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Abstract - In the face of increasing natural disasters and emergencies, there is a growing need for effective geospatial 

information systems to process and classify emergency reports in real time. This work presents a new Convolutional Neural 

Network (CNN) model that is intended to classify emergency images taken and delivered to the iRESPOND system. Through the 

utilization of training phases and various tools, frameworks, and techniques, the authors effectively used deep learning to 

develop the CNN model. This model improves disaster response and mitigation by enabling the iRESPOND system to categorize 

emergency incidents rapidly. The results showcase the model’s commendable performance, achieving a high accuracy of 95.02% 

on the test set. A comprehensive evaluation, including precision, recall, and F1-score metrics for individual classes, illuminates 

the model’s strengths and areas for improvement. Noteworthy is the model’s proficiency in classes such as ‘flood’, 

‘infrastructure_damage’, ‘no_damage_buildings_street’, ‘no_damage_ water_related’, and ‘no_damage_wildlife_forest’, 

reflecting robust predictive capabilities in specific emergency scenarios. The interpretability of the CNN model is augmented 

through visualization techniques like  LIME, Grad-CAM, and Grad-CAM++. Also, a visualization report featuring the original 

image alongside interpretability overlays provides information on the characteristics and areas of the original images that 

influence the model’s decisions. In conclusion, the model demonstrates efficacy in rapidly categorizing emergency incidents, 

providing a valuable tool for the response team. The recommendations for future work underscore the continuous refinement 

required for optimal performance, including addressing class imbalances, fine-tuning hyperparameters, exploring ensemble 

models, and expanding the diverse image datasets. 

Keywords - Emergency response, Machine learning, Resnet50, Tensorflow, Keras.

1. Introduction 
Communities all throughout the world struggle with 

effective Emergency Response Management (ERM). First 

responders have to deal with a range of situations, including 

crimes, traffic accidents, and fires. To reduce the risk to 

human life, they must respond swiftly to incidents. [1] In order 

to respond to emergencies and disasters such as fires, 

typhoons, terrorist attacks, civil unrest, car accidents, and the 

like, parts of the world, including the Philippines, are using 

the 911 emergency number as a reporting tool. [2] Moreover, 

the rise in the frequency and intensity of natural disasters and 

emergencies has heightened the urgency for advanced 

technologies to bolster crisis management capabilities. [3,4] 

In fact, there has been an alarming increase of 73.7% and 

11.55% of geological and climate-related hazards from 2020 

to 2021, a total of 79 thousand deaths and injuries during fire 

based on a 2021 survey from 38 participating countries, and 

1.35 million worldwide fatalities on road accidents reported in 

2022. [5-7] In response to this pressing need, geospatial 

information systems have emerged as indispensable tools for 

processing and classifying emergency reports in real-time. 

[8,9] As a subset of machine learning, deep learning has 

demonstrated remarkable success in image recognition and 

classification tasks. [10] By harnessing the power of deep 

learning, the CNN model excels in discerning intricate 

patterns and features within emergency images, 

outperforming conventional approaches.  

This strategic use of deep learning aligns with the broader 

trend in disaster management research, where machine 

learning techniques are increasingly being embraced for their 

ability to handle the complexity of dynamic datasets. [11,12] 

While deep learning algorithms can offer positive outcomes 

on accuracy, they may be resource-intensive and inefficient 
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for real-time monitoring applications. [13] The study of 

Rathod, A. et al. showcases the effectiveness of CNN-based 

models in achieving high accuracy for disaster image 

classification; however, there is an inadequate foundation for 

developing a robust computerized process for disaster 

response and recovery management systems. [14]  

Traditional methods of disaster classification lack 

precision and speed, which are required for timely decision-

making and resource allocation during emergencies is the 

focus of the study of Shah J. et al., and there are also issues 

related to data privacy, data transfer latency, and centralized 

data storage that posed challenges in implementing effective 

disaster classification systems. [15] Therefore, there is a need 

to investigate the effectiveness of transfer learning techniques 

in addressing the lack of training data and improving model 

performance in deep learning applications, particularly in 

scenarios with limited datasets. [16] 

Additionally, Asif, A. et al. highlight the potential of 

utilizing neural network-based image processing architectures 

to improve crisis-related activities. The paper also mentioned 

the limitations of studies in assessing activity, context, and 

other related images in emergencies and disasters. At the same 

time, Tang et al. identify the limitations of existing forest 

classification algorithms based on graphics analysis, Kallas J., 

and Napolitano R. on sub-classifying a specific and complex 

type of structural damage like cracks, and Daly, S. and Thom, 

J. on the difficulty on recognizing fire and smoke in images. 

[13,17-19] On the other hand, the study of Mukhopadhyay A. 

et al. has identified that future research in ERM prediction 

may also focus on assessing the accuracy of emergency 

prediction models; additional modelling and empirical studies 

are needed to comprehend the advantages and drawbacks of 

these methods fully. [1]  

Amidst these challenges, developing the models for 

emergency and disaster-related applications poses positive 

results. In the study of Sharma, N., Jain, V., and Mishra, A., 

highlighted the importance of testing CNNs on multiple 

datasets to reveal their true capabilities and limitations. 

Although they have observed that GoogLeNet and ResNet50 

outperformed AlexNet in terms of precision in recognizing 

objects in images, there are still significant variations in the 

performance of the trained CNNs across different categories 

of objects.[20] 

 With the same set of models, the study by Zainorzoli, 

S.M., et al., the ResNet50 model also achieved the highest 

accuracy. [21] Likewise, Sushma, L., and Lakshmi, K. P., 

proved that the ResNet50 model had the highest accuracy, but 

it was compared to VGG16 and VGG19. [22] The analysis 

consistently points towards ResNet50 as a superior performer 

in terms of accuracy. Through comparative evaluations 

against other popular CNN architectures like AlexNet, 

GoogLeNet, VGG16, VGG19, and others, ResNet50 

consistently demonstrates superior precision and reliability in 

recognizing objects within images. These corroborated across 

diverse datasets and applications, which underscores its 

capability to achieve high levels of accuracy, making it a 

preferred choice for image classification tasks, including 

emergency incident image classification. 

Generally, the related studies contributed to diverse 

methodologies and applications to the field of disaster 

prediction and response, ranging from advanced machine 

learning models to innovative technological solutions. 

However, further research and collaboration are needed to 

address the complex challenges and gaps in diverse datasets 

of images for different classifications of emergencies and 

disasters, higher accuracy on prediction rate, and real-time 

processing of incident reports in disaster response and 

mitigation. Hence, the papers contributed to this study by 

introducing a pioneering CNN model tailored for the 

iRESPOND system. 

The iRESPOND system, a key player in emergency data 

management, receives and processes diverse information 

streams, including images captured during critical situations. 

Traditional methods of image analysis often fall short in terms 

of speed and accuracy, necessitating the integration of 

advanced machine-learning techniques. This proposed study 

is strategically designed to address this challenge, leveraging 

deep learning capabilities to enhance the system’s image 

classification capabilities. 

The primary goal of designing this model is to expedite 

the classification process of emergency incidents based on 

visual information extracted from images sent to the system. 

This accelerated categorization process translates into a 

substantial reduction in response times, aligning with the 

global goal of achieving more resilient and adaptive disaster 

management systems. [23] Moreover, the enhanced image 

classification capability offers the advantage of assessing 

emergency situations, enabling responders to address 

impending crises proactively. 

The significance of this research lies in its opportunity to 

contribute to the wider improvement of disaster-mitigation 

response efforts. By augmenting the iRESPOND system’s 

capabilities through the integration of the CNN model, the 

authors are not only addressing an immediate need for real-

time image classification but also laying the foundation for 

future advancements in technologically sophisticated disaster 

management frameworks. 

Therefore, this paper adds a valuable dimension to the 

evolving field of geospatial information systems in emergency 

management. The introduction of a novel CNN model, 

informed by deep learning principles, reflects a strategic 

response to the escalating challenges posed by natural 

disasters and emergency situations. By enhancing the 
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iRESPOND system’s image classification capabilities, the 

research strives to play a pivotal role in the ongoing pursuit of 

effective, early and informed disaster response and mitigation 

strategies. 

2. Tools, Frameworks, and Techniques 
This section provides the training tools, frameworks, and 

techniques for the efficient development of the CNN model, 

which will contribute to the system’s overall effectiveness in 

providing early warnings and improving disaster response and 

mitigation efforts. 

2.1. TensorFlow 

This open-source machine learning framework offers a 

thorough platform for developing and deploying neural 

network models. Because of its flexibility, scalability, and 

support for a broad spectrum of applied machine learning, it is 

extensively utilized in both academics and industry. [24] 

2.2. Keras 

An open-source Python API for high-level neural 

networks that functions as a user-friendly interface for neural 

network development and training. Keras is a well-liked 

option for rapid deep-learning model construction and 

prototyping, as it can operate on top of TensorFlow. [25] 

2.3. ResNet50 - Residual Network with 50 layers 

A convolutional neural network architecture, which is 

known for its deep structure and the use of residual learning, 

helps mitigate the vanishing gradient problem in very deep 

networks. ResNet50 has been widely adopted for image 

classification tasks due to its excellent performance and ability 

to train deep networks effectively. [26] 

2.4. Adam - Adaptive Moment Estimation  

Another popular optimization algorithm combines ideas 

from Root Mean Squared Propagation (RMSProp) and 

momentum optimization. For every parameter, it keeps track 

of two moving averages: the mean (first instant) and the 

uncentered variance (second moment).  

The learning rates for each parameter are then adaptively 

adjusted using these moving averages. Adam is known for its 

robustness across different types of neural network 

architectures and has become a default choice for many deep 

learning applications. [27] 

2.5. Local Interpretable Model - Agnostic Explanations 

(LIME) 

A method for providing context for machine learning 

models’ predictions. It functions by varying the data and 

tracking how the predictions change. This method is 

especially useful for understanding the decision boundaries of 

complex models like neural networks. [28] 

2.6. Gradient - Weighted Class Activation Mapping (Grad-

Cam) 

Grad-CAM is an interpretive and visual method for deep 

neural network recommendations, especially in convolutional 

neural networks. It generates heatmaps that show the areas of 

an input image that are significant in determining the final 

classification. Grad-CAM offers information about the areas 

in which the network is most active. [29] 

2.7. Gradient - Weighted Class Activation Mapping Plus 

Plus (Grad-Cam++) 

On the other hand, Grad-CAM++ enhances the 

localization of important areas in an image. It incorporates a 

weighted combination of positive and negative gradients to 

improve localization accuracy. This refinement makes Grad-

CAM++ particularly effective in providing detailed and 

accurate visual explanations for model predictions. [30] 

The iRESPOND system employs the ResNet50 

architecture as the backbone of its Convolutional Neural 

Network (CNN). ResNet50’s deep structure and residual 

learning capabilities enhance the model’s capacity to identify 

complex patterns and features of emergency images sent to the 

iRESPOND system. TensorFlow serves as the underlying 

framework for implementing the CNN model, while Keras 

provides a user-friendly interface for designing and training 

the neural network. This combination allows for efficient 

development, training, and deployment of the deep learning 

model within the iRESPOND architecture. 

Moreover, Adam is used for optimization in order to 

handle non-stationary objectives and noisy gradients 

effectively. This is particularly advantageous in scenarios 

where emergency images might exhibit diverse and dynamic 

features. 

In addition, LIME is employed for model interpretation 

and explanation. By varying the emergency images supplied 

and tracking predicted alterations, LIME helps provide local, 

interpretable insights into how the CNN model makes 

decisions. Finally, Grad-CAM and Grad-CAM++ are utilized 

as visualization techniques to generate heatmaps highlighting 

areas of interest in emergency images. These visualizations 

aid in understanding which image elements have the greatest 

influence on the CNN model’s ability to make decisions 

crucial for validating the model’s focus on relevant features 

during the classification of emergency incidents. 

3. Methodology 
In developing and fine-tuning the model for the 

iRESPOND system, as depicted in Figure 1, uses the training 

phases are used as follows to provide a detailed account of the 

steps employed in order to ensure the model’s efficacy for 

rapidly categorizing emergency incidents based on visual 

information. 
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Fig. 1 Training phases (Methodology) 

3.1. Image Dataset 

The choice of an image dataset is a critical decision in 

CNN development. With its extensive and diverse collection 

of labelled images, a dataset provides a rich environment for 

training a CNN to recognize intricate patterns and features 

across various classes. [31] This diversity ensures that the 

model generalizes well to new, unseen data. 

3.2. Global Variable Modification 

Global variable modifications, such as setting a generic 

seed, specifying epochs, and adjusting the learning rate, play 

a significant part in the reproducibility and optimization of the 

model training process. The concept of hyperparameter tuning 

emphasizes the importance of systematically adjusting these 

parameters to achieve optimal model performance. [32] 

3.3. Reading and Decoding 

Efficient data input is crucial for optimizing CNN 

training. TensorFlow’s data input pipelines guide the 

decoding and pre-processing of images. Creating a 

streamlined and effective data pipeline ensures the model is 

fed with properly formatted and processed input during 

training. [24] 

3.4. Partitioning Dataset 

The dataset partitioning into train split, valid split, and test 

split is a crucial step in model evaluation. It emphasizes the 

significance of proper dataset splitting to ensure unbiased 

assessments of a model’s generalization performance. This 

strategic partitioning is fundamental for assessing how well 

the model performs on new, unseen data. [33] 

3.5. Model Building  

Building the CNN model involves careful consideration 

of architecture, hyperparameters, and layers. Leveraging pre-

trained models like ResNet50 is a common practice in transfer 

learning. [26] This approach allows the model to benefit from 

previously learned features, which is particularly helpful when 

handling limited labelled data. Keras, as a high-level neural 

networks API, simplifies the process of specifying and 

building complex CNN architectures. [25] 

3.6. Performance Plotting 

Understanding the model’s behavior during training 

requires being able to visualize its performance. Utilizing 

libraries like Matplotlib, the plotting of training and validation 

on accuracy and loss over epochs presents insight into the 

convergence and possible overfitting of the model. These 

visualizations are essential for making informed decisions 

about model adjustments. [34] 

3.7. Model Result and Visualization 

The observed results, encompassing model performance 

metrics and any noteworthy findings serve as the culmination 

of the CNN development process. Powers’ work on evaluation 

metrics in reference offers an extensive range of metrics that 

collectively provide a thorough assessment of the model’s 

classification performance. [35] The discussion of results 

should focus on accuracy and the model’s ability to generalize 

to diverse scenarios. Alongside visualization techniques, this 

can help interpret the model’s decisions by highlighting 

important areas in the input images. [26] 

4. Results and Discussion 
This provides a comprehensive evaluation of the CNN-

based image classification model developed within the 

iRESPOND System, focusing on its modelling approach, 

performance analysis, and implementation.  

4.1. Modelling Approach 

4.1.1. Image Datasets 

The dataset encompasses a diverse range of disaster-

related scenarios, with each image meticulously labelled to 

facilitate the model’s learning process. The dataset comprises 

image labels and their corresponding counts. As shown in 

Table 1, each label represents a distinct category of emergency 

or disaster-related scenarios, ranging from natural disasters 

like earthquakes and floods to human-inflicted accidents and 

various types of infrastructure and environmental damage. 

The dataset’s strength lies in its diversity, encompassing a 

substantial number of images for each category, which is 

essential for training the CNN model. 

Table 1. Disaster image dataset 

Label/Category Image Count 

1. accident_human_inflicted 241 

2. earthquake 37 

3. el_niño 202 

4. flood 1,036 

5. infrastructure_damage 1,419 

6. landslide 457 

7. no_damage_buildings_street 4,573 

8. no_damage_human 121 

9. no_damage_water_related 2,275 

10. no_damage_wildlife_forest 2,272 

11. urban_fire 420 

12. wild_fire 515 
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4.1.2. Global Variable Modification 

The global variables play a vital role in configuring and 

controlling various aspects of the model in the iRESPOND 

system. As shown in Figure 2, each variable is carefully 

defined to influence different components of the model’s 

architecture, training, and evaluation processes of each global 

variable: 

CLASSES 

The CLASSES variable defines the different categories or 

classes present in the dataset. Each class corresponds to a 

specific type of emergency incident or disaster scenario. This 

list is crucial for model output interpretation, evaluation, and 

ensuring that the CNN can predict within the defined classes. 

SEED 

This variable sets the random seed for various stochastic 

processes in the model. A fixed seed, which is 68765 in this 

case, ensures reproducibility during training, essential for 

consistent results when experimenting with the model or 

comparing different iterations. 

TRAIN_SPLIT, VALID_SPLIT, TEST_SPLIT 

This defines the proportion of the images allocated to 

train, validate, and test, respectively. Proper splitting 

guarantees that a diverse dataset is utilized to train the model, 

validated on distinct examples, and tested on unseen instances, 

promoting generalization. 

IMAGE_SHAPE_2D, IMAGE_SHAPE_3D 

The CNN model expects the input images to have these 

dimensions. Here, images are planned to have either a 2D 

shape (grayscale) or a 3D shape (RGB). Consistent image 

dimensions are critical for compatibility with the model 

architecture. 

DIRECTORIES 

These variables specify the paths to different directories 

for storing and organizing the dataset. The source directory 

contains the original dataset, while the refactored directory 

holds the pre-processed and augmented data.  

The training, validation, and test directories store subsets 

of the data for their respective purposes. 

EPOCHS  

This establishes the iteration count or passes through the 

entire training dataset during training. A carefully chosen 

number of epochs ensures the model converges to an optimal 

state without overfitting or underfitting. 

LEARNING_RATE 

This variable determines each iteration’s step size upon 

updating the model parameters. It is a critical hyperparameter 

influencing the convergence and stability of the training 

process. 

BASE_MODEL 

The BASE_MODEL defines the ResNet50 serving as a 

pre-trained backbone model that leverages transfer learning, 

allowing the model to benefit from features learned on large-

scale image datasets. 

PREPROCESSING_METHOD 

This method variable specifies the pre-processing 

function carried out to input images before providing them to 

CNN. In this case, the ResNet50-specific pre-processing 

method is employed to ensure compatibility with the pre-

trained ResNet50 model. 

OPTIMIZER 

This defines the optimization algorithm used during 

training. In this instance, the Adam optimizer with a specified 

learning rate is chosen for its effectiveness in optimizing deep 

neural networks. Each of these global variables contributes to 

the overall flexibility, efficiency, and adaptability of the 

model, which reflects careful consideration of diverse factors 

crucial for successful model training and deployment.  

4.1.3. Reading/Decoding and Partitioning Dataset 

Figure 3 shows these are the scripts used to prepare and 

organize the image dataset for training the model. It is worth 

noting that this script performs dataset partitioning for 

training, validation, and testing and organizes the data into 

directories suitable for training a CNN model. The 

`prime_dataset` function could be used as part of a broader 

data preparation pipeline before training the iRESPOND 

system’s CNN model. Additionally, the script uses shell 

commands (`ls`) and system utilities (`shutil`) for file 

operations, which can vary in compatibility across different 

operating systems. 

Read Each Image With its Class Label 

• This part of the code iterates through each class in the 

`CLASSES` list. 

• It uses the `ls` command to list the files in the specified 

directory (`SOURCE_DIRECTORY + folder`). 

• The file names are split using a regular expression to 

extract individual image names. 

• The extracted class-label pairs are appended to the 

`images` list. 
 

Train, Validate, and Test Partitioned Images 

• Train, validate, and test datasets directories are generated 

for each class. 

• Scripts then iterates through each class: 

o Randomly selects a fraction of the images for training 

and moves them to the respective training directory. 

o Randomly selects a fraction of the remaining images 

for validation and moves them to the respective 

validation directory. 

o The remaining images are moved to the testing 

directory. 
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 Fig. 2 Global variables (Code Snippet) 

 
Fig. 3 Reading/Decoding and partitioning dataset (Code Snippet) 
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Fig. 4 Model building and performance plotting (Code Snippet)

Remove Source Directory 

• Once the images are moved to their respective training, 

validation, and testing directories, the original source 

directory is removed using `shutil.rmtree 

(SOURCE_DIRECTORY)`. 

4.1.4. Model Building and Performance Plotting  

The following function, as shown in Figure 4, serves as a 

comprehensive tool for building, training, and evaluating the 

iRESPOND system’s CNN model, providing key points into 

its performance through various visualizations and metrics. 

Data Preparation 

• The script uses `ImageDataGenerator` to create data 

generators for training, validation, and testing sets. These 

generators pre-process images on the fly. 

Model Configuration 

• The script configures the input shape, number of classes, 

and number of epochs and sets the base model (ResNet50) 

as non-trainable. 

Model Architecture 

• The CNN model is constructed using the ResNet50 base 

model, global average pooling, dropout, and a dense 

softmax layer. 

Model Compilation and Training 

• Compiling the model through Softmax loss and Adam 

optimizer. The fit method is used in training. 

Performance Metrics and Evaluation 

• Accuracy and loss are printed on the test set after model 

evaluation. 

• If `measure_performance` is set to True, various 

performance metrics are plotted, including accuracy and 

loss curves, a confusion matrix, and a classification 

report. 

Return Statement 

• The function returns the trained model. 
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4.1.5. Model Outputs and Visualization 

Upon training the model using a diverse dataset 

comprising images captured during emergency situations, the 

model output provided an overview of the model’s 

performance metrics (accuracy, precision, recall, and F1-

score) evaluated on both training and validation datasets. 

These provide information about the model’s overall 

effectiveness in classifying emergency incident images. 

Visualizations such as confusion matrices which illustrate the 

distribution of predicted classes compared to ground truth 

labels on the image datasets provided. These matrices 

identified systematic errors or biases in the model’s 

predictions for further refinement and optimization. 

Additionally, techniques such as mapping are used to see the 

areas of interest within input images that have contributed to 

the model’s classification decisions. The heatmaps present 

significant insights into the characteristics and patterns the 

model identifies as indicative of different emergency incident 

categories. 

4.2. Performance Analysis 

A total of 9,484 images were used in the training set, 

2,707 images in the validation set, and 1,366 images in the test 

set to train the model under 50 epochs on a dataset with 12 

classes. Throughout the training, the model demonstrated a 

consistent increase in both training and validation accuracy, 

reaching 95.72% and 93.87%, respectively, by the 19th epoch. 

The corresponding training and validation losses exhibited a 

steady decline, indicating improved predictive capabilities of 

the model. Early stopping was implemented, concluding 

training after 19 epochs due to a lack of significant 

improvement in the validation loss over the preceding ten (10) 

epochs. Subsequent evaluation of the test set revealed 95.02% 

accuracy and 0.2242 loss, as graphically depicted in Figures 5 

and 6, affirming the model’s robust performance on 

previously unseen data. This outcome indicates that the 

training data’s underpinning patterns have been effectively 

learned by the model and can generalize well to new instances.  

Moreover, as shown in Table 2, the model’s performance 

on individual classes is assessed through precision, recall, and 

F1-score metrics, delivering a detailed understanding of its 

classification capabilities. Notably, the precision metric 

measures the accuracy of positive predictions, the recall 

metric gauges the model’s ability to capture all relevant 

instances, and the F1 score provides a balance between 

precision and recall.  

Examining the results for each class reveals variations in 

the model’s performance across different categories. For 

instance, the model exhibits high precision, recall, and F1-

score for classes like ‘no_damage_buildings_street,’ 

‘no_damage_water_related,’ and ‘no_damage_wildlife_ 

forest,’ indicating robust performance in accurately 

identifying these instances. However, some classes, such as 

‘earthquake,’ show lower scores, suggesting challenges in 

correctly predicting instances of this class.  

Overall, the model achieves an impressive weighted 

average F1 score of 0.95 on the test set, emphasizing its 

proficiency in classifying various emergency scenarios. This 

aligns with the high accuracy of 95.02% reported earlier, 

affirming the model’s efficacy in handling diverse and 

complex situations.  

In addition, the provided confusion matrix, as shown in 

Figure 7, illustrates the model’s performance in classifying 

different emergency scenarios across the specified categories. 

Each cell in the matrix represents the count of instances, with 

rows indicating the actual classes and columns indicating the 

predicted classes.  

Analyzing the confusion matrix offers insightful 

information on the model’s strengths and potential areas for 

improvement. For instance, the diagonal elements show 

correctly classified examples, going from top left to bottom 

right. 

Table 2. Model performance 
Label/Category Precision Recall F1-Score Support 

accident_human_inflicted 0.85 0.68 0.76 25 

earthquake 0.00 0.00 0.00 4 

el_niño 0.95 0.86 0.90 21 

flood 0.85 0.89 0.87 104 

infrastructure_damage 0.91 0.94 0.92 143 

landslide 0.83 0.65 0.73 46 

no_damage_buildings_street 1.00 1.00 1.00 458 

no_damage_human 0.85 0.92 0.88 12 

no_damage_water_related 0.96 0.99 0.97 229 

no_damage_wildlife_forest 1.00 0.99 0.99 228 

urban_fire 0.82 0.86 0.84 43 

wild_fire 0.96 0.91 0.93 53 

accuracy - - 0.95 1366 

macro avg 0.83 0.81 0.82 1366 

weighted avg 0.95 0.95 0.95 1366 
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Fig. 5 Model graph (Accuracy) 

 
Fig. 6 Model graph (Loss) 
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Fig. 7 Confusion matrix 

 
Fig. 8 Visualization report (Prototype) 

Notably, classes like ‘no_damage_buildings_street’ and 

‘no_damage_water_related’ exhibit high counts along the 

diagonal, indicating strong predictive accuracy. However, off-

diagonal elements reveal instances of misclassification. The 

model appears to face challenges in accurately predicting 

instances of ‘landslide’ and ‘urban_fire,’ as evident from non-

negligible counts in other columns for these classes. 

4.3. Prototype Implementation 

Upon the developed CNN model being integrated into the 

prototype of the iRESPOND System, the visualization report 

includes multiple techniques to interpret and explain the 

predictions. As shown in Figure 8, four visualization methods 

are employed: Original Image, which displays the original 

image, providing a visual representation of the emergency 
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scenario input into the model; LIME, which highlights 

specific areas in the image that influence most to the decision; 

Grad-CAM produces a heatmap, emphasizing the areas 

contributing significantly to the classification of the sample 

uploaded image; and Grad-CAM++ an enhanced version of 

Grad-CAM, providing more accurate localization of important 

areas in the image that refines the heatmap generation process, 

offering a clearer indication of the areas influencing the 

model’s decision for the specified class. Also, a sample 

model’s output for the ‘Accident/Human Inflicted’ category is 

presented alongside these visualizations, providing a 

comprehensive overview of the features and areas in the 

original image contributing to the model’s classification. 

5. Conclusion and Future Work 
The iRESPOND System’s trained CNN model 

demonstrates commendable performance in rapidly 

categorizing emergency incidents from captured images. The 

model exhibits a high accuracy of 95.02% on the test set, 

showcasing its effectiveness in providing early warnings and 

aiding disaster response efforts. The detailed evaluation, 

including precision, recall, and F1-score metrics for individual 

classes, offers a nuanced understanding of the model’s 

strengths and areas for improvement. Notably, the model 

excels in classes like ‘no_damage_buildings_street’ and 

‘no_damage_water_related,’ indicating robust predictive 

capabilities in certain emergency scenarios. Incorporating 

visualization techniques, such as LIME, Grad-CAM, and 

Grad-CAM++, enhances the model’s interpretability. These 

methods contribute to the transparency of the CNN model, 

allowing us to gain insights into the features and areas in the 

input images that influence the predictions. The visualization 

report, including the original image and interpretability 

overlays, strengthens and facilitates a better understanding of 

the model’s decision-making process.In general, the CNN 

model trained for the iRESPOND system produced results 

consistent with the findings of related research about CNN-

based models’ efficacy in disaster image classification.  

The high accuracy of 95.02% on the test set of the 

iRESPOND model indicates progress towards accomplishing 

the goal of precise categorization and robust automated 

systems for disaster response, as emphasized by Rathod et al. 

and Shah et al. Moreover, the challenges found in previous 

research on identifying particular kinds of structural damage, 

including cracks and the obstacles associated with 

distinguishing fire and smoke in photos, correspond with the 

subtle differences in the iRESPOND model’s performance in 

other classes. Results from the studies of Sharma et al., 

Zainorzoli et al., and Sushma and Lakshmi further confirm the 

iRESPOND model’s architecture decision, as does 

ResNet50’s persistent outperformance. Furthermore, as 

stressed in related literature, the iRESPOND model’s 

integration of visualization tools parallels the demand for 

interpretability and transparency in AI-driven disaster 

response systems. Overall, the trained model of the 

iRESPOND System is a step forward in addressing the issues 

and using the potential noted in the larger body of work, 

advancing the development of reliable and effective disaster 

response systems. 

While the CNN model of iRESPOND demonstrates 

promising results, continuous refinement and exploration of 

future enhancements can be done for future work. Addressing 

potential class imbalances, especially for classes with lower 

counts, could further improve the model’s performance. 

Techniques such as oversampling, undersampling, or 

synthetic data generation should be explored. Fine-tuning 

hyperparameters, such as learning rate or dropout rates, could 

optimize the model’s training process. Systematic 

experimentation with hyperparameter tuning may lead to 

improved accuracy and generalization. Implementing 

dynamic learning rate adjustment strategies, such as learning 

rate schedulers, could enhance training efficiency and 

convergence, potentially reducing training time. Expanding 

the dataset with diverse images and scenarios, including data 

from external sources, can contribute to the model’s 

adaptability to a broader range of emergency incidents. 

External validation on different datasets could confirm the 

model’s generalizability. 
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