cost after one feature elimination

Fig. 7 Accuracy percent for target LOC after one feature elimination against all features

Fig. 8 Accuracy percent for target actual cost after one feature elimination against all features

Fig. 9 Set of features and Accuracy for target LOC

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
c
c
u

r
a

c
y

Number of feature

0.7

0.75

0.8

0.85

0.9

0.95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
c
c
u

r
a

c
y

Number of feature

80

90

100

110

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
c
c
u

r
a

c
y

Number of feature

80

90

100

110

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
c
c
u

r
a

c
y

Number of feature

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
c
c
u

r
a

c
y

Numbers of features removed

Pranay Tandon & Ugrasen Suman / IJETT, 72(2), 9-18, 2024

15

Fig. 10 Set of features and Accuracy for target actual cost

Figure 5 presents the accuracy of the ANN classifier for

the target LOC after eliminating one feature. Here, after

removing feature number 15, the accuracy of the classifier

is 0.96, which has the most accuracy. After removing the

feature numbers 0, 6, 12, and 20, the accuracy of the

classifier is 0.78, which is the lowest accuracy.

Figure 6 presents the accuracy of the ANN classifier for

the target actual cost after eliminating one feature. Here,

after removing feature numbers 11 and 14, the accuracy of

the classifier is 0.87, which has the most accuracy. After

removing the feature numbers 1, 4, and 16, the accuracy of

the classifier is 0.75, which is the lowest accuracy.

Figure 7 presents the percentage of the classifier’s

accuracy for target LOC increased or decreased after

eliminating one feature against the classifier’s accuracy of

all features.

Figure 8 presents the percentage of the classifier’s

accuracy for target actual cost increased or decreased after

eliminating one feature against the classifier’s accuracy of

all features. The accuracy of the ANN classifier using all the

features of the COCOMO NASA 2 dataset is 0.84; the same

accuracy is considered to find other values in the proposed

method.Figure 9 presents the accuracy for target LOC after

the number of features removed rank-wise from all feature

sets. The below graph shows that the accuracy after

removing the first 6 weakest features is 0.96, which is the

most accuracy, and the accuracy after removing the first

10,18 and 20 weakest features is 0.81, which is the least

accuracy.

Figure 10 presents the accuracy for the target actual

cost after the number of features removed rank-wise from

all feature sets. In the graph below shows that the accuracy

after removing the first 3 weakest features is 0.96, which is

the most accuracy, and the accuracy after removing the first

13 weakest features is 0.72, which is the least accuracy.

For target LOC, the accuracy of all the removed sets of

columns is shown in Table 3. So the removed set includes

the first 6 weakest features {15, 3, 4, 13, 17, 19} presented

in Table 4; with the help of this, the optimized set of features

to be used in the ANN model can be found in

{0,1,2,5,6,7,8,9,10,11,12,14,16,18,20} which is described

in Table 5. Similarly, for the target actual cost, the accuracy

of all the removed sets of columns is shown in Table 6. So

the removed set includes the first 3 weakest features

{11,14,12} presented in Table 7; with the help of this, the

optimized set of features to be used in the ANN model can

be found in {0,1,2,3,4,5,6,7,8,9,10,13,15,16,17,18,19,20}

which is described in Table 8.

Table 3. Removed columns and accuracy for target LOC

Removed columns Accuracy

{15} 0.84

{15, 3} 0.9

{15, 3, 4} 0.84

{15, 3, 4, 13} 0.93

{15, 3, 4, 13, 17} 0.9

{15, 3, 4, 13, 17, 19} 0.96

{15, 3, 4, 13, 17, 19, 7} 0.9

{15, 3, 4, 13, 17, 19, 7, 8} 0.93

{15, 3, 4, 13, 17, 19, 7, 8, 10} 0.9

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14} 0.81

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18} 0.87

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1} 0.9

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2} 0.87

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9} 0.93

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11} 0.84

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11, 16} 0.93

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11, 16, 5} 0.87

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11, 16, 5, 12} 0.81

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11, 16, 5, 12, 0} 0.84

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11, 16, 5, 12, 0, 6} 0.81

0.7

0.75

0.8

0.85

0.9

0.95

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

A
c
c
u

r
a

c
y

Numbers of features removed

Pranay Tandon & Ugrasen Suman / IJETT, 72(2), 9-18, 2024

16

Table 4. Removed set of features for target LOC

Column Number Attribute Name

3 NASA centre

4 year of development

13 analysts capability

15 programmers capability

17 language experience

19 use of software tools

Table 5. Optimized set of features for target LOC

Column Number Attribute Name

0 project name

1 category of application

2 flight or ground system

5 development mode

6 Database size

7 Process complexity

8 Required software reliability

9 Time constraint for CPU

10 main memory constraint

11 machine volatility

12 turnaround time

14 application experience

16 virtual machine experience

18 modern programming practices

20 schedule constraint

Table 6. Removed columns and accuracy for target actual cost

Removed columns Accuracy

{11} 0.84

{11, 14} 0.84

{11, 14, 12} 0.96

{11, 14, 12, 15} 0.81

{11, 14, 12, 15, 17} 0.84

{11, 14, 12, 15, 17, 2} 0.87

{11, 14, 12, 15, 17, 2, 20} 0.9

{11, 14, 12, 15, 17, 2, 20, 10} 0.87

{11, 14, 12, 15, 17, 2, 20, 10, 13} 0.81

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3} 0.84

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7} 0.87

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8} 0.81

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9} 0.72

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18} 0.81

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19} 0.78

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19, 0} 0.9

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19, 0, 5} 0.75

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19, 0, 5, 6} 0.75

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19, 0, 5, 6, 16} 0.78

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19, 0, 5, 6, 16, 1} 0.84

Table 7. Removed set of features for target actual cost

Column Number Attribute Name

11 machine volatility

12 turnaround time

14 application experience

Pranay Tandon & Ugrasen Suman / IJETT, 72(2), 9-18, 2024

17

Table 8 Optimized set of features for target actual cost

Column Number Attribute Name

0 project name

1 category of application

2 flight or ground system

3 NASA centre

4 year of development

5 development mode

6 Database size

7 Process complexity

8 Required software reliability

9 Time constraint for CPU

10 main memory constraint

13 analysts capability

15 programmers capability

16 virtual machine experience

17 language experience

18 modern programming practices

19 use of software tools

20 schedule constraint

Table 9. Accuracy of classifiers after the feature elimination method applied

Classification model Accuracy with target LOC Accuracy with target actual cost

Decision tree 92.18 79.68

KNN 90.62 79.68

Logistic regression 67.18 70.31

Naïve Bayes 62.5 73.43

Random forest 92.18 73.43

Stochastic gradient descent 46.87 54.68

SVM 53.12 67.18

Ensemble model 95.31 81.25

The proposed ANN model 96.96 96.96

6. Result and Discussion
In the literature survey, the feature elimination

method’s use cases and results in estimations using ML

techniques have been reviewed, and it was found that this

proposed iterative feature elimination method with the ANN

model for classification has outperformed other models.

This proposed model uses this iterative elimination

twice in the algorithm to obtain the most optimized set of

features. After applying the proposed method to features of

the COCOMO NASA 2 data set, the model’s classification

accuracy increased up to 96% for both actual cost and LOC

target. The accuracy of different classifier models is

presented in Table 9. After comparison, it is found that the

accuracy of the proposed ANN classification model with the

iterative feature elimination method is the highest for both

targets LOC and actual cost.

This proposed method is beneficial to information

technology professionals because it allows them to find

more accurate software effort estimation. Professionals can

use deep learning with the optimum memory requirement,

process time, and resources, as decreasing the number of

features can improve the model’s performance.

Academicians can use this paper to train and educate

students in this subject. Researchers can use this research to

innovate new possibilities in this area further and add new

research works by extending this.

7. Conclusion
Deep learning has always been a popular and efficient

technique to predict software effort, cost, time, and size.

Selecting features for a deep learning model is always the

most important task to avoid overestimating or

underestimating a piece of work in software development.

If there is a significant method available for feature

selection, then this task becomes easy and standardized.

This research proposes a novel method of software

effort estimation based on Iterative feature elimination. The

dataset is trained and tested with the ANN model for finding

accuracy, and then the features are being ranked. The

weakest features are eliminated from the set of all features

iteratively, and the set of weakest features is found to be

eliminated from all features dataset. The performance of the

proposed iterative feature elimination method concerning

LOC and actual cost is quite encouraging compared to the

individual methods. For target LOC, the accuracy of

individual ML technique Random forest and decision tree is

92.18%, and the accuracy of the ensemble model is 95.3%,

where the accuracy of this proposed ANN model with

iterative feature elimination method is more than 96%.

Similarly, for target Actual cost accuracy of the Decision

tree and KNN is 79.68 %, the ensemble model achieved

more than 81%, and the proposed ANN model’s accuracy is

96.96%As future work, the proposed method and model

Pranay Tandon & Ugrasen Suman / IJETT, 72(2), 9-18, 2024

18

may be used for other agile project datasets and

hyperparameters of ANN can be tuned further to increase

accuracy.

The strength of this proposed method is that the levels

of iterative elimination are more than in the previous pieces

of literature. The limitation is that it consists of a neural

network as the main deep learning technique used for the

model, and it requires more resources and a large and proper

dataset with minimal missing data for any attributes.

Sometimes, neural networks cannot justify the result

because of its random nature.

Conflict of Interest

The authors declare that this research manuscript has

no conflict of interest with any other published source and

has not been published previously (partly or in full). No data

have been fabricated or manipulated to support the

conclusions.

References

[1] Kayhan Moharreri et al., “Cost-Effective Supervised Learning Models for Software Effort Estimation in Agile Environments,”

IEEE 40th Annual Computer Software and Applications Conference, Atlanta, GA, USA, pp. 135-140, 2016. [CrossRef] [Google

Scholar] [Publisher Link]

[2] Ahmed BaniMustafa, “Predicting Software Effort Estimation Using Machine Learning Techniques,” 2018 8th International

Conference on Computer Science and Information Technology, Amman, Jordan, pp. 249-256, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[3] Vlad-Sebastian Ionescu, Horia Demian, and Istvan-Gergely Czibula, “Natural Language Processing and Machine Learning

Methods for Software Development Effort Estimation,” Studies in Informatics and Control, vol. 26, no. 2, pp. 219-228, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[4] Shashank Mouli Satapathy, and Santanu Kumar Rath, “Empirical Assessment of Machine Learning Models for Agile Software

Development Effort Estimation Using Story Points,” Innovations in Systems and Software Engineering, vol. 13, pp. 191-200, 2017.

[CrossRef] [Google Scholar] [Publisher Link]

[5] Laura-Diana Radu, “Effort Prediction in Agile Software Development with Bayesian Networks,” Proceedings of the 14th

International Conference on Software Technologies, Prague, Czech, vol. 1, pp. 238-245, 2019. [CrossRef] [Google Scholar]

[Publisher Link]

[6] Hosahalli Mahalingappa Premalatha, and Chimanahalli Venkateshavittalachar Srikrishna, “Effort Estimation in Agile Software

Development Using Evolutionary Cost-Sensitive Deep Belief Network,” International Journal of Intelligent Engineering and

Systems, vol. 12, no. 2, pp. 261-269, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[7] Saurabh Bilgaiyan, Samaresh Mishra, and Madhabananda Das, “Effort Estimation in Agile Software Development Using

Experimental Validation of Neural Network Models,” International Journal of Information Technology, vol. 11, pp. 569-573, 2019.

[CrossRef] [Google Scholar] [Publisher Link]

[8] Morakot Choetkiertikul et al., “A Deep Learning Model for Estimating Story Points,” IEEE Transactions on Software

Engineering, vol. 45, no. 7, pp. 637-656, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[9] Passakorn Phannachitta, and Kenichi Matsumoto, “Model-Based Software Effort Estimation–A Robust Comparison of 14

Algorithms Widely Used in the Data Science Community,” International Journal of Innovative Computing, Information and

Control, vol. 15, no. 2, pp. 569-589, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[10] Onkar Malgonde, and Kaushal Chari, “An Ensemble-Based Model for Predicting Agile Software Development Effort,” Empirical

Software Engineering, vol. 24, pp. 1017-1055, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[11] Przemyslaw Pospieszny, Beata Czarnacka-Chrobot, and Andrzej Kobylinski, “An Effective Approach for Software Project Effort

and Duration Estimation with Machine Learning Algorithms,” Journal of Systems and Software, vol. 137, pp. 184-196, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[12] Serpil Ustebay, Zeynep Turgut, and Muhammed Ali Aydin, “Intrusion Detection System with Recursive Feature Elimination by

Using Random Forest and Deep Learning Classifier,” International Congress on Big Data, Deep Learning and Fighting Cyber

Terrorism, Ankara, Turkey, pp. 71-76, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[13] Puneet Misra, and Arun Singh Yadav, “Improving the Classification Accuracy Using Recursive Feature Elimination with Cross-

Validation,” International Journal on Emerging Technologies, vol. 11, no. 3, pp. 659-665, 2020. [Google Scholar] [Publisher Link]

[14] Neha V. Sharma, and Narendra Singh Yadav, “An Optimal Intrusion Detection System Using Recursive Feature Elimination and

Ensemble of Classifiers,” Microprocessors and Microsystems, vol. 85, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[15] K. Eswara Rao, and G. Appa Rao, “Ensemble Learning with Recursive Feature Elimination Integrated Software Effort Estimation:

A Novel Approach,” Evolutionary Intelligence, vol. 14, no. 1, pp. 151-162, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[16] Bhaskar Marapelli, “Software Development Effort Duration and Cost Estimation Using Linear Regression and K-Nearest

Neighbors Machine Learning Algorithms,” International Journal of Innovative Technology and Exploring Engineering, vol. 9, no.

2, pp. 1043-1047, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[17] Srdjana Dragicevic, Stipe Celar, and Mili Turic, “Bayesian Network Model for Task Effort Estimation in Agile Software

Development,” Journal of Systems and Software, vol. 127, pp. 109-119, 2017. [CrossRef] [Google Scholar] [Publisher Link]

http://doi.org/10.1109/COMPSAC.2016.85
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cost-effective+supervised+learning+models+for+software+effort+estimation+in+agile+environments&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cost-effective+supervised+learning+models+for+software+effort+estimation+in+agile+environments&btnG=
https://ieeexplore.ieee.org/abstract/document/7552193
http://doi.org/10.1109/CSIT.2018.8486222
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Predicting+Software+Effort+Estimation+using+Machine+Learning+Techniques&btnG=
https://ieeexplore.ieee.org/abstract/document/8486222
https://doi.org/10.24846/v26i2y201710
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Natural+language+processing+and+machine+learning+methods+for+software+development+effort+estimation&btnG=
https://sic.ici.ro/natural-language-processing-and-machine-learning-methods-for-software-development-effort-estimation/
https://doi.org/10.1007/s11334-017-0288-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Empirical+assessment+of+machine+learning+models+for+agile+software+development+effort+estimation+using+story+points&btnG=
https://link.springer.com/article/10.1007/s11334-017-0288-z
https://doi.org/10.5220/0007842802380245
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effort+prediction+in+agile+software+development+with+Bayesian+networks&btnG=
https://www.scitepress.org/Link.aspx?doi=10.5220/0007842802380245
https://doi.org/10.22266/ijies2019.0430.25
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effort+estimation+in+agile+software+development+using+evolutionary+costsensitive+deep+belief+network&btnG=
http://www.inass.org/2019/2019043025.pdf
https://doi.org/10.1007/s41870-018-0131-2
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effort+estimation+in+agile+software+development+using+experimental+validation+of+neural+network+models&btnG=
https://link.springer.com/article/10.1007/s41870-018-0131-2
https://doi.org/10.1109/TSE.2018.2792473
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+deep+learning+model+for+estimating+story+points&btnG=
https://ieeexplore.ieee.org/abstract/document/8255666
https://doi.org/10.24507/ijicic.15.02.569
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model-based+software+effort+estimation%E2%80%93A+robust+comparison+of+14+algorithms+widely+used+in+the+data+science+community&btnG=
http://www.ijicic.org/vol-15(2).htm
https://doi.org/10.1007/s10664-018-9647-0
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+ensemble-based+model+for+predicting+agile+software+development+effort&btnG=
https://link.springer.com/article/10.1007/s10664-018-9647-0
https://doi.org/10.1016/j.jss.2017.11.066
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+effective+approach+for+software+project+effort+and+duration+estimation+with+machine+learning+algorithms&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121217302947
https://doi.org/10.1109/IBIGDELFT.2018.8625318
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Intrusion+detection+system+with+recursive+feature+elimination+by+using+random+forest+and+deep+learning+classifier&btnG=
https://ieeexplore.ieee.org/abstract/document/8625318
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+the+classification+accuracy+using+recursive+feature+elimination+with+cross-validation&btnG=
https://www.researchtrend.net/ijet/current_issue_ijet.php?taxonomy-id=77
https://doi.org/10.1016/j.micpro.2021.104293
https://scholar.google.com/scholar?q=An+Optimal+Intrusion+Detection+System+using+Recursive+Feature+Elimination+and+Ensemble+of+Classifiers&hl=en&as_sdt=0,5
https://www.sciencedirect.com/science/article/abs/pii/S0141933121004579
https://doi.org/10.1007/s12065-020-00360-5
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Ensemble+Learning+with+Recursive+Feature+Elimination+Integrated+Software+Effort+Estimation%3A+A+Novel+Approach&btnG=
https://link.springer.com/article/10.1007/s12065-020-00360-5
https://doi.org/10.35940/ijitee.K2306.129219
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Development+Effort+Duration+and+Cost+Estimation+using+Linear+Regression+and+K-Nearest+Neighbors+Machine+Learning+Algorithms&btnG=
https://www.ijitee.org/portfolio-item/k23060981119/
https://doi.org/10.1016/j.jss.2017.01.027
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Bayesian+Network+Model+for+Task+Effort+Estimation+in+Agile+Software+Development&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121217300171

