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Abstract - Effort estimation is one of the critical tasks for any software development team because estimation is the key to 

planning the software development life cycle activities with proper timeline and cost. On-time and quality delivery is most 

important to build customer trust and certainty. There are many features to be considered while estimating the efforts, but 

removing the weak features and finding the set of the strongest features for any estimation process is difficult. Deep learning 

is the most popular prediction technique for effort estimation because of its capacity to adapt and be accurate on different 

types of datasets. Artificial Neural Network is best suited to deep learning techniques for predicting effort, per industrial 

research. In this paper, a novel model based on artificial neural networks and an iterative feature elimination-based method 

has been proposed to estimate the efforts. With ranking features, the proposed method can find the optimized set of features 

to be used in the model and final efforts. COCOMO NASA 2 dataset is used to find the results. 

Keywords - Iterative feature elimination, Artificial Neural Network, Software effort estimation, Machine Learning, Deep 

learning.

1. Introduction
Estimation is one of the most critical activities of 

project management. For many years, Information 

technology professionals have faced problems with 

accurately estimating the effort, cost, and time required to 

develop any piece of work. Forecasting all the required 

parameters in the very initial stage of the software 

development life cycle is very challenging when boundaries 

of all requirements need to be established and when 

unpredictability regarding the functionalities of the final 

product is substantial.  

Mostly, limited knowledge of influencing factors, 

associated risks, and legacy software estimation techniques 

may lead to imprecise and inaccurate estimates; as a result, 

they may severely impact project delivery schedule, budget, 

and quality [11] where a better estimation leads to efficient 

project planning, better resource management, on-time 

delivery, improved client relationship, standard quality of 

product and strong reputation of organization. 

Many researchers and professionals have worked on 

this problem of software estimation, from expert judgment 

planning poker to Machine Learning (ML) techniques that 

have been explored and innovated. Deep learning, a part of 

advanced ML, is a very popular and modern technique for 

prediction based on data.  

Artificial neural network (ANN) works on deep 

learning concepts to find the value of a dependent variable 

with the help of other variables’ values. ANN works with 

features and the weightage of each feature in a multi-layer 

perceptron architecture, where many layers are included, 

such as the input layer, hidden layer, and output layer, as the 

features perform the most important role in ANN model; 

that is why the selection of features is very critical and key 

activity.An optimal set of features may lead to accurate 

results, time-saving, memory-saving, simple processes, and 

tuned models. 

There are many features of the project to be considered 

while estimating the efforts, but removing the weak features 

and finding the set of the strongest features for any 

estimation process is difficult. The main problem being 

rectified in this research is the difficulty in selecting the 

most significant features. The objective of this research is to 

find a robust method to get the set of most significant 

features that perform a vital role in any prediction process 

and obtain the better accuracy of a model. 

In the proposed method, the weakest features are 

eliminated from the set of all features, and an optimized set 

of features is found as a result of the overall method. An 

ANN is used to develop a classifier model. In each phase of 

this proposed method, an ANN classifier is used with a 

different set of features per the algorithm’s 

requirements.This paper is organized as follows: Section 2 

describes some important literatures and research on 

software effort estimation. Section 3 briefly explained the 

methodology, including the Iterative feature elimination 

method and the ANN model as the classifier. Section 4 

describes the proposed method with the flow diagram and 

algorithm. Section 5 outlines the setup and analysis part of 

the experiment.  

Section 6 presents the experiment result and discussion 

of the result of the proposed method compared to other 

related work. Finally, Section 7 concluded the work with 

possible future directions.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:pranay.tandon@live.com
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2. Literature Review 
As we are focusing mainly on ML techniques for effort 

estimation, many software effort estimation approaches 

have been used till now, such as Planning Poker (PP), 

function points, expert judgment, analogy, disaggregation, 

and algorithmic approach. Nowadays, ML is a new and 

popular tool for effort estimation.  

In recent years, ML-based methods have received 

increasing attention in software development effort 

estimation research. Many ML techniques have been 

reviewed in this literature survey. A Decision Tree (DT) is 

used with PP, and it is found that PP with DT and PP with a 

logistic model tree are better than PP alone. Multiple ML 

algorithms or ensemble-based algorithms can be used with 

PP [1].  

Linear regression and K-nearest neighbours ML 

techniques were compared, and from the results Linear 

Regression model is found better estimator than K-nearest 

neighbours on the data sets COCOMO81, COCOMO 

NASA, COCOMO NASA 2 by having higher correlation 

coefficient value and low Relative Absolute Error (RAE), 

Root Relative Squared Error (RRSE), Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE) [16]. 

Naïve Bayes (NB), Logistic Regression (LR), and 

Random Forest (RF) are explored and compared. In 

conclusion, RF obtained the best performance among these. 

This research can be extended with data mining ML 

methods [2]. Term Frequency - Inverse Document 

Frequency (TF-IDF) and doc2vec text vectorization are 

used with Gaussian Naive Bayes and SVM ML methods and 

found that better estimations can be obtained than 

COCOMO. Large data sets may be used in future [3]. 

Different ML techniques such as DT, RF, and Stochastic 

Gradient Boosting (SGB) are used with the Story Point 

Approach (SPA), and compared, SGB is found to be the best 

among them. Limitations are the small size data set and 

assumptions of the initial project velocity value of the team. 

Further extreme learning machines and Bayesian Networks 

(BN) on the SPA-related dataset can be used [4].The BN 

model is explored for estimation with more accuracy than 

other ML techniques. The proposed model is relatively 

simple and small; all the input data are easily evoked, so the 

impact on agility is minimal. The model can predict the 

efforts of a task, and it is independent of the agile methods 

used. It is also suitable to be used in the early project phase, 

but all influencing factors were not utilized in this approach 

[17].  

In other research, the limitation of the BN model is the 

validation for future research; it validates the model in two 

stages: node probability tables validation and model 

validation. It can define more scenarios and can be 

compared in collaboration with experts [5]. Evolutionary 

Cost Sensitive Deep Belief Network (ECS-DBN) is 

introduced. This ECS-DBN model is relatively concise and 

uncomplicated, and all the input data are easily evoked. The 

scope of application can be increased to other deep learning 

techniques with higher dimensional data for better 

performance [6].ANN-feedforward back-propagation 

neural network, cascade-correlation neural network, and 

Elman neural network are compared. The Feedforward 

back-propagation network calculated better Effort 

estimation than 2 others. In the future, more ANNs can be 

compared using a large enough data set [7]. Long Short 

Term Memory (LSTM) is applied with regression as an 

activation function and recurrent highway network. This 

approach performed better than the existing TF-IDF 

technique in estimating the story points. The data set is 

small; this is the main limitation of this research. The feature 

selection process can be improved in the future [8].  

Systematic Literature Review (SLR) is performed on 

ML methodologies, Ordinary least squares regression, 

selection operator regression, Ridge regression least 

absolute shrinkage, elastic-net regression, least angle 

regression, classification and regression tree, Analogy-

Based Estimation (ABE), Support Vector Regression 

(SVR), adaptive boosting, RF, deep neural networks, ANN, 

bootstrap aggregating, and gradient boosting machine. 

Ensemble learning algorithms based on the principle of 

bootstrap aggregating, for example, Bagging and RF, 

performed the best overall over the 13 datasets. ABE 

appeared to be the highest-performing non-ensemble 

learning algorithm [9]. 

Ensemble-based model is also explored, and an 

application of this ensemble-based predictive model is 

developed. The ensemble-based prediction method is 

proven to be better than other prediction approaches. This 

approach is limited to the dataset from a particular 

organization, and some predictive algorithms in the 

ensemble provided better prediction results than this 

ensemble algorithm. For improvement, it can include 

human experts in ensembles and consider developing 

efficient optimization techniques at the project level 

[10].Another study used the ranking of features with 

Recursive Feature Elimination (RFE) and cross-validated 

selection of the feature numbers with the RF Classifier. The 

RF tree structure is used as the elimination classifier.  

The dataset is reduced by 95% compared to the original 

size. The deep learning - DMLP model develops a smaller 

and more meaningful dataset by achieving an accuracy of 

89% [12].In another experimental study, authors have 

proposed LR-RFE with a cross-validation-based feature 

selection method for classification. To avoid the overfitting 

problem with RFE, 10-fold stratified cross-fold validation 

is applied. After including top-ranked features, the pre-

processed dataset is then applied to different ML models; 

LR performs best on all model evaluation measures used. It 

was also observed that the feature selection method on the 

few dimensions (8 independent features) has contributed to 

improving the model accuracy and has helped to avoid 

severe concerns like multicollinearity. [13].  

In another proposed paper, an intrusion detection 

technique has been implemented that has been trained and 

tested on three ML classifiers, i.e., SVM, RF, and DT. In-

depth research on the ML classifiers for all the features has 
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been conducted, and it has been found that some features 

are irrelevant and redundant in the dataset. Hence, RFE is 

used to reduce the dimensionality of the dataset. After 

comparing all three classification techniques, RF proved to 

perform better than SVM before feature selection. However, 

after implementing feature selection, SVM performed better 

than RF and DT. [14]. 

An effective method of software effort estimation 

based on RFE has been evolved, and the model has been 

tested with seven ML-based classifiers. From the output of 

this method, the ranking of features is decided, and the best 

features are passed as input to another model based on 

ensemble-based learning. In the proposed ensemble-based 

learning process, all seven methods are taken part and 

predicted the actual cost and Lines Of Code (LOC). 

Simulation results prove that out of the fifteen features 

considered, four features, database size, required software 

reliability, process complexity, and main memory 

constraint, are the least significant for both targets. The 

performance of this method in terms of both targets LOC 

and actual cost is quite encouraging compared to the 

individual ML methods [15]. 

As per the literature survey, there are some limitations 

in previous research, such as all the influencing factors and 

features were not selected, features were not optimized in a 

proper set of most impacting features, most of the 

algorithms were not giving a properly optimized set as final 

output rather giving just a way to select them with the 

manual intervention of an expert.As a solution, to resolve 

the problem of feature selection and overcome all the 

limitations of the literature survey, an automated iterative 

feature elimination method with a final optimized set of 

features as output can be evolved. 

3. Methodology 
The methodology includes the artificial neural network 

classification model, the iterative feature elimination 

method for finding rank, and an iterative set of feature 

elimination methods to find an optimized set. The flow of 

methodology is shown in Figure 1. In the proposed method, 

the ANN model is used for classification, and ANN is one 

of the most used supervised model functions, which can be 

seen as a multi-layer network of neurons. An ANN 

classification model is developed with 3 layers: input layer, 

hidden layer, and output layer. The model is trained and 

tested with different features of the data set in each iteration, 

and accuracy is found; all hyperparameters in this ANN 

model are used per output classes, dataset type, and size. 

The model is tuned for best performance.  

Training and testing the ANN model with the set of 

optimized features is considered a critical task, as selecting 

an optimized set of features from any dataset is a 

complicated process. The iterative feature elimination 

method is the way to efficiently select the required set of 

features to train and test the ANN classification model. This 

method is used to eliminate the weakest features per rank 

from weaker to stronger and find the set of the features to 

be used finally in the model. The model’s accuracy with all 

the features is compared to the model’s accuracy after 

eliminating one feature, and this process continues for each 

feature to find the rank of features. After finding the rank of 

features from weaker to stronger, the iterative set of feature 

elimination method is used to remove the weakest set of 

features from a set of all features to find an optimized set of 

features to be used in the ANN model. This final set is used 

to train and test the resultant model, ready for effort 

estimation. 

The novelty of the proposed method is a multilevel 

iteration process in an ANN prediction model. The first 

level finds the rank of the weakest features, and the second 

level finds the rank of the weakest set of features to be 

finally eliminated from the dataset. This method actually 

fine-tunes the performance of the model by selecting only 

the most eligible features for the model. 

4. Iterative Feature Elimination Method with 

Classification Model 
The proposed method consists of an Iterative feature 

elimination method and an ANN classification model. 

Accuracy is computed after each elimination of feature 

iteratively with the help of the ANN classification model, 

the rank of all features is decided, and then accuracy is 

computed after each elimination of a set feature iteratively 

as per the feature’s rank with the help of the ANN 

classification model. Finally, the optimized set of features 

is found. Features and targets of the COCOMO NASA 2 

dataset are shown in Table 1 and Table 2, respectively. 21 

features and 2 targets are there in the dataset. 

Table 1. COCOMO NASA 2 dataset features 

Column Number Attribute Name 

0 project name 

1 category of application 

2 flight or ground system 

3 NASA centre 

4 year of development 

5 development mode 

6 Database size 

7 Process complexity 

8 Required software reliability 

9 Time constraint for CPU 

10 main memory constraint 

11 machine volatility 

12 turnaround time 

13 analysts capability 

14 application experience 

15 programmers capability 

16 virtual machine experience 

17 language experience 

18 modern programming practices 

19 use of  software tools 

20 schedule constraint 

Table 2. COCOMO NASA 2 Dataset Targets 

Column Number Attribute Name 

21 LOC 

22 Actual Efforts 
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Fig. 1 Methodology 

An ANN model for classification is developed with 3 

layers: input layer, hidden layer, and output layer. The 

RELU activation function is used in layers, and the negative 

log-likelihood function is used as a loss function. The 

dataset was split into 65% for training and 35% for model 

testing.  

The accuracy of the ANN classifier is observed 

separately for all twenty-one features with respect to LOC 

and actual cost target.In various steps of the proposed 

algorithm, this classifier is trained and tested with different 

inputs to find accuracy for ranking the features and set of 

features, followed by finding the final optimized set. Once 

the final optimized set is found, this classifier is used again 

for prediction after training and testing. 

In the first step, the features affecting LOC and Actual 

cost in software effort estimation are ranked as per accuracy 

obtained by the ANN model for each feature eliminated. 

COCOMO Nasa 2 dataset has been considered in this work, 

having twenty-one number of features required, such as 

project name, category of application, flight or ground 

system, NASA centre, year of development, development 

mode, Database size, Process complexity, Required 

software reliability, a Time constraint for CPU, main 

memory constraint, machine volatility, turnaround time, 

analysts capability, application experience, programmers 

capability, virtual machine experience, language 

experience, modern programming practices, use of software 

tools and schedule constraint, and with two number of class 

labels such as LOC and actual cost. 

This data set has been divided into two sets. In the first 

set, twenty-one features have been considered with the 

target LOC and others with the target actual cost. Both sets 

of datasets are being processed through the iterative 

elimination of features algorithm shown in Algorithm 1 and 

flow shown in Figure 2, where a single feature is eliminated 

at a time, and the remaining twenty features with LOC class 

label are input to the ANN classifier.  

After building the classifier model with all the dataset 

features, the model is trained and tested, and found the 

accuracy A. In an iterative fashion, each feature is 

eliminated from the dataset, and found the accuracy A’ with 

the remaining features in the dataset. The percentage 

difference in A’ against A is considered for the ranking of 

features. After completing all the features using the above 

process, the rank of all features is found.  

Algorithm 1: Ranking of features 

Input  : Dataset S = {f1, f2, …fn} 

Output  : rank of features RF = {rf1, rf2, …rfn} 

1. Build a classifier using dataset S 

2. Prepare train data from dataset S and then train 

the classifier 

3. Prepare test data from dataset S and then test the 

classifier 

4. Find the accuracy of classifier for dataset S 

5. For each feature fi in S  

1. S’ = S – fi 

2. Prepare train data from dataset S’ and then 

train the classifier 

3. Prepare test data from dataset S’ and then 

test the classifier 

4. Find the accuracy of classifier for dataset S’ 

5. Find the accuracy loss of classifier due to 

elimination of fi 

6. Create the accuracy loss set of features {f1, f2, …fn} 

7. Sort the set to find rank of features RF = {rf1, rf2, 

…rfn} 

After the first step, the rank of features from weakest to 

strongest is found, which will be inputted in this second 

step. Starting from the weakest feature, the set of features is 

created by adding features one by one as per ranking. This 

set of features is eliminated from all the features in the 

dataset and found the accuracy of classifier after training 

and testing. This process continues until all the input set is 

iterated. 

Fig. 2 Ranking of feature
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Fig. 3 Ranking of the set of features and finding an optimized set 

Fig. 4 Iterative feature elimination method and finding an optimized set

The rank of the set of features is found, the weakest set 

of features is removed from all the features in the dataset, 

and finally, the optimized set is found. The flow is presented 

in Figure 3, and the algorithm is shown in Algorithm 2. The 

full flow combining all steps with two algorithms and one 

classification model is depicted in Figure 4 below, and a full 

algorithm is also described in Algorithm 3. 

Algorithm 2: Ranking of a set of features and finding an 

optimized set 

Input  : rank of features RF = {rf1, rf2, …rfn} 

Output  : Optimized set of features OS = {f1, f2, …fn} 

1. For each feature in set RF 

1. Removed features set ReFi = ReFi-1 + rfi 

2. S’ = S – ReFi 

3. Prepare train data from dataset S’ and then 

train the classifier 

4. Prepare test data from dataset S’ and then 

test the classifier 

5. Find the accuracy of classifier for dataset S’ 

6. Find the accuracy loss of classifier due to 

elimination of ReFi 

2. Create the accuracy loss set of features set {ReF1, 

ReF2, …ReFn} 

3. Sort the set to find rank of features set RReF = 

{rReF1, rReF2, …rReFn} 

4. Find removed features set with the most accuracy 

RReF 

5. Finally, find the optimized set OS = S – RReF 

Algorithm 3 Iterative feature elimination method and 

finding optimized set 

Input : Dataset S = {f1, f2, …fn} 

Output : Optimized set of features OS = {f1, f2, …fn} 

1. Build a classifier using dataset S 

2. Prepare train data from dataset S and then train the 

classifier 

3. Prepare test data from dataset S and then test the 

classifier 

4. Find the accuracy of classifier for dataset S 

5. For each feature fi in S  

1. S’ = S – fi 

2. Prepare train data from dataset S’ and then train 

the classifier 

3. Prepare test data from dataset S’ and then test the 

classifier 

4. Find the accuracy of classifier for dataset S’ 

5. Find the accuracy loss of classifier due to 

elimination of fi 

6. Create the accuracy loss set of features {f1, f2, …fn} 

7. Sort the set to find rank of features RF = {rf1, rf2, …rfn} 

8. For each feature in set RF 

1. Removed features set ReFi = ReFi-1 + rfi 

2. S’ = S – ReFi 

3. Prepare train data from dataset S’ and then train 

the classifier 

4. Prepare test data from dataset S’ and then test the 

classifier 
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5. Find the accuracy of classifier for dataset S’ 

6. Find the accuracy loss of classifier due to 

elimination of ReFi 

9. Create the accuracy loss set of features set {ReF1, 

ReF2, …ReFn} 

10. Sort the set to find rank of features set RReF = 

{rReF1, rReF2, …rReFn} 

11. Find removed features set with the most accuracy 

RReF 

12. Finally, find the optimized set OS = S – RReF 

5. Experimental Setup and Analysis 
This experiment was performed using a system having 

Intel(R) Core(TM) i5-8250U CPU @1.60 GHz, 1800 MHz, 

4 Core(s), 8 Logical Processor(s), 8.00 GB RAM, and 64-

bit OS Windows 10 configurations. The simulation 

environment includes Java JDK 11, deeplearning4j and nd4j 

API, and Eclipse 2022 -12 IDE. All hyperparameters of the 

classifier are set by selecting suitable values on a trial-and-

error basis.  

 
Fig. 5 Accuracy for target LOC after one feature elimination 

 
Fig. 6 Accuracy for target actual cost after one feature elimination 

 
Fig. 7 Accuracy percent for target LOC after one feature elimination against all features 

 
Fig. 8 Accuracy percent for target actual cost after one feature elimination against all features 

 
Fig. 9 Set of features and Accuracy for target LOC 
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Fig. 10 Set of features and Accuracy for target actual cost

Figure 5 presents the accuracy of the ANN classifier for 

the target LOC after eliminating one feature. Here, after 

removing feature number 15, the accuracy of the classifier 

is 0.96, which has the most accuracy. After removing the 

feature numbers 0, 6, 12, and 20, the accuracy of the 

classifier is 0.78, which is the lowest accuracy.  

Figure 6 presents the accuracy of the ANN classifier for 

the target actual cost after eliminating one feature. Here, 

after removing feature numbers 11 and 14, the accuracy of 

the classifier is 0.87, which has the most accuracy. After 

removing the feature numbers 1, 4, and 16, the accuracy of 

the classifier is 0.75, which is the lowest accuracy.  

Figure 7 presents the percentage of the classifier’s 

accuracy for target LOC increased or decreased after 

eliminating one feature against the classifier’s accuracy of 

all features.  

Figure 8 presents the percentage of the classifier’s 

accuracy for target actual cost increased or decreased after 

eliminating one feature against the classifier’s accuracy of 

all features. The accuracy of the ANN classifier using all the 

features of the COCOMO NASA 2 dataset is 0.84; the same 

accuracy is considered to find other values in the proposed 

method.Figure 9 presents the accuracy for target LOC after 

the number of features removed rank-wise from all feature 

sets. The below graph shows that the accuracy after 

removing the first 6 weakest features is 0.96, which is the 

most accuracy, and the accuracy after removing the first 

10,18 and 20 weakest features is 0.81, which is the least 

accuracy.  

Figure 10 presents the accuracy for the target actual 

cost after the number of features removed rank-wise from 

all feature sets. In the graph below shows that the accuracy 

after removing the first 3 weakest features is 0.96, which is 

the most accuracy, and the accuracy after removing the first 

13 weakest features is 0.72, which is the least accuracy.  

 

For target LOC, the accuracy of all the removed sets of 

columns is shown in Table 3. So the removed set includes 

the first 6 weakest features {15, 3, 4, 13, 17, 19} presented 

in Table 4; with the help of this, the optimized set of features 

to be used in the ANN model can be found in 

{0,1,2,5,6,7,8,9,10,11,12,14,16,18,20} which is described 

in Table 5. Similarly, for the target actual cost, the accuracy 

of all the removed sets of columns is shown in Table 6. So 

the removed set includes the first 3 weakest features 

{11,14,12} presented in Table 7; with the help of this, the 

optimized set of features to be used in the ANN model can 

be found in {0,1,2,3,4,5,6,7,8,9,10,13,15,16,17,18,19,20} 

which is described in Table 8. 

Table 3. Removed columns and accuracy for target LOC 

Removed columns Accuracy 

{15} 0.84 

{15, 3} 0.9 

{15, 3, 4} 0.84 

{15, 3, 4, 13} 0.93 

{15, 3, 4, 13, 17} 0.9 

{15, 3, 4, 13, 17, 19} 0.96 

{15, 3, 4, 13, 17, 19, 7} 0.9 

{15, 3, 4, 13, 17, 19, 7, 8} 0.93 

{15, 3, 4, 13, 17, 19, 7, 8, 10} 0.9 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14} 0.81 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18} 0.87 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1} 0.9 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2} 0.87 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9} 0.93 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11} 0.84 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11, 16} 0.93 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11, 16, 5} 0.87 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11, 16, 5, 12} 0.81 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11, 16, 5, 12, 0} 0.84 

{15, 3, 4, 13, 17, 19, 7, 8, 10, 14, 18, 1, 2, 9, 11, 16, 5, 12, 0, 6} 0.81 
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Table 4. Removed set of features for target LOC 

Column Number Attribute Name 

3 NASA centre 

4 year of development 

13 analysts capability 

15 programmers capability 

17 language experience 

19 use of  software tools 

Table 5. Optimized set of features for target LOC 

Column Number Attribute Name 

0 project name 

1 category of application 

2 flight or ground system 

5 development mode 

6 Database size 

7 Process complexity 

8 Required software reliability 

9 Time constraint for CPU 

10 main memory constraint 

11 machine volatility 

12 turnaround time 

14 application experience 

16 virtual machine experience 

18 modern programming practices 

20 schedule constraint 

Table 6. Removed columns and accuracy for target actual cost 

Removed columns Accuracy 

{11} 0.84 

{11, 14} 0.84 

{11, 14, 12} 0.96 

{11, 14, 12, 15} 0.81 

{11, 14, 12, 15, 17} 0.84 

{11, 14, 12, 15, 17, 2} 0.87 

{11, 14, 12, 15, 17, 2, 20} 0.9 

{11, 14, 12, 15, 17, 2, 20, 10} 0.87 

{11, 14, 12, 15, 17, 2, 20, 10, 13} 0.81 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3} 0.84 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7} 0.87 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8} 0.81 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9} 0.72 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18} 0.81 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19} 0.78 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19, 0} 0.9 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19, 0, 5} 0.75 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19, 0, 5, 6} 0.75 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19, 0, 5, 6, 16} 0.78 

{11, 14, 12, 15, 17, 2, 20, 10, 13, 3, 7, 8, 9, 18, 19, 0, 5, 6, 16, 1} 0.84 
 

Table 7. Removed set of features for target actual cost 

Column Number Attribute Name 

11 machine volatility 

12 turnaround time 

14 application experience 
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Table 8 Optimized set of features for target actual cost 

Column Number Attribute Name 

0 project name 

1 category of application 

2 flight or ground system 

3 NASA centre 

4 year of development 

5 development mode 

6 Database size 

7 Process complexity 

8 Required software reliability 

9 Time constraint for CPU 

10 main memory constraint 

13 analysts capability 

15 programmers capability 

16 virtual machine experience 

17 language experience 

18 modern programming practices 

19 use of  software tools 

20 schedule constraint 
 

Table 9. Accuracy of classifiers after the feature elimination method applied 

Classification model Accuracy with target LOC Accuracy with target actual cost 

Decision tree 92.18 79.68 

KNN 90.62 79.68 

Logistic regression 67.18 70.31 

Naïve Bayes 62.5 73.43 

Random forest 92.18 73.43 

Stochastic gradient descent 46.87 54.68 

SVM 53.12 67.18 

Ensemble model 95.31 81.25 

The proposed ANN model 96.96 96.96 

6. Result and Discussion 
In the literature survey, the feature elimination 

method’s use cases and results in estimations using ML 

techniques have been reviewed, and it was found that this 

proposed iterative feature elimination method with the ANN 

model for classification has outperformed other models.  

This proposed model uses this iterative elimination 

twice in the algorithm to obtain the most optimized set of 

features. After applying the proposed method to features of 

the COCOMO NASA 2 data set, the model’s classification 

accuracy increased up to 96% for both actual cost and LOC 

target. The accuracy of different classifier models is 

presented in Table 9. After comparison, it is found that the 

accuracy of the proposed ANN classification model with the 

iterative feature elimination method is the highest for both 

targets LOC and actual cost. 

This proposed method is beneficial to information 

technology professionals because it allows them to find 

more accurate software effort estimation. Professionals can 

use deep learning with the optimum memory requirement, 

process time, and resources, as decreasing the number of 

features can improve the model’s performance. 

Academicians can use this paper to train and educate 

students in this subject. Researchers can use this research to 

innovate new possibilities in this area further and add new 

research works by extending this. 

7. Conclusion 
Deep learning has always been a popular and efficient 

technique to predict software effort, cost, time, and size. 

Selecting features for a deep learning model is always the 

most important task to avoid overestimating or 

underestimating a piece of work in software development. 

If there is a significant method available for feature 

selection, then this task becomes easy and standardized. 

This research proposes a novel method of software 

effort estimation based on Iterative feature elimination. The 

dataset is trained and tested with the ANN model for finding 

accuracy, and then the features are being ranked. The 

weakest features are eliminated from the set of all features 

iteratively, and the set of weakest features is found to be 

eliminated from all features dataset. The performance of the 

proposed iterative feature elimination method concerning 

LOC and actual cost is quite encouraging compared to the 

individual methods. For target LOC, the accuracy of 

individual ML technique Random forest and decision tree is 

92.18%, and the accuracy of the ensemble model is 95.3%, 

where the accuracy of this proposed ANN model with 

iterative feature elimination method is more than 96%. 

Similarly, for target Actual cost accuracy of the Decision 

tree and KNN is 79.68 %, the ensemble model achieved 

more than 81%, and the proposed ANN model’s accuracy is 

96.96%As future work, the proposed method and model 
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may be used for other agile project datasets and 

hyperparameters of ANN can be tuned further to increase 

accuracy. 

The strength of this proposed method is that the levels 

of iterative elimination are more than in the previous pieces 

of literature. The limitation is that it consists of a neural 

network as the main deep learning technique used for the 

model, and it requires more resources and a large and proper 

dataset with minimal missing data for any attributes. 

Sometimes, neural networks cannot justify the result 

because of its random nature.  
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