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Abstract - Stress is an emotion that people encounter when they are extremely loaded and encounter trials and tribulations 

while carrying out day-to-day chores. Stress influences individual health seriously, like soaring blood pressure, heart 

disease, cardiovascular disease, and even lead to stroke. As a result, early stress detection becomes helpful to keep an eye 

on health-related issues caused by stress. Electro Encephalography (EEG) signal based system assists in identifying the 

different disorders and disabilities. Hence, there is a requirement for early stress detection using EEG signals that are 

accurate, precise, and reliable. This is resolved in the proposed method by introducing Kaczmar Spatio Temporal Nelder 

Mead Multilayer Perceptrons (KST-NMMP) that can accurately classify and detect the stress level. In this KST-NMMP 

method, deep learning using multilayer perceptrons is employed for early stress detection. It is split into four layers, i.e., 

one input layer, two hidden layers, and one output layer. The input EEG signals obtained from the subjects are provided in 

the input layer. Next, in the first hidden layer, the artifacts present in the raw EEG signals are filtered out; thus, the stress 

detection time can be reduced. After noise reduction, the spatial and temporal domain features are extracted from EEG 

signals; thus, stress detection overhead can be reduced significantly. Finally, stress level classification and detection at an 

early stage are performed in the second hidden layer employing spatial and temporal features using the Nelder Mead 

activation function. This proposed KST-NMMP method ensures accurate classification outcome which leads to improvement 

both in terms of precision and recall significantly. The overall implementation is performed in the Matlab programming 

language. Finally, the performance is evaluated and compared with the conventional method in terms of precision, recall, 

stress detection time, and stress detection overhead. 

Keywords - Stress Detection, Electro Encephalo Graphy, Finite Impulse, Kernel Smoother, Kaczmarz Spatio Temporal, 

Nelder Mead, Deep Neural Activation.

1. Introduction 
 One of the ongoing research areas conducted by both 

psychologists and engineers is the detection of stress faced 

by human beings in all walks of life. Numerous materials 

and methods have been designed in recent years for human 

stress detection. Stress is said to be detected from human 

bio-signals like, Electroencephalography (EEG), Blood 

Pressure (BP), Skin Temperature (ST), respiration and so 

on. Also, human physiological features are used to measure 

the stress level using physiological signals. A Symmetric 

Deep Convolutional Adversarial Network (SDCAN) was 

proposed in [1] stress classification based on EEG signals 

obtained as input. First, an inference of an adversarial nature 

was introduced with the purpose of acquiring invariant and 

discriminative features in an automatic manner from raw 

EEG signals. This, in turn, resulted in the improvement of 

classification accuracy. Despite improvement in 

classification accuracy, the overhead incurred during 

classification was not analyzed. A stress detection with deep 

learning method was presented in [2] by employing 

dataflow infrastructure for monitoring research on humans. 

In this work, a binary classification of stress was made, and 

a comparison was made with three distinct machine-

learning models. Meta data features were extracted, 

following which ground-truth stress levels were provided as 

information via questionnaires. Finally, the classification of 

stress was made using Electro-Dermal Activity (EDA) and 

Blood Volume Pulse (BVP) signals, therefore ensuring 

considerable improvement in the F1-score. Though 

significant improvement in the F1-score was ensured, 

however, the time incurred in the classification of stress was 

not focused.EEG has been utilized to study and identify 

biomarkers. Despite successful prediction of stress using 

these bio-markers,[3], however, performance was found to 

https://www.internationaljournalssrg.org/
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be suboptimal for different conditions of stress, therefore 

increasing the overhead considerably. To overcome this 

issue, a latent-based representation of bio-markers to 

improve EEG performance was presented in [4]. A 

systematic review of the diagnosis of depression using deep 

learning was discussed in [5]. In [6], a subject-independent 

emotion recognition method was proposed from EEG 

signals by employing Variation Mode Decomposition 

(VMD) as a feature extraction technique and Deep Neural 

Network as the classifier. With this type of classifier, they 

resulted in the improvement of emotion recognition rate in 

a significant manner. Nevertheless, the time and overhead 

incurred in emotion recognition were not analyzed. Stress is 

said to be triggered due to several reasons, like changes in 

the body’s emotional response to different circumstances, 

like depression, anger, grief, sorrow and so on. According 

to the emotion, responses are said to be categorized as either 

positive stress or negative stress. Issues concerning stress 

are increasing in an exponential manner globally. Hence, 

early detection and classification of stress is therefore 

considered of the utmost importance. To differentiate 

between micronap and non-micronap states, Deep Neural 

Network (DNN) techniques using different types of EEG 

signals as input were employed [7].  

 With this DNN design not only ensured improved 

precision but also resulted in considerable recall 

improvement. However, the overhead factor was not 

analyzed. Long short-term memory was applied in [8] for 

accurate stress classification. Each deep learning and 

machine learning algorithm has got its prospective and 

drawbacks in handling significant classification. In [4], four 

different deep learning frameworks and two distinct 

machine learning techniques were applied with the purpose 

of tracking mental depression from EEG signals. Motivated 

by the above issues, like precision, recall, and time 

consumed in stress detection, in this work, a stress detection 

method using Kaczmar Spatio Temporal Nelder Mead 

Multilayer Perceptrons (KST-NMMP) is proposed. The 

major contributions of this work are listed below. 

• To design an effective method for predicting stress 

detection using the Kaczmar Spatio Temporal Nelder 

Mead Multilayer Perceptrons (KST-NMMP) method. 

• To find computationally efficient and relevant features, 

the Finite Impulse Kernel and Kaczmarz Spatio 

Temporal feature extraction algorithm is applied to the 

pre-processed EEG signals.  

• To get better precision and recall rate with minimum 

time and overhead by selecting the unique and 

computationally efficient EEG sparse features using 

Nelder Mead Deep Neural Activation for stress 

detection.  

• To propose a new deep learning-based Multilayer 

Perceptrons to detect stress as either low stress, high 

stress, moderate or neutral.  

• Finally, the performance of the proposed KST-NMMP-

based stress detection method is compared with the 

state-of-the-art methods. 

The structure of the paper is as follows. In Section 2, 

related papers involving stress detection are reviewed. In 

Section 3, we introduce the Finite Impulse Kernel and 

Kaczmarz Spatio Temporal feature extraction, and Nelder 

Mead Deep Neural Activation for stress detection is 

proposed. Section 4 describes the experimental setting and 

discusses the results and analysis of the proposed KST-

NMMP method used in stress detection is presented in 

Section 5. Finally, Section 6 concludes the study. 

2. Related Works 
Stress is the response of a person manifested by 

exceptional anxiety when overlooked by a demanding issue. 

On the other hand, stress can also be perceived as a psycho-

physiological state of ultimate ache and anguish for an 

individual that can be deduced to critical mental health 

issues like depression or anxiety attacks. Given that anxiety 

chaos is one of the most prevalent multi-chronic conditions 

in youth with Autism Spectrum Disorder (ASD), this 

population is specifically susceptible to mental stress. To 

ward off this early stress, Machine Learning (ML) was 

applied [10], wherein non-pharmacological interferences 

were identified for early detection. A systematic review of 

depression diagnosis employing deep learning was 

investigated in [5]. However, another work on stress 

detection applied in line with sensory devices like wearable 

sensors, Electrocardiogram (ECG), 

Electroencephalography (EEG) was proposed in [12]. Over 

the recent few years, deep learning algorithms have been 

designed swiftly and they are also becoming a significant 

tool as far as biomedical engineering is concerned. 

Specifically, there has been a growing interest in the 

utilization of deep learning techniques for decoding the 

physiological status of the brain from EEG. An overview of 

the application of deep learning algorithms in several EEG 

decoders was presented in [13]. However, another 

comprehensive review on stress recognition using machine 

learning was investigated in [14]. Humans have the potential 

to model distinct expressions in comparison to the 

emotional state of mind. Hence, it becomes both laborious 

and cumbersome to judge real emotional states just by 

physical appearance judgments. In [15], human emotions 

were first classified using machine learning, and discrete 

wavelets were employed for extracting from EEG.  

This type of design not only resulted in accuracy but 

also reduced time considerably. Negative stress denotes a 

serious issue as far as advanced societies are concerned. 

Several research works have concentrated on stress 

detection using EEG. To this respect, a hybrid method 

integrating regularity-based quadratic sample entropy 

(QSampEn) and symbolic Amplitude-Aware Permutation 

Entropy (AAPE) has found a significant place in stress 

recognition. In [16], Dispersion Entropy (DispEn) was 

introduced to address stress-related issues. An innovative 

method to perform sampling employing affinity propagation 

and stratified sampling-based clustering algorithm was 

designed in [17]. This sampling method determined the 

different numbers of representative samples in an automatic 

manner upon comparison with the existing methods. A 

comprehensive review of emotions from EEG signals was 

investigated in [14].  
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Fig. 1 Structure of kaczmar spatio temporal nelder mead multilayer perceptrons for early stress detection

3. Overview of the Proposed Method  
In this section, the proposed method for stress detection 

employing multilayer perceptrons is presented. Owing to 

their fast nature and ease of implementation, Multilayer 

Perceptrons are used extensively. In this work, a method 

called Kaczmar Spatio Temporal Nelder Mead Multilayer 

Perceptrons for early stress detection is proposed. Figure 1 

shows the structure of Kaczmar Spatio Temporal Nelder 

Mead Multilayer Perceptrons for early stress detection.  

A review of mental stress assessment methods 

employing machine learning and deep learning techniques 

was presented in [11]. A meticulous review of the state-of-

the-art emotion recognition methods, printed in present-day 

literature, recapitulated prevailing emotion recognition was 

also designed in [9]. Motivated by the above materials, in 

this work, a deep learning-based early stress detection 

method called Kaczmar Spatio Temporal Nelder Mead 

Multilayer Perceptrons (KST-NMMP) is proposed in the 

following sections.  

As shown in the figure, the proposed method consists of 

four layers, namely, an input layer, two hidden layers and an 

output layer. The EEG signals are fed to the input layer that 

comprises neurons equivalent to the number of features in 

the input data or the EEG signals. The neurons in the input 

layer propagate the weighted inputs and randomly selected 

bias through hidden layers. In the very first step, the 

collected dataset is inserted into the input image. Next, the 

hidden layer processes information from the input layer, 

which is said to be accomplished by associating weights and 

biases with input features. In our work, two processes, i.e., 

pre-processing and feature extraction, are performed 

separately in two hidden layers. The input EEG signal goes 

through the pre-processing modeling of the first hidden 

layer, and this model helps to reduce the noise by means of 

a filter and improve the image quality. The main function of 

the pre-processing model using Finite Impulse Kernel 

Smoother based filtering helps to identify the artifacts and 

eliminate them. The feature extraction process is performed 

in the second hidden layer using Kaczmarz Spatio Temporal, 

which aids in reducing the dimensionality and, therefore, 

extracting the most relevant feature for stress detection by 

taking into consideration the inter-class and intra-class 

similarity, therefore aiding in different levels of stress 

detection. Next, in the second hidden layer, the Nelder Mead 

Deep Neural Activation function is applied for stress 

detection. Finally, a net sum of hidden nodes is evaluated to 

obtain output via the activation function. An elaborate 

description of the proposed method is provided in the 

following sections.  

3.1. Data Collection 

This SAM40 dataset comprises a collection of Electro 

Encephalographic (EEG) data acquired from 40 subjects, out 

of which 14 were female and the other 26 subjects were male 

with a mean age of 21.5 years. The experiment was 

performed to monitor stress while performing several tasks 

like, the Stoop Color Word Test (SCWT), arithmetic 

question solving, relaxation and symmetric mirror image 

identification. The three distinct tasks were performed for 25 

seconds following, while three trials were recorded 

separately for 40 subjects. The EEG was recorded with 32 

channel Emotive Epoch Flex gel kit. Also the EEG data were 

segmented into non-overlapping epochs of 25 seconds and 

were processed with the purpose of removing drifts. Figure 

2 given below shows the subject 1 EEG signals for 

performing four different tasks: solving arithmetic 

questions, identification of symmetric mirror images, state 

of relaxation and stroop color word test, respectively. 

…… 

 

Input layer  Hidden layer 1  Hidden layer 2 Output layer 
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Fig. 2 Sample EEG signals (a) Arithmetic solving (b) Symmetric mirror images (c) state of relaxation (d) Stroop test 

 
Fig. 3 Structure of finite impulse kernel smoother-based filtering model

As given in the above figure, a sample subject EEG 

signals have been obtained. Similarly, 40 subjects’ EEG 

signals were obtained for detecting stress. 

 

3.2. Finite Impulse Kernel and Kaczmarz Spatio Temporal 

Feature Extraction 

The first step in early stress detection is the pre-

processing. Raw EEG signals captured from the devices 

contain numerous amounts of noise that are not of interest to 

stress detection. Hence, the raw EEG signals have to be 

filtered to obtain relevant data. Pre-processing involves the 

removal of noisy data that are not of interest to stress 

detection. In this work, components containing artifacts 

from the input raw EEG signals are identified and eliminated 

using a combination of Finite Impulse Response and Kernel 

Smoother in the first hidden layer. Figure 3 shows the 

structure of the Finite Impulse Kernel Smoother-based 

filtering model. As shown in the above figure, with the raw 

EEG signals obtained as input, two different functions are 

applied, namely filtering and smoothing. Artifacts are 

signals caused by eye movements that corrupt the original 

EEG signal. Finite Impulse Response filters are used to 

attenuate noisy signals. The Finite Impulse Response (FIR) 

filters in each input impulse EEG signal in a finite response. 

To be more specific, the FIR filter sums a finite range of 

input-weighted signals and is mathematically stated as given 

below.  

 𝑄(𝑛) = ∑ 𝐼𝑅(𝑛 − 𝑚)𝑃(𝑚)             (1) 

From the above equation (1), ‘𝑃(𝑚)’ represents the 

input EEG signal, with an impulse response of ‘𝐼𝑅(𝑛 − 𝑚)’, 

therefore producing an output signal ‘𝑄(𝑛)’ respectively. In 

this work, we designed an FIR filter with a Kernel 

Smoothing window function. The equation given below 

describes the window function utilized. 

 𝐾𝑅𝑎𝑑(𝑃0 − 𝑃) = 𝑓𝑢𝑛 (
|𝑃−𝑃0|

𝑅𝑎𝑑(𝑃0)
)               (2) 

From the above equation (2), ‘𝑃0’, ‘𝑃’ belongs to the 

input EEG signal set (i.e., 𝑃, 𝑃0 ∈ 𝑃), with a kernel radius of 

‘𝑅𝑎𝑑’, real value function ‘𝑓𝑢𝑛’, whose value is said to 

decrease with the increase in the distance between ‘𝑃’ and 

‘𝑃0’ respectively. Following which, the smoother function is 

applied to arrive at the finally processed EEG signals, as 

given below.  

𝑃𝑆 = 𝑁(𝑃0) =
∑ 𝑅𝑎𝑑(𝑃0,𝑃𝑖)𝑁(𝑃𝑖)𝑛

𝑖=1

∑ 𝑅𝑎𝑑(𝑃0,𝑃𝑖)𝑛
𝑖=1

             (3) 

From the above equation (3), ‘𝑛’ represents the number 

of observations or the sample subjects involved in the 

simulation (i.e., in our work, it is 40), whereas ‘𝑁(𝑃𝑖)’ 

denotes the number of observations at ‘𝑃0’ points 

respectively. Figure 4, given below, shows the results of the 

pre-processed EEG signals of one subject corresponding to 

four different tasks: arithmetic solving, symmetric mirror 

images, state of relaxation and Stroop test, respectively. 

EEG Signal

Apply FIR filter

Perform Kernel Smoothing

EEG filtered signals

Filter 
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(d) 

Fig. 4 Pre-processed EEG signals (a) Arithmetic solving (b) Symmetric mirror images (c) State of relaxation (d) Stroop test 

To enhance the stress recognition rate, it is mandatory 

to split the signal into distinct frequency bands, extract 

feature information from each band, and associate it with 

entire frequency bands to produce more accurate features. 

The spatio-temporal features in mental stress play a vital 

role. In some cases, the spatiotemporal transition-based 

feature is able to distinguish several levels of mental stress 

in an individual. The Finite Impulse Kernel and Kaczmarz 

Spatio Temporal feature extraction algorithm applied is 

applied in our work in the first hidden layer that provides a 

better extraction of the processed EEG signals or data and 

reduces the dimensional quality of the image.  

Let ‘𝐷𝑆 = {𝑃𝑆𝑛 , 𝑄𝑛}𝑛=1
𝑁 ’ be the processed EEG training 

sample, where ‘𝑁’ represents the number of the training 

samples with ‘𝑛’ denoting the sample index, ‘𝑃𝑆𝑛’ forming 

the input processed EEG training sample and ‘𝑄𝑛’ 

representing the corresponding output or class label. In 

addition to that, let us define two samples ‘𝑁𝑆(𝑃𝑆𝑛)’ and 

‘𝑁𝐷(𝑃𝑆𝑛)’, with ‘𝑁𝑆(𝑃𝑆𝑛)’ representing the most similar 

sample to ‘𝑃𝑆𝑛’ with the same class (i.e., in our work, four 

classes are said to exist, class 1 for SCWT, class 2 for 

arithmetic question solving, class 3 for relaxation and class 

4 for symmetric mirror image identification respectively) 

whereas ‘𝑁𝐷(𝑃𝑆𝑛)’ denoting the most similar sample to 

‘𝑃𝑆𝑛’ with the other class respectively. The objective behind 

this type of design remains to allocate weight to each feature 

to denote its significance so as to maximize inter-class 

distance and minimize intra-class distance. For sample 

‘𝑃𝑆𝑛’, let us define ‘𝑉(𝑃𝑆𝑛|𝑊)’ as the variation between the 

intra-class distance and inter-class distance when weighing 

the significance of each EEG spatial-temporal feature and is 

mathematically formulated as given below. 

𝑉(𝑃𝑆𝑛|𝑊) = 𝑊2[𝑃𝑆𝑛 − 𝑁𝑆(𝑃𝑆𝑛)] − 𝑊2[𝑃𝑆𝑛 −
𝑁𝐷(𝑃𝑆𝑛)]  (4) 

From the above equation (4) results, the larger 

‘𝑉(𝑃𝑆𝑛|𝑊)’is, the more probably that ‘𝑃𝑆𝑛’ is correctly 

classified. 

Also, we approach distance ‘𝑊2[𝑃𝑆𝑛 − 𝑁𝑆(𝑃𝑆𝑛)]’and 

𝑊2[𝑃𝑆𝑛 − 𝑁𝐷(𝑃𝑆𝑛)]’, between similar samples, both with 

the same and different classes, in a probabilistic manner to 

acquire the results. Then, the expectation maximum 

likelihood results for the above probabilistic distribution 

function are formulated as given below. 

𝐸𝑀𝐿[𝑉(𝑃𝑆𝑛|𝑊)] = 𝐸𝑀𝐿[𝑊2(𝑃𝑆𝑛 − 𝑁𝑆(𝑃𝑆𝑛)) −

𝑊2(𝑃𝑆𝑛 − 𝑁𝐷(𝑃𝑆𝑛))]  (5) 

 

𝐸𝑀𝐿[𝑉(𝑃𝑆𝑛|𝑊)] = 𝑊2 ∑ 𝑃𝑟𝑜𝑏(𝑃𝑖 =𝑛
𝑖=1

𝑁𝑆(𝑃𝑆𝑛)|𝑊)|𝑃𝑆𝑛 − 𝑃𝑆𝑖| − ∑ 𝑃𝑟𝑜𝑏(𝑃𝑆𝑖 =𝑛
𝑖=1

𝑁𝐷(𝑃𝑆𝑛)|𝑊)|𝑃𝑆𝑛 − 𝑃𝑆𝑖|    (6) 

From the above equations (5) and (6), ‘𝑁𝑆’ represents 

the set of EEG spatio temporal samples with same class as 

‘𝑃𝑆𝑛’, ‘𝑁𝐷’ represents the set of EEG spatio temporal 

samples with the different class as ‘𝑃𝑆𝑛’, with ‘𝑃𝑟𝑜𝑏(𝑃𝑖 =
𝑁𝑆(𝑃𝑆𝑛)|𝑊)’ and ‘𝑃𝑟𝑜𝑏(𝑃𝑖 = 𝑁𝐷(𝑃𝑆𝑛)|𝑊)’ denoting the 

probabilistic distribution functions of ‘𝑁𝑆(𝑃𝑆𝑛)’ and 

‘𝑁𝐷(𝑃𝑆𝑛)’ respectively. 

Finally, with the objective of making the weight sparser, 

we add complex conjugation ‘𝑃𝑆𝑖
′’ on ‘𝑃𝑆𝑖’ so that the spatio 

temporal samples with different classes and same class 

results are stored in real part and imaginary part, therefore 

reducing the overall dimensionality. The weight value is 

obtained by solving optimization using the Kaczmarz 

function, as given below.  

𝐹𝐸 = 𝑊𝑙+1 = 𝑊𝑙 +
𝑃𝑆𝑗−(𝑃𝑆𝑖,𝑊𝑙)

(𝑃𝑆𝑖)2 𝑃𝑆𝑖
′    (7) 

Upon termination of the iteration at the optimal solution, 

the significance of EEG spatio temporal features is finally 

represented by the learned weight vector ‘𝑊’, with spatio 

temporal samples with different class results are stored in 

real part ‘𝑄 = 𝑃𝑆1 + 𝑖𝑃𝑆2’ and spatio temporal samples 

with same class results are stored in imaginary part ‘𝑄 =
𝑃𝑆1 − 𝑖𝑃𝑆2’ respectively. Figure 5 given below, shows the 

results of the extracted features relevant for stress detection.
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                                                      (c)                                                                                                                               (d) 

Fig. 5 Spatio temporal feature extraction for processed EEG signals (a) Arithmetic solving (b) Symmetric mirror images (c) state of relaxation  

(d) Stroop test 

The pseudo code representation of Finite Impulse Kernel and Kaczmarz Spatio Temporal feature extraction is given below. 

Algorithm 1.  Finite impulse kernel and kaczmarz spatio temporal feature extraction 

Input: Dataset ‘𝐷𝑆’, raw input EEG signals ‘𝑃’ 

Output: Dimensionality-reduced robust feature extraction  

1: Initialize subjects  

2: Begin 

3: For each Dataset ‘𝐷𝑆’ with raw input EEG signals ‘𝑃’ 

//Pre-processing EEG signals 

4: Evaluate Finite Impulse Response (FIR) filters in each input impulse EEG signal as given in (1) 

5: Apply kernel function to FIR as given in (2) 

6: Perform the Kernel Smoothing window function as given in (3) 

7: Return EEG filtered signals ‘𝑃𝑆’ 

8: End for 

//Feature extraction  

9: For each Dataset ‘𝐷𝑆’ with EEG filtered signals ‘𝑃𝑆’ 

10: Formulate variation between the intra-class distance and inter-class distance as given in (4) for each sample 

11: Evaluate expectation maximum likelihood results for probabilistic distribution function as given in (5) and (6) 

12: Evaluate optimize weight value as given in (7) 

13: Return spatio temporal features ‘𝐹𝐸’ (i.e., features extracted) 

14: End for  

15: End   
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As given in the above algorithm with the objective of 

obtaining computationally efficient features (i.e., both in 

terms of time and overhead), first, the input EEG signals are 

subjected to a Finite Impulse Kernel Smoother-based 

filtering model. Here, the artifacts present in the input EEG 

signals that solve for no purpose are eliminated; also, by 

employing a Finite Impulse Response (FIR) filter with a 

Kernel Smoothing window function, applying a smoother 

function results in obtaining the processed signals with 

minimum overhead. Second, with the processed EEG signals 

as input, spatio temporal features required for detecting 

different levels of stress are obtained by fine-tuning the 

weight and optimizing the same using the Kaczmarz 

function. Here, by employing complex conjugation, spatio-

temporal samples with different classes are stored in the real 

part, and spatio-temporal samples with the same class are 

stored in the imaginary part, therefore reducing the overall 

dimensionality. 

3.3. Nelder Mead Deep Neural Activation for Stress 

Detection  

Finally, in this section, with the EEG filtered signals 

‘𝑃𝑆’ and spatio temporal features ‘𝐹𝐸’ obtained as input, 

the objective remains in classifying them for accurate and 

precise stress detection. In this work, a model called Nelder 

Mead Deep Neural Activation for stress detection is 

presented. Let us consider the ‘𝑃𝑆𝑚’ processed signals with 

‘𝐹𝐸𝑛’ extracted features formulated as a matrix given below 

(8). 

[

𝑃𝑆1𝐹𝐸1 𝑃𝑆1𝐹𝐸2 𝑃𝑆1𝐹𝐸3 … 𝑃𝑆1𝐹𝐸𝑛

𝑃𝑆2𝐹𝐸1 𝑃𝑆2𝐹𝐸2 𝑃𝑆2𝐹𝐸3 … 𝑃𝑆2𝐹𝐸𝑛

… … … … …
𝑃𝑆𝑚𝐹𝐸1 𝑃𝑆𝑚𝐹𝐸2 𝑃𝑆𝑚𝐹𝐸3 … 𝑃𝑆𝑚𝐹𝐸𝑛

]      (8) 

As the multilayer perceptron employed in our work has 

a linear activation function that maps weighted inputs to the 

output of each neuron, then, the activation function 

equivalent to the above input matrix for classification is 

mathematically represented as given below in (9).  
 

 𝑦(𝑃𝑆𝑚𝐹𝐸𝑛) = tanh(𝑃𝑆𝑚𝐹𝐸𝑛)          (9) 

As already mentioned, with multilayer perceptrons 

being fully connected, each node (i.e., each EEG-filtered 

signal with corresponding spatio temporal features) in one 

layer is associated with a certain amount of weight ‘𝑊𝑖𝑗’ to 

the other nodes in the following layer.  

Here, learning is said to occur in the perceptron by 

updating weights followed by the filtered samples being 

processed on the basis of the error that occurred upon 

comparison to the expected result.  The node weights are 

updated on the basis of the corrections that reduce the error 

based on the Nelder Mead function. The Nelder Mead 

function maintains a simplex that is are approximation of an 

optimal point (i.e., neither relating to high stress nor 

associated with low stress and lies between high stress and 

low stress, scale value of 5). The vertices (i.e., the scale value 

of each subject conducted for a specific trial) are sorted 

according to the objective function values (i.e., to detect 

stress). With this type of heuristic optimization, faster 

convergence is said to exist, therefore resulting in earlier 

stress detection. Figure 6 shows the structure of Nelder Mead 

Deep Neural Activation for stress detection. As illustrated in 

the above figure, to detect the amount of stress induced by 

the subjects (i.e., 40 different subjects including both male 

and female) on various tasks (i.e., Stroop color-word test, 

solving arithmetic questions, identification of sym-metric 

mirror images, and a state of relaxation) Nelder Mead Deep 

Neural Activation function is designed. This Nelder Mead 

Deep Neural Activation function is modeled by correlating 

the ratings on a scale of 1–10 depending on the extent of 

stress evoked while performing various mental tasks based 

on three states of operations, reflection, expansion and 

contraction of the Nelder Mead function and applying the 

same to the Activation function to detect the level of stress 

of each subject. Let us consider the current test points (i.e., 

EEG-filtered signals). ‘𝑃𝑆1, 𝑃𝑆2 , … , 𝑃𝑆𝑛+1’ of each subject 

conducted on a trial and order them as given below. 

𝑇𝑒𝑠𝑡 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 → 𝑓(𝑃𝑆1), 𝑓(𝑃𝑆2), … , 𝑓(𝑃𝑆𝑛+1)      (10) 

With the above set of ordered current test points as given 

in (10), obtain the centroid of EEG filtered signals to which 

simulation is to be performed.  

𝑃𝑆𝐶 = (
𝑃𝑆0+𝑃𝑆1+𝑃𝑆2

3
,

𝑌0+𝑌1+𝑌2

3
)       (11) 

With the above-obtained centroid value ‘𝑃𝑆𝐶’ of the 

EEG filtered signals‘𝑃𝑆’ to detect the level of stress 

experienced during different tasks (i.e., four different types 

of tasks) taken on a scale of 1 to 10, the corresponding three 

operations are performed to reflect the corresponding output. 

The three distinct operations performed are reflection ‘𝑃𝑆𝑅’ 

(12), expansion ‘𝑃𝑆𝐸’ (13) and contraction ‘𝑃𝑆𝐶𝑜𝑛(𝑙 +
1), 𝑃𝑆𝐶𝑜𝑛(𝑙 − 1), ’ (14), (15) respectively. 

𝑃𝑆𝑅 = [𝑃𝑆𝐶 + 𝛼 (𝑃𝑆0 − 𝑃𝑆𝑛+1), 𝑆𝑐𝑎𝑙𝑒], 𝑤ℎ𝑒𝑟𝑒 𝑆𝑐𝑎𝑙𝑒 = 1
   (12) 

𝑃𝑆𝐸 = [𝑃𝑆𝐶 + 𝛽(𝑃𝑆𝑅 − 𝑃𝑆𝐶 ), 𝑆𝑐𝑎𝑙𝑒], 𝑤ℎ𝑒𝑟𝑒 𝑆𝑐𝑎𝑙𝑒 = 0   

(13) 

𝑃𝑆𝐶𝑜𝑛(𝑙 + 1) = [𝑃𝑆𝐶 + 𝛾(𝑃𝑆𝑅 − 𝑃𝑆𝐶), 𝑆𝑐𝑎𝑙𝑒], 𝑤ℎ𝑒𝑟𝑒 2 ≤
𝑆𝑐𝑎𝑙𝑒 ≤ 5    (14) 

𝑃𝑆𝐶𝑜𝑛(𝑙 − 1) = [𝑃𝑆𝐶 + 𝛾(𝑃𝑆𝑛+1 −
𝑃𝑆𝐶 ), 𝑆𝑐𝑎𝑙𝑒], 𝑤ℎ𝑒𝑟𝑒 6 ≤ 𝑆𝑐𝑎𝑙𝑒 ≤ 9  (15) 

From the above set of three operations, reflection refers 

to the change in the direction of action at an interface 

between two different media (i.e., neither increase in stress 

nor decrease in stress) so that the action returns to the 

medium from which it originated, expand referring to the 

increase in size (i.e., high stress) and contract referring to the 

reduction in size (i.e., low stress) respectively. With this 

basis, different levels of stress experienced during different 

tasks taken on a scale of 1 to 10 are measured for three 

different trials. Moreover, the scores have been taken to 

correlate the EEG data to the extent of stress experienced by 

the sample subjects. With this, a rating of 10 on the scale 

denotes a high level of stress on a specific subject, and a 

rating of 1 denotes a minimal level of stress on the subjects. 

Figure 7 shows the classified results.

https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Synaptic_weight
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Fig. 6 Structure of nelder mead deep neural activation for stress detection 

 

      
Fig. 7 Classified results (with the sample given for four different tasks) 

Algorithm 2. Nelder mead deep neural activation for stress detection 

 Input: Dataset ‘𝐷𝑆’, subject 

Output: Precise and early stress detection  

1: Initialize EEG filtered signals ‘𝑃𝑆’, spatio temporal features ‘𝐹𝐸’, trials ‘𝑇1’, ‘𝑇2’, ‘𝑇3’, Scale ‘𝑆’ 

2: Initialize ‘𝛼 > 0’, ‘𝛽 > 1’, ‘𝛾 = 0.5’ 

3: Begin 

4: For each Dataset ‘𝐷𝑆’ with EEG filtered signals ‘𝑃𝑆’, trials and spatio temporal features ‘𝐹𝐸’ 

5: Formulate input vector matrix as given in (8) 

6: Formulate activation function as given in (9) 

//classification for stress detection  

7: Obtain test samples and order as given in (10) and obtain scale value for each trial 

//Reflection 

8: If ‘𝑆𝑐𝑎𝑙𝑒 = 1’ 

9: Measure the reflected point as given in (12) 

10: Samples with EEG filtered signals ‘𝑃𝑆’ detected with moderate stress 

11: Return ‘𝑙𝑜𝑤 𝑠𝑡𝑟𝑒𝑠𝑠’ 

12: End if 

//Expansion 

13: If ‘𝑆𝑐𝑎𝑙𝑒 = 10’ 

14: Measure the expansion point as given in (13) 

15: Samples with EEG filtered signals ‘𝑃𝑆’ detected with neutral stress 

16: Return ‘ℎ𝑖𝑔ℎ 𝑠𝑡𝑟𝑒𝑠𝑠’ 

17: End if  

//Contraction 

18: If ‘2 ≤ 𝑆𝑐𝑎𝑙𝑒 ≤ 5 ’ 
19: Measure the contracted point on the inside as given in (14) 

20: End if 

21: If ‘6 ≤ 𝑆𝑐𝑎𝑙𝑒 ≤ 9’ 

22: Measure the contract point on the outside as given in (15) 

23: End if 

24: Return stress detected results  

25: End for 

26: End  

𝑃𝑆𝑚𝑖𝑛 𝑃𝑆𝑚𝑎𝑥  

𝐶𝑜𝑛𝑡𝑟𝑎𝑐𝑡 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡 

𝐸𝑥𝑝𝑎𝑛𝑑 

𝑆𝑐𝑎𝑙𝑒 
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As illustrated in the above figure, with four subjects, 

EEG signals were acquired as input, the final classified 

results with the subject in the state of relaxation was 

identified with low stress, symmetric mirror images subject 

was identified with moderate stress, arithmetic solving 

subject was identified with neutral stress and finally, the 

stroop test subject was identified with high stress 

respectively. The pseudo code representation of Nelder 

Mead Deep Neural Activation for stress detection is given 

below. 

As given in the above algorithm, with the objective of 

improving stress detection performance or stress detection 

rate, in this work, first, EEG filtered signals of the respective 

subjects conducted with respect to different trials and tasks 

based on extracted spatio temporal features are first obtained 

as input. This specific task of stress detection is performed 

in the second hidden layer, and the corresponding output 

(i.e., stress detected) is provided in the output layer.  

Three different operations, namely, reflection, 

expansion and contraction, are performed individually to 

measure the level of stress. With the convergence rate being 

high as distinct operations being performed with different 

levels of stress, detection is not only made at an early stage 

but also in an improved manner with minimum overhead. 

4. Experimental Setup 
In this section, we discuss the performance of the 

proposed stress recognition method using Kaczmar Spatio 

Temporal Nelder Mead Multilayer Perceptrons (KST-

NMMP). In this study, experiments are carried out in a 

subject-dependent manner, where the stress state model is 

trained for 40 different subjects, and the stress state is 

classified. The precision and recall for each subject are then 

calculated using 10-fold cross-validation, and the final 

precision and recall for one stress dimension is the average 

of all subjects’ values. 

The 10-fold cross-validation evaluation refers to that 

90% of the EEG signals were trained randomly whereas the 

remaining 10% were used for testing, and this procedure was 

iterated ten times or for 10 distinct simulation runs. Ten sets 

of results were finally averaged.  

Furthermore, extensive experiments were conducted on 

two different existing methods, Symmetric Deep 

Convolutional Adversarial Network (SDCAN) [1] and stress 

detection with deep learning [2], to validate the superiority 

of the proposed KST-NMMP method. 

5. Performance Measure  
We have applied three different deep learning methods, 

namely Symmetric Deep Convolutional Adversarial 

Network (SDCAN) [1], stress detection with deep learning 

[2] and proposed Kaczmar Spatio Temporal Nelder Mead 

Multilayer Perceptrons (KST-NMMP)on the same SAM40 

dataset, to investigate and compare the performance of these 

methods to detect stress from EEG signals. Matlab multi-

paradigm programming language has been applied to 

implement different methods.  

The following performance measures have been 

identified to evaluate the efficiency of the stress detection 

method, i.e., the total of true positive cases represented by 

‘𝑇𝑃’, the total of true negative cases represented by ‘𝑇𝑁’. In 

a similar manner, false positive cases are represented with 

‘𝐹𝑃’ and false negatives are represented with ‘𝐹𝑁’ 

respectively. 

Precision: the objective of measuring precision is to 

identify the total number of correct positive predictions from 

the total number of positive predictions using the formula as 

given below. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (16) 

From the above equation (16), the precision results 

‘𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛’ is arrived at based on the true positive rate ‘𝑇𝑃’ 

(i.e., the method correctly predicts the positive class) and the 

false positive rate ‘𝐹𝑃’ (i.e., the method incorrectly predicts 

the positive class) respectively. 

Recall: the objective of measuring recall is to identify 

the number of samples correctly classified as being stressed. 

Mathematically, it is evaluated as given below.  

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (17) 

From the above equation (17), the recall results ‘𝑅𝑒𝑐𝑎𝑙𝑙’ 
is obtained on the basis of the true positive rate ‘𝑇𝑃’ and the 

false negative rate ‘𝐹𝑁’ (i.e., the method incorrectly predicts 

the negative class) respectively. Stress detection time refers 

to the time consumed in detecting stress.  

A significant amount of time is said to be consumed 

during the stress detection process, and this is referred to as 

the stress detection time. This is mathematically stated as 

given below. 

𝑆𝐷𝑇 = ∑ 𝐸𝐸𝐺 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ∗ 𝑇𝑖𝑚𝑒 (𝑆𝐷)  (18) 

From the above equation (18), the stress detection time 

‘𝑆𝐷𝑇’ is measured based on the four different EEG patterns 

(i.e., delta [1 – 3 Hz], theta [4 – 7 Hz], alpha [8 – 12 Hz] and 

beta [13 – 30 Hz]) ‘𝐸𝐸𝐺 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠’ and the corresponding 

time involved in stress detection ‘𝑇𝑖𝑚𝑒 (𝑆𝐷)’ for the 

respective subjects of consideration. 

Stress detection overhead refers to the memory 

consumed during the process of stress detection. While 

performing stress detection, the intermediate results of EEG 

filtered signals, spatio-temporal features extracted, and the 

scale value of each subject conducted for a specific trial has 

to be stored in the stack, therefore consuming a portion of 

memory. This is referred to as the stress detection overhead 

and is measured as given below. 

𝑆𝐷𝑂 = ∑ 𝐸𝐸𝐺 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠 ∗ 𝑀𝑒𝑚 (𝑆𝐷)   (19) 

From the above equation (19), the stress detection 

overhead ‘𝑆𝐷𝑂’ is measured based on the four different EEG 

patterns (i.e., delta [1 – 3 Hz], theta [4 – 7 Hz], alpha [8 – 12 

Hz] and beta [13 – 30 Hz]) ‘𝐸𝐸𝐺 𝑃𝑎𝑡𝑡𝑒𝑟𝑛𝑠’ and the memory 

consumed in detecting stress ‘𝑀𝑒𝑚 (𝑆𝐷)’ for different 

subjects. 
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Table 1. Tabulation for precision and recall with pre-processing and without pre-processing 

Methods – 30 subjects (male) 
With pre-processing Without pre-processing 

Precision Recall Precision Recall 

KST-NMMP 0.86 0.9 0.9 0.95 

SDCAN 0.81 0.85 0.86 0.9 

stress detection with deep learning 0.77 0.8 0.81 0.85 

 
Fig. 8 Graphical representations of precision and recall 

5.1. Performance Analysis of Precision and Recall 

In this section, the analysis of precision and recall with 

respect to 30 distinct subjects (i.e., 20 male and 10 female) 

is made. Table 1 shows the comparative analysis of the 

precision and recall rate performed both with pre-processing 

and without pre-processing. 

Figure 8 shows the graphical representation of precision 

and recall. At the same time, precision refers to the ratio of 

relevant instances among the retrieved instances, whereas 

recall denotes the ratio of relevant instances that were 

retrieved. Therefore, both the precision and recall rates are 

based on relevance factors.  

With 30 samples taken for implementation, 8 subjects 

were observed with no stress and 22 subjects were observed 

with stress, the true positive rate and the false positive rate 

using the proposed KST-NMMP observed to be 20, 2, 19, 3 

using [1] and 18, 4 using [2] respectively. With this, the 

overall precision rate with pre-processing using the three 

methods was found to be 0.86, 0.81 and 0.77, respectively. 

Similarly, the true positive rate and the false negative rate 

using the proposed KST-NMMP method were observed to 

be 20, 1, 19, 2 using [1] and 18, 3 using [2]. The overall recall 

rate with pre-processing was observed to be 0.95, 0.90 and 

0.85 using the three methods. In a similar manner, the 

precision and recall rate for 30 subjects without pre-

processing was measured. From the above figure, the 

precision and recall rate with pre-processing was found to be 

better than without pre-processing. Also, the precision and 

recall using the KST-NMMP method were found to be better 

than [1] and [2]. The reason behind the improvement was 

due to the Nelder Mead Deep Neural Activation for stress 

detection in the second hidden layer. By applying this 

activation function, each subject for different trials for 

distinct tasks was measured separately according to the scale 

value using three operations: reflection, expansion and 

contraction. This in turn, assisted in improving the true 

positive and true negative rate significantly. With this, the 

precision and recall rate of stress detection, when applied 

with pre-processing, was found to be improved using the 

KST-NMMP method by 11% compared to [1] and 12% 

compared to [2]. In a similar manner, the precision and recall 

without pre-processing were found to be enhanced using the 

KST-NMMP method by 11% compared to [1] and [2].  

5.2. Performance Analysis of Stress Detection Time 

In this section, the stress detection time is measured. 

One of the important performance metrics as far as stress 

detection is concerned is the stress detection time. This is 

due to the reason that early detection was more efficient; the 

method is said to be in identifying the defects to the general 

public in measuring the stress; accordingly remedial actions 

can also be taken. Table 2 shows the comparative analysis of 

the stress detection time performed for 10 different subjects, 

with 1 representing subject 1, 2 representing subject 2 and so 

on. 
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Table 2. Tabulation for stress detection time 

Method 

Stress detection time (ms) 

Subjects 

1 2 3 4 5 6 7 8 9 10 

KST-NMMP 1.35 2.25 5 6.25 8 7.45 9 12 11 10 

SDCAN 1.85 3 5.85 7 9.15 9 9.85 14.15 12.45 11.35 

stress detection with deep learning 3 3.55 7 8.35 12 10.35 11 15 15 13 

 
Fig. 9 Graphical representation of stress detection time

Figure 9, given above, shows the stress detection time 

observed for 10 different subjects with respect to trial 1. The 

stress detection time is found to be different for 10 different 

subjects. This is because of different levels of stress induced 

by the respective tasks. For example, the time consumed in 

obtaining the EEG patterns using the KST-NMMP method 

was found to be 0.035ms, 0.065ms using [1] and 0.085ms 

using [2]. Similarly, the stress detection using the three 

methods was observed to be 38.56ms, 28.46ms and 35.29ms, 

respectively. With this, the overall stress detection time was 

found to be 1.35ms, 1.85ms using [1] and 3ms using [2], 

respectively. As a result, the stress detection time using the 

KST-NMMP method was significantly better in detecting 

stress than [1] and [2]. The reason behind the improvement 

was owing to the application of the Finite Impulse Kernel 

Smoother based filtering model to the raw EEG signals. By 

applying this, the artifacts present in input EEG signals that 

were of no use were eliminated. Moreover, by means of a 

Finite Impulse Response (FIR) filter with Kernel Smoothing 

window smoother results were obtained, therefore reducing 

the overall stress detection time efficiently. 

5.3. Performance Analysis of Stress Detection Overhead 

In this section, the stress detection overhead is 

measured. Another significant performance metric of 

importance is the stress detection overhead. A small portion 

of overhead is said to be consumed while storing the 

intermittent results for stress detection and is referred to as 

the stress detection overhead. Table 3 shows the comparative 

analysis of the stress detection overhead performed for 10 

different subjects, with 1 representing subject 1, 2 

representing subject 2 and so on. Finally, figure 10 shows 

the graphical representation of stress detection overhead 

with respect to 10 different subjects. As each subject’s EEG 

pattern generation overhead is different, as the scale obtained 

is different for each trial, the stress detection overhead is also 

found to be distinct. However, comparative analysis shows 

better results using the KST-NMMP method upon 

comparison with [1] and [2]. The reason behind the 

improvement was due to the application of Finite Impulse 

Kernel and Kaczmarz Spatio Temporal feature extraction 

algorithm. By applying this algorithm, spatio temporal 

features were obtained for different levels of stress by fine-

tuning weight and optimizing using the Kaczmarz function.  

Also, with the application of complex conjugation, 

spatio temporal samples with different classes were stored in 

the real part, and spatio temporal samples with the same class 

were stored in the imaginary part, therefore reducing the 

overall dimensionality. Due to this, the stress detection 

overhead using the KST-NMMP method was found to be 

comparatively better than [1] and [2].  
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Table 3. Tabulation of stress detection overhead 

Method 

Stress detection overhead (KB) 

Subjects 

1 2 3 4 5 6 7 8 9 10 

KST-NMMP 2.22 3.15 2.55 4 5.25 4.55 3.85 4 8 7.15 

SDCAN 3.02 4 3.15 4.85 6 5.85 5.25 5.55 8.35 8 

stress detection with deep learning 3.89 4.85 5 6 6.85 7.15 7 7 10 9.25 

 
Fig. 10 Graphical representation of stress detection overhead

6. Conclusion 
Accurate mental stress detection based on physiological 

parameters using EEG signals aids in detecting 

abnormalities in brain waves, and seizing emotional 

experiences helps in monitoring a significant part of humans. 

Hence, early and accurate prediction of stress can be carried 

out, and in certain cases even disease can also be cured. In 

this work, a method called Kaczmar Spatio Temporal Nelder 

Mead Multilayer Perceptrons (KST-NMMP) is proposed. 

Initially, artifacts present in the raw EEG signals are filtered 

out using the Finite Impulse Kernel Smoother-based filtering 

model. After noise reduction, spatial and temporal features 

are extracted from the EEG signals by using Finite Impulse 

Kernel and Kaczmarz Spatio Temporal feature extraction; 

thus, the stress detection time and overhead are said to be 

improved considerably. Finally, stress level classification 

using spatio temporal features is done by using Nelder Mead 

Deep Neural Activation for stress detection. The proposed 

KST-NMMP method is a simulation using Matlab with the 

aid of an EEG brainwave dataset. The simulation 

consequences validated that the KST-NMMP method 

provides better results in performance metrics like, 

precision, recall, stress detection time and overhead 

compared to thess state-of-the-art methods.
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